Pushing dimensional reduction of QCD to lower temperatures

Similar documents
Center-symmetric dimensional reduction of hot Yang-Mills theory

Dimensional reduction near the deconfinement transition

Center-symmetric dimensional reduction of hot Yang-Mills theory

Scale hierarchy in high-temperature QCD

Surprises in the Columbia plot

QCD Equation of state in perturbation theory (and beyond... )

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Spatial string tension revisited

Bulk Thermodynamics: What do we (want to) know?

WIMP Dark Matter and the QCD Equation of State

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

Effective theories for QCD at finite temperature and density from strong coupling

Confinement in Polyakov gauge

Can we locate the QCD critical endpoint with a Taylor expansion?

The pressure of hot QCD. Mikko Laine (Bielefeld, Germany)

Some selected results of lattice QCD

Weakly coupled QGP? Péter Petreczky

Thermodynamics of the Polyakov-Quark-Meson Model

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

Termodynamics and Transport in Improved Holographic QCD

Lattice calculation of static quark correlators at finite temperature

The interplay of flavour- and Polyakov-loop- degrees of freedom

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

Bulk Thermodynamics in SU(3) gauge theory

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

N f = 1. crossover. 2nd order Z(2) m, m

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Spectral Properties of Quarks in the Quark-Gluon Plasma

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

The adjoint potential in the pseudoparticle approach: string breaking and Casimir scaling

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

Orientifold planar equivalence.

arxiv: v2 [hep-lat] 12 Jul 2007

Finite Chemical Potential in N t = 6 QCD

Studies of large-n reduction with adjoint fermions

QCD Thermodynamics Péter Petreczky

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

arxiv: v1 [hep-lat] 26 Dec 2009

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

Everything You Wanted To Know About k-strings But You Were Afraid To Ask. Adi Armoni Swansea University

arxiv: v1 [hep-lat] 5 Nov 2007

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

Deconfinement and Polyakov loop in 2+1 flavor QCD

Effective Field Theory

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

Finite Temperature Field Theory

Dual quark condensate and dressed Polyakov loops

The Quark-Gluon plasma in the LHC era

The QCD phase diagram from the lattice

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

arxiv: v2 [hep-lat] 23 Dec 2008

Constraints for the QCD phase diagram from imaginary chemical potential

Complex Saddle Points in Finite Density QCD

SU(2) Lattice Gauge Theory with a Topological Action

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

Thermodynamics of (2+1)-flavor QCD from the lattice

Dynamics of heavy quarks in charged N = 4 SYM plasma

From confinement to new states of dense QCD matter

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Yang-Mills Theory in (2+1) Dimensions

Themodynamics at strong coupling from Holographic QCD

Renormalization of infrared contributions to the QCD pressure

't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

Thermodynamics for SU(2) gauge theory using gradient flow

PoS(Confinement X)058

The E&M of Holographic QCD

QCD in an external magnetic field

Thermodynamics of strongly-coupled lattice QCD in the chiral limit

The QCD phase diagram from the lattice

Quarkonium Free Energy on the lattice and in effective field theories

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

PNJL Model and QCD Phase Transitions

Q Q dynamics with external magnetic fields

The QCD equation of state at high temperatures

Critical lines and points. in the. QCD phase diagram

AdS/QCD. K. Kajantie. Helsinki Institute of Physics Helsinki, October 2010

The SU(2) quark-antiquark potential in the pseudoparticle approach

The QCD phase diagram at real and imaginary chemical potential

Putting String Theory to the Test with AdS/CFT

On the definition and interpretation of a static quark anti-quark potential in the colour-adjoint channel

Color screening in 2+1 flavor QCD

String Dynamics in Yang-Mills Theory

The Big Picture. Thomas Schaefer. North Carolina State University

Analytic continuation from an imaginary chemical potential

Possible higher order phase transition in large-n gauge theory at finite temperature

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Functional RG methods in QCD

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

arxiv:hep-lat/ v1 5 Oct 2006

A MONTE CARLO STUDY OF SU(2) YANG-MILLS THEORY AT FINITE

Phase diagram of strongly interacting matter under strong magnetic fields.

Generalized Global Symmetries

Reorganizing the QCD pressure at intermediate coupling

arxiv: v1 [hep-ph] 15 Jul 2013

Transcription:

Intro DimRed Center symm. SU(2) Outlook Pushing dimensional reduction of QCD to lower temperatures Philippe de Forcrand ETH Zürich and CERN arxiv:0801.1566 with A. Kurkela and A. Vuorinen Really: hep-ph/0604100, A. Vuorinen and L. Yaffe GGI, Florence, June 2008

Motivation Intro DimRed Center symm. SU(2) Outlook QCD thermodynamics well understood at low T : hadron resonance gas 14.0 12.0 ε/t 4 10.0 8.0 6.0 4.0 2.0 0.0 T/T c 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Karsch et al., hep-ph/0303108

Motivation Intro DimRed Center symm. SU(2) Outlook... and at asymptotically high T : gas of free quarks and gluons What about T a few T c, ie. experimental range? 1.0 0.8 p/p SB 0.6 0.4 0.2 0.0 3 flavour 2 flavour 2+1 flavour T/T c 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Still far from non-interacting gas Karsch et al., hep-lat/9602007

Motivation Intro DimRed Center symm. SU(2) Outlook... and at asymptotically high T : gas of free quarks and gluons What about T a few T c, ie. experimental range? Pisarski, hep-ph/0612191 Far from leading order perturbation theory (e 3p)/T 4 logt

Intro DimRed Center symm. SU(2) Outlook Perturbative expansion IR divergences non-perturbative (Linde) 1.5 1.0 p/p SB 0.5 g 6 (ln(1/g)+0.7) 4d lattice 0.0 1 10 100 1000 T/Λ_ MS g 2 g 3 g 4 g 5 Kajantie et al., hep-ph/0211321 Spatial area law non-perturbative T

Brute force Intro DimRed Center symm. SU(2) Outlook Solution: (3 + 1)d lattice simulations However: N τ must be large (O (10)) to control a 0 limit T c? Fodor et al. Karsch et al. Finite density?? Alternative approach?

Intro DimRed Center symm. SU(2) Outlook Pert. Results Dimensional reduction dim (d + 1) system with one compact dimension: looks like dim d at distances β = 1 T β degrees of freedom are static modes φ 0 ( x) φ( x,τ) = T + n= exp(iω nτ)φ n ( x) Effective action: integrate out non-static modes with Z = D φ 0 D φ n exp( S 0 (φ 0 ) S n (φ 0,φ n )) = D φ 0 exp( S 0 (φ 0 ) S eff (φ 0 )) exp( S eff (φ 0 )) D φ n exp( S n (φ 0,φ n )) In practice? Goal is to reproduce Green s fncts φ 0 ( 0)φ0 ( x) for x β T is UV cutoff for S eff

Intro DimRed Center symm. SU(2) Outlook Pert. Results Dimensional reduction for QCD Asymptotic freedom: g(t) 1/logT causes separation of scales at high T : hard modes, energy O (T): non-static, esp. fermions (odd Matsubara) soft modes,o (gt): Debye mass A 0 (0)A 0 (x) ultrasoft modes,o (g 2 T): magnetic masses A i (0)A i (x)

Intro DimRed Center symm. SU(2) Outlook Pert. Results Perturbative approach Asymptotic freedom allows/enforces evaluation of S eff by perturbation theory Degrees of freedom are static A i,a 0, ie. 3d YM with adjoint Higgs Adjust couplings of S eff to match Green s fncts in perturbation theory after integrating out hard modes: EQCD S EQCD = ( d 3 1 x 2 F ij 2 + TrD i A 0 D i A 0 + me 2 A2 0 + λ ) EA 4 0 with F ij = i A j j A i ig 3 [A i,a j ], and g 2 3 = g2 T m E (T),λ E (T) fixed by perturbative matching after integrating out soft modes: MQCD S MQCD = d 3 x 1 2 F 2 ij

Intro DimRed Center symm. SU(2) Outlook Pert. Results Successes and limitations of EQCD Screening masses down to 2T c 8 7 SU(2) SU(3) 6 M/T 5 4 3 2 0 + ++ 0- -+ ++ -+ +- PC 0 0- + 0 - J R Laermann & Philipsen, hep-ph/0303042

Intro DimRed Center symm. SU(2) Outlook Pert. Results Successes and limitations of EQCD Screening masses at finite density (T = 2T c ) µ real, J P =0 + µ real, J P =0 10 10 M/T 5 M/T 5 0 + + + 0 + 0 + 0 + 0 0 1 2 3 4 µ /T 0 0 1 2 3 4 µ /T Hart et al., hep-ph/0004060

Intro DimRed Center symm. SU(2) Outlook Pert. Results Successes and limitations of EQCD Spatial string tension down to T c? 0.5 r 0 T 1 2 0.8 T/σ s 1/2 (T) 0.7 0.6 0.5 0.4 1 1.5 2 2.5 3 N τ =4 N τ =6 N τ =8 3.5 4 4.5 5 T/T 0 Karsch et al., 0806.3264

Intro DimRed Center symm. SU(2) Outlook Pert. Results Successes and limitations of EQCD Wrong phase diagram must fail near T c phase diagram β G = 12 0.06 symmetric phase 1st order xy 0.04 0.02 pert. theory 4d matching line pert. theory 2nd order tricritical point 0.00 broken symmetry phase 0.02 0.00 0.10 0.20 0.30 0.40 x S EQCD = ( d 3 1 x 2 F ij 2 + TrD i A 0 D i A 0 + me 2 A2 0 + λ EA 4 0 Symmetry is A 0 A 0, ie. Z 2 Matching line is in the wrong phase )

Intro DimRed Center symm. SU(2) Outlook Root of the problem Perturbation theory small fluctuations around one vacuum A 0 = 0 YM vacuum is N c -degenerate: center symmetry (spontaneously broken for T > T c ) A µ (x) s(x)(a µ (x)+i µ )s(x), with s(x + βê τ ) = exp(i 2π N c k)s(x) P(x) : exp(i β 0 dτa 0(x,τ)) : 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0 0.1 0.1 0 0.1 0.1 0 0.1 0.1 0 0.1 Effective action should respect symmetries of original action

Intro DimRed Center symm. SU(2) Outlook Polyakov loop vs coarse-grained Polyakov loop Use Polyakov loop P(x) instead of A 0 in S eff Pisarski But: P(x) SU(N) non-renormalizable (non-linear σ-model) cf. PNJL Here: degree of freedom is coarse-grained Polyakov loop Z (x) T V d 3 y block U(x,y)P(y)U(y,x) Yaffe renormalizability preserved: easy T matching with perturbation theory

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Simplest: SU(2) Yang-Mills sum of SU(2) matrices is multiple of SU(2) matrix Z = λω, Ω SU(2), λ > 0 Parametrization:Z = 1 2 (Σ1+iΠ aσ a ) L eff = g 2 3 [ 1 2 TrF 2 ij + Tr(D i Z D i Z )+V(Z ) ] Include all Z 2 -symmetric super-renormalizable terms: V(Z ) = b 1 Σ 2 + b 2 Π 2 a + c 1 Σ 4 + c 2 (Π 2 a) 2 + c 3 Σ 2 Π 2 a Local gauge invariancez (x) Ω(x)Z (x)ω 1 (x) Global Z 2 symmetry:z Z (actually Σ Σ,Π Π indep.)

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Perturbative matching Determine [almost] parameters {b 1,b 2,c 1,c 2,c 3 } using perturbation theory Split potential into hard and soft pieces: V(Z ) = V h + g3 2 V s Hard potential scales T (magnitude of coarse-grained Pol.) V h = h 1 TrZ Z + h 2 (TrZ Z ) 2 O(4) symmetric Soft potential EQCD at high T V s = s 1 TrΠ 2 + s 2 (TrΠ 2 ) 2 + s 3 Σ 4

Leading order Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Classical solution: Σ(x) = Σ, Π(x) = Πδ a,3 which minimize V class = g 2 3 ( Σ 2 + Π 2 )(2h 4 1 + h 2 ( Σ 2 + Π 2 )) Two possible cases (h 2 > 0 for stability): h 1 < 0 deconfined h 1 > 0 confined Σ = Π = h 1 h 2,TrZ v Σ = Π = TrZ = 0

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results 1-loop effective potential At 1-loop, U(1) symmetry of potential is broken: Σ = v cos(πα), Π = v sin(πα) V eff = s 1v 2 2 sin2 (πα)+ s 2v 4 4 sin4 (πα)+s 3 v 4 cos 4 (πα) v 3 3π sin(πα) 3 +O (g 2 3 )

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Matching to EQCD Decompose fluctuations into radial + angular: Z = ± [ 1 2 v1+g 3( 1 2 φ1+iχ)] ] ] L = 1 2 TrF ij 2 + [( 1 2 i φ) 2 + mφ 2φ2 + Tr [(D i χ) 2 + mχχ 2 2 + V s (φ,χ) m 2 φ = 8v 2 c 1 = 2h 1, heavy m 2 χ = 2(b 2 + v 2 c 3 ) = g 2 3 (s 1 4v 2 s 3 ), light L EQCD = 1 2 F 2 ij + TrD i A 0 D i A 0 + m 2 E A2 0 + λ EA 4 0 χ is A 0 2 equations m 2 χ = m 2 E, λχ 4 = λ E A 4 0

Domain wall Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Two more equations from matching domain wallz (x = ± ) = ± v 2 1 tension and width at 1-loop: F( z) π 2 T 4 /6 1 F F YM 0.8 0.02 0.6 0.01 0.4 2 4 6 8 z 0.2 1 2 3 4 5 L SU(2) andl eff wall profiles z -0.01 relative difference

Finally... Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results 5 couplings, 4 equations 1 free parameter r [ L eff = g 2 1 3 2 TrF ij 2 + Tr(D i Z D i Z )+V(Z ) ] V(Z ) = b 1 Σ 2 + b 2 Π 2 a + c 1 Σ 4 + c 2 (Π 2 a) 2 + c 3 Σ 2 Π 2 a g 2 3 = g2 T b 1 = 1 4 r 2 T 2, b 2 = 1 4 r 2 T 2 + 0.441841g 2 T 2 c 1 = 0.0311994r 2 + 0.0135415g 2 c 2 = 0.0311994r 2 + 0.008443432g 2 c 3 = 0.0623987r 2 Couplings determined by (g,t) and r = m φ /T r fixes mass of coarse-grained Pol. loop magnitude any r O (1) should give similar IR physics

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Phase diagram? To determine phase diagram, need [non-perturbative] lattice simulations S lat = S W + S Z + V(ˆΣ, ˆΠ), [ S W = β x,i<j 1 1 2 Tr[U ij] ], Wilson action ( ) ] 4 S Z = 2 β x,i Tr[ˆΠ2 ˆΠ(x)U i (x)ˆπ(x + î)u i (x) ( ) ) 4 + β x,i (ˆΣ 2 (x) ˆΣ(x)ˆΣ(x + î), kinetic term ( ) [ 3 2 V = x ˆb 1ˆΣ 2 +ˆb2ˆΠ 2 a + ĉ 1ˆΣ 4 + ĉ 2 (ˆΠ a) 2 + ĉ3ˆσ 2ˆΠ 2 a 4 β with β = 4, a lattice spacing ag3 2 Explicit Z(2) symmetry ˆΠ ˆΠ, ˆΣ ˆΣ ] Lattice couplings?

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Matching lattice and MS continuum couplings Perturbative 2-loop lattice calculation A. Kurkela, 0704.1416 Σ = g 3ˆΣ+O (a), Π = g 3ˆΠ+O (a), c i = ĉ i +O (a) ˆb 1 = b 1 /g 4 3 2.38193365 4π (2ĉ 1 + ĉ 3 )β + 1 16π 2 { (48ĉ 2 1 + 12ĉ 2 3 12ĉ 3)[log1.5β+0.08849] 6.9537ĉ 3 } +O (a), ˆb 2 = b 2 /g 4 3 0.7939779 4π (10ĉ 2 + ĉ 3 + 2)β + 1 {(80ĉ 2 16π 2 2 + 4ĉ2 3 40ĉ 2)[log1.5β+0.08849] 23.17895ĉ 2 } 8.66687 +O (a) Matching exact in g 3, buto (a) error continuum extrapolation

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Simulation results < Σ 2 > < Σ > 2 < Σ > 0.5 0.4 0.3 0.2 0.1 0 0.006 0.004 0.002 0.1 0.15 0.2 0.25 0.3 1/g 2 < Σ 2 > < Σ > 2 0.5 0.4 0.3 0.2 0.1 0 0.003 < Σ > 0.002 0.001 0 0.1 0.15 0.2 0.25 0.3 1/g 2 r 2 = 5,64 3,β = 12 r 2 = 5,64 3,β = 6 Z 2 -restoring phase transition

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Universality class 3 2.5 N=64 N=96 N=128 3.5 3 2.5 N=64 N=96 N=128 B 4 2 1.5 1.604 B 4 2 1.5 1.604 1-100 0 100 (1/g 2 2 1/ν -1/g c )N 1-100 -50 0 50 100 (1/g 2 2 1/ν -1/g c )N r 2 = 5 r 2 = 10 3d Ising universality class: B 4 Σ4 Σ 2 2 = 1.604... at criticality ν 0.63

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Thermodynamic + continuum extrapolations 1/g 2 0.28 0.26 0.24 0.22 r 2 =10, β=12 r 2 =5, β=12 1/g 2 0.45 0.4 0.35 r 2 =10 r 2 =5 0.2 0.3 50 100 150 N 0 0.05 0.1 0.15 1/β V a 0 r small large correlation length large volume r large large cutoff effects fine lattice r = 0 : Σ decouples λφ 4 already done X.P. Sun, hep-lat/0209144

Intro DimRed Center symm. SU(2) Outlook Setup Matching Lattice Results Phase diagram 1/g 2 0.3 0.25 0.2 0.15 0.1 0.05 0 Deconfined g 2 =5.1 Confined 0 2 4 6 8 10 r 2 Phase transition is robust r r : no radial fluctuations, but still domain wall and transition gcrit 2 depends mildly on r for r > 1 Fixing g 2 (T c ) = 5.1 gives r 2.6: dim. red. action completely defined

Prospects Intro DimRed Center symm. SU(2) Outlook To do with SU(2): determine r(t) non-perturbatively check accuracy of effective theory at T near T c - domain wall tension - spatial string tension - screening masses make predictions using effective theory - heavy fermions - chemical potential Also SU(3):Z GL(3,C) V(Z ) = V h (Z )+g3 2 V s(z ); M Z 1 1TrZ 3 V h (Z ) = c 1 TrZ Z + c 2 (detz + detz )+c 3 Tr(Z Z ) 2 V s (Z ) = d 1 TrM M + d 2 Tr(M 3 + M 3 )+d 3 Tr(M M) 2 6 couplings, 4 equations 2 heavy modes to tune A. Kurkela, 0704.1416