From co-crystals to functional thin films: photolithography using the [2+2] photodimerization

Similar documents
Supporting Information

Electronic Supplemental Information. Metal nanoparticle catalyzed cyclobutane cleavage reaction

Supplemental Information

Electronic Supplementary Information

Supporting Information

Linear Polyester Synthesized from Furfural-based Monomer by Photoreaction in Sunlight

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Supporting Information

Supporting Information

Supporting Information

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

Electronic Supplementary Information (ESI)

Supporting Information

Amphiphilic diselenide-containing supramolecular polymers

Supporting Information. Crystal surface mediated structure transformation of kinetic framework. composed of multi-interactive ligand TPHAP and Co(II)

Benzene Absorption in a Protuberant-Grid-Type Zinc(II) Organic Framework Triggered by the Migration of Guest Water Molecules

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Biasing hydrogen bond donating host systems towards chemical

Spontaneous racemic resolution towards control of molecular recognition nature

Supporting Information

Supporting Information

SUPPORTING INFORMATION

Electronic Supplementary Information. for. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure

,

Supporting Information

Manganese-Calcium Clusters Supported by Calixarenes

Redox-Responsive Complexation between a. Pillar[5]arene with Mono ethylene oxide Substituents. and Paraquat

One-dimensional organization of free radicals via halogen bonding. Supporting information

Supporting Information for the Article Entitled

Supporting Information for. Hydrogen-Bond Symmetry in Difluoromaleate Monoanion

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

The precursor (TBA) 3 [H 3 V 10 O 28 ] was synthesised according to the literature procedure. 1 (TBA = n tetrabutylammonium).

Electronic Supplementary Information (ESI)

Supporting Information s for

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

Supporting Information

Supplemental Information. Point-of-Use Detection of Amphetamine-Type. Stimulants with Host-Molecule-Functionalized. Organic Transistors

Supporting Information

Supporting Information

Green Chemistry Experiment: A Template-Directed [2+2] Photodimerization Conducted in the Solid State

Supporting Information

Supporting Information

Permeable Silica Shell through Surface-Protected Etching

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

SUPPLEMENTARY INFORMATION

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

Electronic Supplementary Information for Sulfur, Oxygen, and Nitrogen Mustards: Stability and Reactivity

Supporting Information

Supplementary Figure 1. Structures of substrates tested with 1. Only one enantiomer is shown.

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether

Transformations: New Approach to Sampagine derivatives. and Polycyclic Aromatic Amides

Electronic Supplementary Informations

Hydrogen Bonded Dimer Stacking Induced Emission of Amino-Benzoic Acid Compounds

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information

Supporting Information

Electronic Supporting Information

An isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging. ligand as an intermediate for catalytic water oxidation

Soluble Precursor of Hexacene and its Application on Thin Film Transistor

Advanced Pharmaceutical Analysis

Supporting Information. Table of Contents

Simultaneously enhancing the solubility and permeability of

Supporting Information. Rapid synthesis of metal-organic frameworks MIL-101(Cr) without the addition of solvent and hydrofluoric acid

Electronic Supplementary Information. Iridium(III) phosphors with bis(diphenylphorothioyl)amide ligand for

Supplementary Information. Two Cyclotriveratrylene Metal-Organic Frameworks as Effective Catalysts

Novel fluorescent matrix embedded carbon quantum dots enrouting stable gold and silver hydrosols

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Electronic Supporting Information

[Ag-Ag] 2+ Unit-Encapsulated Trimetallic Cages: One-pot Syntheses and Modulation of Argentophilic Interactions by the Uncoordinated Substituents

Supporting information. Cooperatively Enhanced Ion Pair Binding with a Hybrid Receptor

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability

Co(I)-Mediated Removal of Addends on the C60 Cage and Formation of Monovalent Cobalt Complex CpCo(CO)(η 2 -C60)

Synthesis of Vinyl Germylenes

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Cluster-π electronic interaction in a superatomic Au 13 cluster bearing σ-bonded acetylide ligands

The oxide-route for the preparation of

Supplementary Information

Supporting Information

A triazine-based covalent organic polymer for efficient CO 2 adsorption

A Sumanene-based Aryne, Sumanyne

Supplementary Information

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity

Supporting Information

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Reactivity of Diiron Imido Complexes

Magnetic nanoparticle-supported proline as a recyclable and recoverable ligand for the CuI catalyzed arylation of nitrogen nucleophiles

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A.

Supporting Information. Chlorine in PbCl 2 -Derived Hybrid-Perovskite Solar Absorbers

CHEM 3760 Orgo I, F14 (Lab #11) (TECH 710)

Dynamics of Caged Imidazolium Cation Toward Understanding The Order-Disorder Phase Transition and Switchable Dielectric Constant

1. General Experiments... S2. 2. Synthesis and Experiments... S2 S3. 3. X-Ray Crystal Structures... S4 S8

Supporting Information

Electronic Supplementary Information (ESI)

Supplementary Information

All materials and reagents were obtained commercially and used without further

Transcription:

From co-crystals to functional thin films: photolithography using the [2+2] photodimerization Suman Ghorai, a,b Joseph C. Sumrak, a,b Kristin M. Hutchins, a Dejan-Krešimir Bučar, a Alexei V. Tivanski, a, * and Leonard R. MacGillivray a, * a Department of Chemistry, University of Iowa, Iowa City, IA, 52242 USA. b Authors contributed equally to work. E-mail: alexei-tivanski@uiowa.edu; len-macgillivray@uiowa.edu Contents 1) Experimental Information 2) Solubility tests 3) AFM images of trials with different solvents, template, and spin coating conditions 4) IR spectroscopy 5) Powder X-ray diffraction 6) Dissolution rate measurement on thin film 7) ESI mass spectrometry 8) 1 H NMR spectroscopy 9) Thermogravimetric analysis 10) STXM images 11) NEXAFS spectral data 12) AFM images and height profiles of UV-exposed thin films of 4,4 -bpe and hex-phgl S1

1) Experimental Information AFM Measurements. AFM imaging was conducted using a molecular force probe 3D AFM (Asylum Research, Santa Barbara, CA). Height images were collected at room temperature using silicon probes (MikroMasch, San Jose, CA, CSC37) with a nominal spring constant of 0.35 Nm -1 and a typical tip radius of curvature of 10 nm. STXM Measurements. STXM measurements were performed on samples deposited on Si 3 N 4 windows (Silson Ltd., England) with similar spin coating conditions. Single energy images and oxygen (O) K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra were acquired using STXM instrument on Beamline 5.3.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory (Berkeley, CA). For STXM measurements, the X-ray beam is focused with a custom made Fresnel zone plate onto the sample, and the transmitted light intensity is detected. The diffraction limited spot size at the sample was ~25 nm. Images at a single energy were obtained by raster-scanning the sample at the focal plane of X-rays and collecting transmitted monochromatic light as a function of sample position. Spectra at each image pixel or a particular sample region are extracted from a collection of images recorded at multiple photon energies across the absorption edge. Dwell times used to acquire an image at single photon energy were typically 0.5 ms per pixel. Single-crystal X-ray data. All crystal data were measured on a Nonius Kappa CCD single-crystal X-ray diffractometer at room temperature using MoKα radiation (λ = 0.7107 Å). After anisotropic refinement of nonhydrogen atoms, H-atoms bonded to sp 2 hybridized atoms were placed in idealized positions and allowed to ride on the atom to which they are attached. The hex-phgl H-atoms were calculated in an optimal hydrogen-bonding geometry. Structure solution was accomplished with the aid of SHELXS-97 and refinement was conducted using SHELXL-97. Crystal data for 2(hex-phgl) 2(4,4 -bpe) 2(1,3-dichlorobenzene): triclinic, P ī, a = 8.367(1) Å, b = 10.824(1) Å, c = 17.212(2) Å, α = 84.43(1), β = 79.71(1), γ = 75.29(1), V = 1481.1(3) Å3, D c = 1.272 g cm -3, Z = 2, F(000) = 596, μ = 0.257 mm -1, MoK α radiation (λ = 0.71070 Å), T = 298(2) K, and R = 0.086 for 2679 reflections with I net > 2σ(I) (CCDC-926350). S2

2) Solubility tests Table S1. Solubility data for thin films based on 4,4 -bpe and hex-phgl. Solvent Concentration Spin coating speed Comment* (mg/ml) (rpm) EtOH 6 300 1 6 500 1 6 1000 1 12 500 1 12 1000 1 EtOH +Diethyl Ether 12 1000 1 12 1500 1 IPA 12 slow evaporated 2 12 100 3 12 200 3 12 300 3 12 500 3 12 1000 3 12 1500 3 6 1000 3 CH 3 CN 12 1000 1 6 1000 1 6 1000 1 6 1000 1 1:1 IPA:di-Cl Benzene 6 300 4 6 500 4 6 1000 5 12 300 4 12 500 4 12 1000 4 9 500 5 9 1000 6 *1: single crystal; 2: non-continuous film-like morphology; 3: layered structure; 4: film with relatively high roughness (greater than 60 nm); 5: film with lower roughness (lower than 35nm); 6: smooth film (15-20 nm roughness). Solubility tests performed to determine a solvent that produces a uniform thin film. Concentrations and spin coating rates also varied to determine conditions for film formation. S3

3) AFM images of trials with different solvents, template, and spin coating conditions Figure S1. Morphology of thin film trials with (a) hex-phgl and 4,4 -bpe dissolved in IPA at 12 mg/ml with a spin coating speed of 1000 rpm and (b) hex-phgl and 4,4 -bpe dissolved in 1:1 mixture of 1,3-dichlorobenzene and IPA and the morphology is obtained by slow evaporation. Images show the morphology of the thin film trials using hex-phgl template at different solvents. We optimized the solvent and spin coating conditions to improve the morphology of the thin film (Fig. S1a,b). S4

4) IR Spectroscopy IR spectroscopy performed using a Nicolet 380 FT-IR Spectrometer. The KBr press method was used for single components hex-phgl and 4,4 -bpe, as well as the co-crystal. An IR spectrum of the thin film was collected using an ATIR. Figure S2. IR spectrum of hex-phgl. Figure S3. IR spectrum of 4,4 -bpe. S5

100 % Transmittance 90 80 70 60 50 3054 2911 2759 40 30 3500 3000 2500 2000 Wavenumber, cm -1 Figure S4. IR spectrum of (4,4 -bpe) (hex-phgl). Labeled peaks correspond to (phenol)o- H N(pyridine) forces. 1500 1000 Figure S5. IR spectrum of 4,4 -bpe and hex-phgl thin film. Labeled peaks correspond to (phenol)o-h N(pyridine) forces. S6

Figure S6. IR spectrum of 4,4 -bpe and hex-phgl prepared via solvent evaporation. Labeled peaks correspond to (phenol)o-h N(pyridine) forces. S7

5) Powder X-ray diffraction data PXRD data were collected from samples mounted on glass slides using a Siemens D5000 X-ray diffractometer using CuK α1 radiation (λ = 1.54056 Å) (scan type: locked coupled; scan mode: continuous; step size: 0.02 ). Figure S7. Comparison of powder pattern of the thin film, co-crystal, and individual components (HP = hex-phgl; BPE = 4,4 -bpe). S8

Figure S8. Comparisons of PXRD powder patterns of solvated co-crystal (gold), co-crystal evaporated to dryness (green), as prepared thin film (dark blue), and reported non-solvated cocrystal (red). Additional peaks are attributed to pure components and/or other phases associated with the co-crystallization. S9

6) Dissolution rate measurement on the thin film Figure S9. Graph showing changes in thickness of the photoreacted thin film normalized to the initial thickness plotted as a function of washing time in a mixture of pentane and ether (2:1 v/v). Solubility differences between the unreacted and photoreacted thin film utilized to develop the photo patterns on the thin film. After 90 sec of washing, more than half of the photoreacted film thickness remained, whereas the unreacted film dissolved within approximately 2 s of washing in the same solvent system. S10

7) ESI Mass Spectrometry ESI mass spectrometry performed using a Waters Q-Tof Premier Mass Spectrometer. Figure S10. ESI mass spectrum films containing 4,4 -bpe and hex-phgl before UV exposure. Figure S11. ESI mass spectrum films of 4,4 -bpe and hex-phgl after 20 h UV exposure. Mass spectrometry performed on samples of four unreacted thin films and four reacted films. Samples were dissolved in methanol to form a stock solution. From the solution, 30 μl was diluted with a 1:1 water: acetonitrile with an additional 0.1 % formic acid solution. The peak at 183 au of the unreacted thin film is consistent with monoprotonated 4,4 -bpe. The peak at 239 S11

au is consistent with monoprotonated hex-phgl. Upon irradiation, a peak at 365 au appears in the spectrum, consistent with monoprotonated 4,4 tpcb. Base peak after reaction at 183 au is likely due to unreacted 4,4 -bpe and/or diprotonated tpcb, which have equal mass to charge ratios. S12

8) 1 H NMR Spectroscopy 1 H NMR data collected on an AVANCE Bruker NMR spectrometer operating at 300 or 400 MHz using DMSO-d 6 as the solvent. Figure S12. 1 H-NMR spectrum of (4,4 -bpe) (hex-phgl) after UV irradiation. (400 MHz) To collect a 1 H NMR spectrum, 80 thin films were exposed to UV irradiation for 20 h. The reacted thin films were concentrated into a single sample by dissolving each thin film in ethanol and combing the samples. The peaks at 8.6 and 8.3 ppm are assigned to the α-hydrogens of the pyridine rings. The ratio of the peaks to the cyclobutane peak demonstrates approximately a 50% photoreaction in the thin films. S13

Figure S13. 1 H-NMR spectrum of solvated (4,4 -bpe) (hex-phgl) co-crystal. S14

Figure S14. 1 H-NMR spectrum of (4,4 -bpe) (hex-phgl) co-crystal after evaporation to dryness. Note the lack of 1,3-dichlorobenzene being present in the sample. S15

9) Thermogravimetric Analysis TGA data were collected on an EXSTAR 6000 TG/DTA. Figure S15. TGA of solvated co-crystal showing loss of 1,3-dichlorobenzene that occurs slightly above room temperature. S16

10) STXM images Figure S16. STXM images of thin films prepared on a Si 3 N 4 membrane. The NEXAFS spectra were collected on the same region of this thin film. S17

11) NEXAFS spectral data Figure S17. (a) C K-edge NEXAFS spectra of the thin film prepared on Si 3 N 4 window using the same conditions. (b) Narrower energy range of the C K-edge spectra showing two different transitions for aromatic and nonaromatic C=C at 285.8 and 284.6 ev, respectively. The combined Gaussians fit of the spectra was used to calculate the extent of reaction, ca 50%, which is consistent with the result obtained using NMR. Table S2. Gaussian fit parameters for thin film NEXAFS spectra (Fig. S17b). Gaussian Peaks Parameters Unreacted thin film Reacted thin film Peak 1: Non Normalized absorption 0.6718 0.3262 aromatic C=C Peak center, ev 284.52 284.52 Peak 2: Aromatic C=C Width, ev 0.5226 0.5226 Normalized absorption 1.23 1.4854 Peak center, ev 285.8 285.8 Width, ev 0.5662 0.5662 Lower energy peak at 284.6 ev is resonance transition in the NEXAFS spectra due to nonaromatic C=C; whereas the higher energy peak at 285.8 ev occurs due to the aromatic C=C functional group. The absorbance for these two transitions needs to be separated in order to quantify the extent of photodimerization reaction accurately. Initially, unreacted film NEXAFS spectrum was fit by a sum of two Gaussian functions that correspond to transitions for aromatic and non-aromatic C=C, yielding peak width and peak center for each transition. Then, obtained peak center and width were fixed for the fit of reacted thin film with only normalized absorbance for both transitions used as free fit parameter. Table S2 lists parameters obtained from the fit for both unreacted and reacted thin films. The extent of photoreaction can then be obtained by determining the ratio of normalized absorbance of the non-aromatic C=C at 284.6 ev for reacted S18

and unreacted films. The value for extent of reaction was ~ 50% using this method, consistent with the NMR data. S19

12) AFM images and height profiles thin films of 4,4 -bpe and hex-phgl. Figure S18. AFM images of UV exposed thin film with photomask of 4,4 -bpe and hex-phgl, followed by washing with the solvent. The sharp features were the reacted portion of the thin film which was uncovered by the photomask while UV exposure. Obtained features were consistent with the type of photomask used. S20