Nonperturbative Study of Supersymmetric Gauge Field Theories

Similar documents
Lecture 12 Holomorphy: Gauge Theory

Generalized Gaugino Condensation: Discrete R-Symmetries and Supersymmetric Vacua

Two Examples of Seiberg Duality in Gauge Theories With Less Than Four Supercharges. Adi Armoni Swansea University

Supersymmetric Gauge Theories, Matrix Models and Geometric Transitions

The Affleck Dine Seiberg superpotential

Lecture 7: N = 2 supersymmetric gauge theory

RECENT ASPECTS OF SUPERSYMMETRY BREAKING

S-CONFINING DUALITIES

arxiv:hep-th/ v1 20 Nov 2002

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

Techniques for exact calculations in 4D SUSY gauge theories

Seiberg Duality: SUSY QCD

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab

Orientifold planar equivalence.

Putting String Theory to the Test with AdS/CFT

Topological reduction of supersymmetric gauge theories and S-duality

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

SUSY Breaking in Gauge Theories

String / gauge theory duality and ferromagnetic spin chains

Holographic Anyons in the ABJM theory

If I only had a Brane

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

't Hooft anomalies, 2-charge Schwinger model, and domain walls in hot super Yang-Mills theory

arxiv:hep-th/ v1 8 Sep 2003

Chern-Simons Theories and AdS/CFT

1 Susy in 4d- Notes by Horatiu Nastase A very basic introduction (survival guide)

A Localization Computation in Confining Phase

Lecture 24 Seiberg Witten Theory III

Some Tools for Exploring Supersymmetric RG Flows

THE MASTER SPACE OF N=1 GAUGE THEORIES

A New Regulariation of N = 4 Super Yang-Mills Theory

Introduction to defects in Landau-Ginzburg models

Finite-temperature Field Theory

Introduction to AdS/CFT

Introduction to AdS/CFT

t Hooft loop path integral in N = 2 gauge theories

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Roni Harnik LBL and UC Berkeley

Exact Solutions of 2d Supersymmetric gauge theories

BPS States in N=4. Ashoke Sen. Harish-Chandra Research Institute, Allahabad, India

NTNU Trondheim, Institutt for fysikk

A Renormalization Group Primer

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

Spontaneous breaking of supersymmetry

Supersymmetric Gauge Theories in 3d

Geometry and Physics. Amer Iqbal. March 4, 2010

An extended standard model and its Higgs geometry from the matrix model

Anomaly and gaugino mediation

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

N=1 Global Supersymmetry in D=4

String/gauge theory duality and QCD

Lecture 25 Superconformal Field Theory

arxiv: v2 [hep-lat] 23 Dec 2008

Quantum Field Theory III

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

2-Group Global Symmetry

Magnetic bions, multiple adjoints, and Seiberg-Witten theory

N =1Supersymmetric Product Group Theories in the Coulomb Phase

Singlet-Stabilized Minimal Gauge Mediation

Vector Superfields. A Vector superfield obeys the constraint:

D-Branes at Finite Temperature in TFD

SUPERCONFORMAL FIELD THEORIES. John H. Schwarz. Abdus Salam ICTP 10 November 2010

Supersymmetric Flows for Supersymmetric Field Theories

Generalized Global Symmetries

Dynamical SUSY Breaking in Meta-Stable Vacua

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

A Crack in the Conformal Window

R-Invariant Dilaton Fixing

Tachyon Condensation in String Theory and Field Theory

Updates in the Finite N=1 SU(5) Model

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Lecture 7 SUSY breaking

Instantons in supersymmetric gauge theories. Tobias Hansen Talk at tuesday s Werkstatt Seminar January 10, 2012

Instantons and Donaldson invariants

Soft Supersymmetry Breaking in

Solution Set 8 Worldsheet perspective on CY compactification

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

Bubbling Geometries for Half BPS Wilson Lines. Satoshi Yamaguchi (IHES) S. Yamaguchi, hep-th/ S. Yamaguchi, to appear

Half BPS solutions in type IIB and M-theory

Higher dimensional operators. in supersymmetry

Non-renormalization Theorem and Cyclic Leibniz Rule in Lattice Supersymmetry

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

Dynamics of heavy quarks in charged N = 4 SYM plasma

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

A Note on Supersymmetry Breaking. Stephen D.H. Hsu, Myckola Schwetz. Department of Physics Yale University New Haven, CT

Supersymmetry and how it helps us understand our world

Dynamical supersymmetry breaking, with Flavor

Lecture 5 The Renormalization Group

arxiv:hep-th/ v1 21 May 1996

Functional RG methods in QCD

Some applications of light-cone superspace

QGP, Hydrodynamics and the AdS/CFT correspondence

Supercurrents. Nathan Seiberg IAS

Everything You Wanted To Know About k-strings But You Were Afraid To Ask. Adi Armoni Swansea University

Introduction to Supersymmetry

A Brief Introduction to AdS/CFT Correspondence

Planar diagrams in light-cone gauge

Anomalous discrete symmetries in D-brane models

Transcription:

Nonperturbative Study of Supersymmetric Gauge Field Theories Matteo Siccardi Tutor: Prof. Kensuke Yoshida Sapienza Università di Roma Facoltà di Scienze Matematiche, Fisiche e Naturali Dipartimento di Fisica 24.06.2008 [handout]

Gauge theories Study of gauge theories is important: Strong, weak and electromagnetic interactions are believed to be mediated by gauge (vector) bosons. Gauge invariance has become the guiding principle. Clay Millennium prize: Yang-Mills Existence and Mass Gap: Prove that for any compact simple gauge group G, quantum Yang-Mills theory of 4 exists and has a mass gap > 0. (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 2 / 18

Gauge theories However, study of non-abelian gauge theories is difficult: at low energy the gauge coupling becomes arbitrary strong and quantum perturbation theory breaks down. At some energy scale Λ, characterising the gauge theory, the gauge coupling becomes infinite. The fundamental gauge fields strongly fluctuate and are no longer appropriate degrees of freedom to describe the theory. What happens at energies below the scale Λ has never been derived from first principles. (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 3 / 18

Supersymmetry? Q boson = fermion Q fermion = boson An equal number of bosonic and fermionic d.o.f. Most general symmetry of the S-matrix (Coleman-Mandula)... Supersymmetry: a regularization! Adding a suitable number of additional fields with the appropriate coefficients helps the convergence of perturbation series. (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 4 / 18

N = 4 SYM model: a peculiar gauge theory Gauge group: (S)U(N) Coupling constant: g YM (possibly, also a ϑ-angle) Field content: A A µ, λ A αa, X A i a = 1,... 4, i = 1,... 6, A: adjoint colour indices L 1 g 2 YM { tr Fµν 2 i λ A /Dλ A (D µ X i ) 2 + + C AB i λ A [X i, λ B ] + h. c. + [X i, X j ] 2} (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 5 / 18

N = 4 SYM model: a peculiar gauge theory Gauge group: (S)U(N) Coupling constant: g YM (possibly, also a ϑ-angle) Field content: A A µ, λ A αa, X A i a = 1,... 4, i = 1,... 6, A: adjoint colour indices L d 2 θ2πıτ 0 tr W α W α + d 2 θd 2 θ 3 Φ i e V Φ i + i=1 + d 2 θw (Φ) + h. c. where W α A µ, λ α1 ; Φ λ α2,3,4, X i ; τ 0 = 4πı and W (Φ) = Φ 1 [Φ 2, Φ 3 ]. g 2 YM + ϑ 2π (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 6 / 18

N = 4 SYM model: a peculiar gauge theory Highly (super-)symmetric: Maximal amount of supersymmetry in d = 4 (without SUGRA) Conformal symmetry! and others Non-chiral (and massless) matter No perturbative S-matrix it is FINITE at all orders! One-loop β-function: β(g YM ) [ 11 3 C(adj) 2 3 C(λ) 1 6 λ X C(X) ] = N [ 11 3 2 3 4 1 6 6] = 0... and so it is useless! (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 7 / 18

Towards reality: deformations of N = 4 model N = 1 model: a mass (soft) deformation: + 3 m i Φ 2 i. i=1 mi 0: N = 4 SYM m2,3, m 1 0: N = 2 SYM mi : N = 1 SYM β-deformation: a (complex) marginal deformation of the superpotential: W (Φ) tr Φ 1 [Φ 2, Φ 3 ] β tr [ e ıβ/2 Φ 1 Φ 2 Φ 3 e ıβ/2 ] Φ 1 Φ 3 Φ 2. Preserves N = 1 supersymmetry. Symmetry breaking superpotential: + W (Φ 1 ) = n+1 p=1 g p p Φp 1. (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 8 / 18

Standard lore Prototype: U(N) N = 2 SYM + W tree (Φ). Gauge: A µ, λ α }{{} W α Matter: φ, ψ α }{{} Φ At classical level: W tree (Φ) = n k=1 g k k + 1 Φk+1 U(N) n U(N i ) i=1 At quantum level, in each SU(N i ) U(N i ): Gaugino condensation: tr λ α λ α S tr W α W α develops a vev. The gauge coupling grows at a dynamically generated scale Λ where SU(N i ) decouple and a mass gap is generated. the low energy gauge group is U(1) n. The photons are IR-free since they reside in the adjoint representation. (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 9 / 18

Standard lore Prototype: U(N) N = 2 SYM + W tree (Φ). Gauge: A µ, λ α }{{} W α Matter: φ, ψ α }{{} Φ The physical information in the low energy regime is represented by The gaugino condensate: λλ Λ 3, The tension of domain walls, The coupling for the U(1) n fields: τ ij. It is encoded in an effective (Wilsonian) Lagrangian: L eff = d 2 θ2πı τ i S i + d 2 θw pert (N i, w iα, S i, g k ) + h. c. + d 2 θd 2 θ... (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 10 / 18

The Matrix Model Dijkgraaf and Vafa formulated a suggestive correspondence between 0-dimensional bosonic matrix models and N = 1 supersymmetric gauge theories: N = 1 gauge theory Matrix Model n+1 n+1 g p g p W tree (Φ) = p Φp W (ˆΦ) = p ˆΦ p p=1 p=1 Φ : chiral superfield ˆΦ : ˆN ˆN matrices The superpotential acts as action for the random matrices: Z MM = C ˆN dˆφ exp ˆN g m tr W (ˆΦ) (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 11 / 18

The Matrix Model - 2 The Matrix Model admits a t Hooft large- ˆN expansion, Z = exp g 0 [g mˆn ] 2g 2Fg ˆNi (S) S i lim g m ˆN ˆN The leading contribution is the planar (g = 0) one. The D-V prescription is: W pert (S i, w α i ; g k ) = i N i F 0 S i + 1 2 i,j τ ij = 2 F 0 S i S j δ ij 1 N i l 2 F 0 S i S j w α i w αj N l 2 F 0 S i S l Perturbative expansion of the (planar) free-energy: F 0 (S) = c i1,...i n S i 1 1 Si n n S Λ 3 (!) i 1,...,i n 0 A Perturbative Window into Non-Perturbative Physics (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 12 / 18

Determination of C ˆN Consider the N = 1 model in the M.M. setup: S N =1 = ˆN tr {ˆΦ1 [ˆΦ 2, g ˆΦ 3 ] + m 1 m 2 ˆΦ 2 1 + m 2 2 ˆΦ 2 2 + m 3 2 ˆΦ 2 } 3 Z N =1 = e ˆN 2 g m 2 F N =1 = C ˆN dˆφ 1 dˆφ 2 dˆφ 3 e S N =1 and remember the properties of N = 1 and N = 4: lim F N =1 = F N =4 = πıτ 0S 2 m i N C ˆN = ( 3 ˆN ) (2π) 3 e 3/2 gm 2 e πıτ 0 ˆN 2 /N H. Kawai, T. Kuroki, T. Morita, and K. Yoshida, Phys. Lett. B611:269-278 (2005). (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 13 / 18

Validity The M.M. has been tested against a great number of highly non-trivial checks. In particular, it can reproduce: Veneziano-Yankielowicz superpotential for N = 1 SYM, Finite mass effects in N = 1, Instanton series in N = 2 SYM, Seiberg-Witten curve,... cfr. S. Arnone, G. Di Segni, MS, and K. Yoshida, Int. J. Mod. Phys. A22:5089-5115 (2007). (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 14 / 18

One-loop computation in N = 4 β-deformed The model: a linear combination of deformations of the N = 4 model: Z(β) = e ˆN 2 g m 2 F MM = C ˆN 3 i=1 dˆφ i exp ˆN g m tr { µ 2 ˆΦ 2 1 + M 0 2 (ˆΦ 2 2 + ˆΦ 2 3)+ + W (ˆΦ 1 ) + h 0 ˆΦ1 [ˆΦ 2, ˆΦ 3 ] } We are interested in the case µ 0, 0 M 0 <. Computation proceeds along the following steps: Integration over ˆΦ 2 and ˆΦ 3, Diagonalization of the remaining matrix, ˆΦ, (Ad hoc change of variables), Perturbative expansion around the potential extrema. U(2) U(1) 2 for simplicity. (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 15 / 18

One-loop computation in N = 4 β-deformed - 2 The outcome is: Z (β) = ( ˆN ) e πıτ 0 ˆN 2 N ˆN 1 [ g 0 ] ˆN h 0 2 2 ˆN 1 i=1 dp i ˆN 2 k=1 dq k ˆN 1 i<j sinh 2 1 2 1 α (p i p j ) sinh 1 2 [ 1 α (p i p j ) + ıβ](β β) ˆN 1, ˆN 2 i,k=1 sinh 2 1 2 [ 1 α (p i ıq k ) + ] sinh 1 2 [ 1 α (p i ıq k ) + + ıβ](β β) ˆN 2 k<l sin 2 1 2 1 α (q k q l ) sin 1 2 [ 1 α (q k q l ) + β](β β) exp { 1 ˆN1 2 [ i ˆN2 p 2 i + k q 2 k ] 1 3 1 ˆN 1 ˆN2 α [ p 3 i + (ıq k ) 3 ]} i k where = φ 1 φ 2 = ln M 0 φ 2h 0 sin β/2 1 M 0 φ 2h 0 sin β/2 2 M 0 0 ln φ 1 φ 2 and 1 α = g 2 m a ˆN (small) Perturbation series in terms of 1 α (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 16 / 18

One-loop computation in N = 4 β-deformed - 3 The lowest order in 1 α gives the one-loop contribution to F 0 : F (1) 0 lim ˆN gm 2 ˆN ln ( sinh 2 /2 2 sinh( + ıβ/2) sinh( ıβ/2) M 0 0 S 1 S 2 ln ( (φ 1 φ 2 ) 2 (e ıβ/2 φ 1 e ıβ/2 φ 2 )(β β) ) ) ˆN1 ˆN2 from which we can extract the one-loop contribution to the gauge coupling with ( ) τ (1) ij = τ (1) 1 1 1 1 τ (1) = 2 F (1) 0 ln [ (φ 1 φ 2 ) 2 ] S 1 S 2 (e ıβ/2 φ 1 e ıβ/2 φ 2 )(β β) (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 17 / 18

Conclusions The Matrix Model is a powerful tool in analyzing a wide class of N = 1 gauge theories. It can give insight on the elusive non-perturbative region! What s next: Instanton corrections (beyond 1-loop). Gravitational correction (non-planar graphs). Other (less SUSY) models? (Dipartimento di Fisica) Seminario II anno di dottorato 24.06.2008 18 / 18