拡散 熱的および流体力学的不安定性のスケール効果

Similar documents
エンタルピー一定条件下における高温予混合火炎の固有不安定性に関する数値シミュレーション

2011/12/25

Thermal Safety Software (TSS) series

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Galileo Galilei ( ) Title page of Galileo's Dialogue concerning the two chief world systems, published in Florence in February 1632.

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

Quantitative Study of Fingering Pattern Created by Smoldering Combustion

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

Modeling Numerical analysis

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

化学気相成長 (CVD) 法による カーボン薄膜の成長制御

(MITAKE Hiroyoshi) Joint work with Q. Liu (U. Pittsburgh) Oct/5/2012

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

Vermeer Drucker-Prager HISS. Mohr- 24-1

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

THE DOMAIN OF INFLUENCE OF FLAME INSTABILITIES IN TURBULENT PREMIXED COMBUSTION

工業用ゴム材料の非線形粘弾性シミュレーションに関する研究 ( Text_ 全文 )

内部波ピームの 3 次元的不安定性. 神戸大学 (Kobe University) 片岡武 (Kataoka, T) Massachusetts Institute of Technology Akylas, T. R.

Reaction mechanism of fusion-fission process in superheavy mass region

國立中正大學八十一學年度應用數學研究所 碩士班研究生招生考試試題

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

AcuSolve Case Study. Summary. 30[m/s] 20. Analysis of actual flying condition. Aerodynamic analysis with rolling tire and pitching body

Neural POS-Tagging with Julia

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

確率統計 特論 (Probability and Statistics)

ロジックモデルを用いた ITS の評価プロセスの提案と検証

RQ1A070AP. V DSS -12V R DS(on) (Max.) 14mW I D -7A P D 1.5W. Pch -12V -7A Power MOSFET. Datasheet 外観図 内部回路図 特長 1) 低オン抵抗 2) ゲート保護ダイオード内蔵

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Development of Advanced Simulation Methods for Solid Earth Simulations

HWS150A RELIABILITY DATA 信頼性データ

Principia and Design of Heat Exchanger Device 热交换器原理与设计

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

Network of Evolutionary Trends and Maturity assessment through contradiction analysis 進化トレンドのネットワークと矛盾解析による成熟度評価

Rigorous back analysis of shear strength parameters of landslide slip

Study on property and deterioration of whole boned bolt in heat-harm tunnel

A new simplified seismic stability analysis taking into account degradation of soil undrained stress-strain properties and effects of compaction

Effects of turbulence and flame instability on flame front evolution

Lecture Note on Linear Algebra 14. Linear Independence, Bases and Coordinates

层流火焰动力学研究 进展及展望 北京大学工学院力学与工程科学系 第一届全国青年燃烧学术会议 2015 年 9 月 日, 上海. Peking University

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

Numerical Heat Transfer ( 数值传热学 ) Chapter 4 Numerical Solution of Diffusion Equation and its Applications(2)

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Fundamentals of Heat and Mass Transfer, 6 th edition

STUDY ON SEIMIC BEARING CAPACITY OF GROUPED PILES WITH BATTERED PILES

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Estimation of Gravel Size Distribution using Contact Time

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

Effects of heat and momentum losses on the stability of premixed flames in a narrow channel

TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

Hybrid Simulations of Ground Motions for the Earthquake Scenarios of Shanchiao and Hengchun faults

Article for the 30 th Sensing Forum

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

九州工業大学学術機関リポジトリ. Title Modeling Targeting Mycobacterium Th Monophosphate Kinase.

Uniform computational complexity of ordinary differential equations with applications to dynamical systems and exact real arithmetic

Review of Electrohydrodynamics in Corona Devices in Electrophotography. Kazuhiro Mori

Applied Nuclear Physics. Spring and Summer Credit(s) 1 Ordinary class

Intrinsic Flame Instabilities in Premixed and Nonpremixed Combustion

Numerical simulation of flame instability in lean H 2 /air mixtures

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

Source mechanism solution

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

Phase-field simulations of forced flow effect on dendritic growth perpendicular to flow

生物統計教育訓練 - 課程. Introduction to equivalence, superior, inferior studies in RCT 謝宗成副教授慈濟大學醫學科學研究所. TEL: ext 2015

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Experimental Study of 2D-Instabilities of Hydrogen Flames in Flat Layers

(n, γ) 法による 99 Mo/ 99m Tc 製造用照射ターゲットの製造技術開発と特性評価

Deep moist atmospheric convection in a subkilometer

ANSYS 17 應用於半導體設備和製程的應用技術

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

PRESENTATION SLIDES: Analytical Multi-Scale Methodology for Fluidization Systems - Retrospect and Prospect

pseudo-code-2012.docx 2013/5/9

2A01 Fourier-transform spectroscopy of D + 2 using intense near-infrared few-cycle laser pulses [Abstract] [Introduction] [Methods]

Reactive Fluid Dynamics グローバル COE 環境共生 安全システムデザインの先導拠点 複雑システムのデザイン体系 第 2 回 力学系の非線形力学 理工学研究科, 開放環境科学専攻 教授植田利久 2009 年 4 月 16 日. Keio University. No.

Video Archive Contents Browsing Method based on News Structure Patterns

反強磁性交換結合媒体を用いた熱アシスト磁気記録の熱的安定性の検討

Torsion.

3-D Imaging of separator pore structure and Li + diffusion behavior

Data Processing (1) データ処理手法 (1) Short Wavelength Infrared Bands of the TANSO-FTS 短波長赤外バンド

壓差式迴路式均熱片之研製 Fabrication of Pressure-Difference Loop Heat Spreader

fast large-scale trajectory design studies under uncertainties without loss of accuracy.

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Chapter 1. Introduction to Nonlinear Space Plasma Physics

京都大学臨界集合体実験装置における 100 MeV 陽子を用いた加速器駆動システムの固体 Pb-Bi の中性子特性に関する実験ベンチマーク

Technical report Approaches to Life Estimation of Electronic Circuits

JAXA 数値解析グループ 燃焼 乱流セクション. Jul 13, 2012

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 )

Parameter Estimation of Solar Radiation Pressure Torque of IKAROS

Transcription:

56 176 2014 172-177 Journal of the Combustion Society of Japan Vol.56 No.176 (2014) 172-177 ORIGINAL PAPER 拡散 熱的および流体力学的不安定性のスケール効果 Scale Effects of Diffusive-thermal and Hydrodynamic Instability * SHIBAYAMA, Shimon and KUWANA, Kazunori* 992-8510 4-3-16 Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan 2013 9 20 ; 2013 12 30 Received 20 September, 2013; Accepted 30 December, 2013 Abstract : The damage caused by an accidental gas explosion, for example the maximal blast pressure, is strongly influenced by the flame propagation velocity during the explosion. The flame propagation during an explosion is significantly affected by flame instability, and it is known that the flame propagation velocity has certain scale dependency. This study investigates scale effects of diffusive-thermal and hydrodynamic instability by numerically solving the Sivashinsky equation. The following four conditions are considered: a purely diffusive-thermally unstable flame, a purely hydrodynamically unstable flame, a flame that is diffusive-thermally stable but hydrodynamically unstable, and a flame that is unstable both diffusivethermally and hydrodynamically. It is found that diffusive-thermal instability mainly influences the flame wrinkle structure of a specific wavelength, while hydrodynamic instability influences the largest structure. Thus, hydrodynamic instability shows scale dependency. The fractal dimensions of the flames, which can be used to estimate the flame propagation velocity during an explosion, are computed by two different methods: a Fourier analysis and a method based on the scale dependency of flame propagation velocity. The both methods yield consistent results, and it is found that the fractal dimension mainly depends on the thermal expansion ratio; its dependency on the Lewis number is rather weak. Key Words : Diffusive-thermal instability, Hydrodynamic instability, Scale dependency, Fractal dimension 1. 緒言 [1-3] [1] [4] [5] * Corresponding author. E-mail: kuwana@yz.yamagata-u.ac.jp (78)

173 2. 計算モデル 2.1. 基礎方程式 [5] Sivashinsky [6] Sivashinsky Sivashinsky (1) I(F) (2) F y ε γ 2.2. パラメータ (1) ε (3) Le Lewis (Le = α/d α D ) Le0 Lewis Le > Le0 ( ε < 0) Le < Le0 ( ε > 0) (1) γ (1) (1) O(γ) γ 0.8 Sivashinsky O(γ 2 ) [7,8] [5] 0 < γ < 1 (1) γ = 0.8 (1) Sivashinsky Lewis O(1) Sivashinsky CFD 2.3. 計算条件 1 case I γ = 0 case II ε = 0 [5] case III case IV ε γ [9] [5] -l < x < l x = ±l l 108 1448 Table 1 The calculation conditions. (4) ρu ρb ρu > ρb 0 < γ < 1 (79)

174 56 176 2014 Fig.1 Flame shapes for the computational domain size of 512; (a) case I, (b) case II, (c) case III, and (d) case IV. [5] [10] 3. 計算結果 3.1. 火炎形状 2l = 512 1 t = 3000 -y 1a case I t = 3000-5000 Δt = 500 case I 30-40 1b case II t = 3000-3080 Δt = 20 case I 30-40 1c case III t = 3000-3200 Δt = 50 case I, II 30-40 1d case IV t = 3000-3040 Δt = 10 case IV case II 3.2. Fourier 解析 Fourier ( 2) 2 Fˆ 2 (Fˆ Fourier ) k (80)

175 Fig.2 Fourier transform of function F for the computational domain size of 512; (a) case I, (b) case II, (c) case III, and (d) case IV. (1) kc 2l = 512 t = 500 Δt = 500 t = 10000 Fourier 20 Fourier 2a case I ( ) Fourier k 10-1 Fˆ 2 k k = kc Fˆ 2 2b case II ( ) Fourier 2a k = kc Fˆ 2 case II Fˆ 2 2c (case III ) k = kc Fˆ 2 2d (case IV ) k = kc 2b (case II) k k Fˆ 2 (kc ) 3.1 Fˆ 2 k Fˆ 2 ~ k -a d [11] (5) 2 case II case IV (5) a = 2.9 d = 1.05 ( γ ) ( ε ) case I case II [5] (81)

176 56 176 2014 case I (5) 3.3. 火炎伝播速度 3 2l = 108-2896 V 2l t = 2000-15000 case I ( ) case II ( ) case III ( ) 2l 200 2l 200 case I 4 case III 2l = 108 case IV ( ) case II case IV case III case II-case IV ( ε ) ( γ ) ( ) 3 [5,10] 3 case II-case IV 0.05 d d = 1.05 Fig.3 Scale dependency of flame propagation velocity. Fig.4 Flame shape for the computational domain size of 108 in case III. Fourier 2l 200 case III [5] 3 case II 0.06 t = 2000-15000 2l 2896 γ ( ) ( Lewis ) γ = 0.5 d = 1.05 γ [5] γ = 0 d = 1 d γ 4. 結言 Sivashinsky (82)

177 case I case II case III case IV 4 case I 30-40 Fourier (kc) case II-case IV Fourier Fourier d = 1.05 case I case III case I Fourier ( ) [5] γ Lewis Sivashinsky γ CFD CFD 謝辞 JSPS 24310118 References 1. Dobashi, R., Kawamura, S., Kuwana, K. and Nakayama, Y., Proceedings of the Combustion Institute 33: 2295-2301 (2011). 2. Tomizuka, T., Kuwana, K., Shimizu, K., Mogi, T., Dobashi, R. and Koshi, M., Journal of Loss Prevention in the Process Industries 26: 369-373 (2013). 3. Tomizuka, T., Kuwana, K., Mogi, T., Dobashi, R. and Koshi, M., International Journal of Hydrogen Energy 38: 5176-5180 (2013). 4. Gostintsev, Yu. A., Istratov, A. G., and Shulenin, Yu. V., Combustion, Explosion, and Shock Waves 24: 563-569 (1988). 5. Mukaiyama, K., Shibayama, S. and Kuwana, K., Combustion and Flame 160: 2471-2475 (2013). 6. Sivashinsky, G. I., Acta Astronautrica 4: 1177-1206 (1977). 7. Sivashinsky, G. I. and Clavin, P., Journal de Physique 48: 193-198 (1987). 8. Joulin, G. and Cambray, P., Combustion Science and Technology 81: 243-256 (1992). 9. Michelson, D. M. & Sivashinsky, G. I., Acta Astronautrica 4: 1207-1221 (1977). 10. Mukaiyama, K. & Kuwana, K., Journal of Loss Prevention in the Process Industries 26: 387-391 (2013). 11. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 2nd ed., Wiley (2003). (83)