Fundamental physics in rare pion and muon decays

Similar documents
New results on muon radiative decay

Results and opportunities in pion and muon decays

Rare decay studies in the PEN experiment

Rare allowed pion and muon decays

STUDY OF THE π + e + νγ DECAY ANOMALY

Rare Pion and Muon Decays: Summary of Results and Prospects

New Results in Rare Pion and Muon Decays

Precise Measurement of the π + e + ν Branching Ratio

Investigating Lepton Universality via a Measurement of the Positronic Pion Decay Branching Ratio

arxiv: v1 [nucl-ex] 28 Mar 2014

arxiv: v1 [hep-ex] 30 Nov 2018

Precision low energy searches for new physics

arxiv: v1 [nucl-ex] 31 Dec 2015

Precise Measurement of the π + e + ν Branching Ratio

A survey of the rare pion and muon decays.

for the PIBETA Collaboration University of Virginia 4th International Workshop on CHIRAL DYNAMICS 2003 Theory and Experiment

PoS(KAON)052. π eν. Prospects for Measurements of the Branching Ratio. Douglas Bryman

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

Electroweak Theory: 2

PoS(FPCP2009)057. Chloé Malbrunot (for the PIENU collaboration ) University of British Columbia Vancouver, Canada

Electroweak Physics: Lecture V

Lecture 12 Weak Decays of Hadrons

Lepton Universality Tests with Kaons

Low Energy Precision Tests of Supersymmetry

Standard Model Theory of Neutron Beta Decay

Theoretical Review on Lepton Universality and LFV

The PIENU Experiment a sensitive probe in the search for new physics

The Radiative Pion Decays.

Test of the Standard Model with Kaon decays. Barbara Sciascia LNF-INFN for the Kaon WG, FlaviaNet PhiPsi08 - LNF, 7 April 2008

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

the role of atom and ion traps

Searching for New Physics with Rare Decays:

Fundamental Symmetries III Muons. R. Tribble Texas A&M University

T. Numao and D.A. Bryman

V ud, V us, THE CABIBBO ANGLE, AND CKM UNITARITY Updated March 2012 by E. Blucher (Univ. of Chicago) and W.J. Marciano (BNL)

Polarized muon decay asymmetry measurement: status and challenges

Results on Tau Physics from BaBar

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Probing SUSY Contributions to Muon g-2 at LHC and ILC

The PIENU Experiment

Intense Slow Muon Physics

Review of Standard Tau Decays from B Factories

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Weidong Li Mudanjiang, China. B.S., Jilin University, 1992 M.S., Jilin University, 1997

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1

The HL-LHC physics program

An Experimental Study of Radiative Muon Decay. Brent Adam VanDevender Poquoson, VA

Nab experiment: progress update

e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII

Kaon Decays in the Standard Model

Beyond Standard Model Effects in Flavour Physics: p.1

The weak interaction Part II

Charm Decays. Karl M. Ecklund

Measurements of Leptonic B Decays from BaBar

An Experimental Study of Radiative Muon Decay. Brent Adam VanDevender Poquoson, VA

c Copyright by Anthony Palladino, Jr. All Rights Reserved May 2012

Measurements of the phase φ s at LHCb

Advances in Open Charm Physics at CLEO-c

Low Energy Precision Measurements

Measurements of CP violating phases in B decays at LHCb

Particle Physics: Problem Sheet 5

U(1) Gauge Extensions of the Standard Model

Testing Symmetries in Lepton Decays

G. Eigen U Bergen NFR Meeting Bergen October 19, 2005

arxiv: v1 [hep-ex] 15 May 2017

Theory overview on rare eta decays

Fundamental Symmetries - 2

Current knowledge tells us that matter is made of fundamental particle called fermions,

Theory of CP Violation

Lepton-flavor violation in tau-lepton decay and the related topics

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Symmetry Tests in Nuclear Physics

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Standard Model of Particle Physics

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

arxiv: v1 [hep-ex] 5 Sep 2014

Nab: a precise measurement of the a and b parameters in neutron decay

The Mu3e Experiment - Goal

Radiative μ and τ leptonic decays at NLO

Electroweak Physics. Precision Experiments: Historical Perspective. LEP/SLC Physics. Probing the Standard Model. Beyond the Standard Model

Cracking the Unitarity Triangle

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein

LHCb results and prospects

Physics Highlights from 12 Years at LEP

Antonio Pich. IFIC, CSIC Univ. Valencia.

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

Measurement of CP violation in B J/ψK 0 S. decays. Frank Meier TU Dortmund. XXIX Rencontres de Physique de la Vallée d Aoste March 1 7, 2015

Precision measurement of

Lecture 11. Weak interactions

Elementary Particles, Flavour Physics and all that...

Searches for Leptonic Decays of the B-meson at BaBar

Neutron Beta-Decay. Christopher B. Hayes. December 6, 2012

Electroweak Physics and Searches for New Physics at HERA

Shahram Rahatlou University of Rome

Long distance weak annihilation contribution to

b hadron properties and decays (ATLAS)

B D ( ) τν τ decays with hadronic and semileptonic tagging at Belle

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Transcription:

Fundamental physics in rare pion and muon decays Dinko Počanić University of Virginia IX LASNPA, Quito, Ecuador 18- July 011 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 1 / 40

Overview Outline Overview and status of allowed π and µ decays Pion beta decay: π + π 0 e + ν Radiative pion decay: π + e + νγ Allowed muon decays: ordinary and radiative The π e decay: π + e + ν Summary D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 / 40

Overview Summary of known decays Known and measured pion and muon decays Decay BR π + µ + ν 0.9998770 (4) (π µ ) µ + νγ.00 (5) 10 4 (π µγ ) e + ν 1.30 (4) 10 4 (π e ) e + νγ 1.61 (3) 10 7 (π eγ ) π 0 e + ν 1.05 (34) 10 8 (π e3, π β ) e + νe + e 3. (5) 10 9 (π eee ) π 0 γγ 0.98798 (3) e + e γ 1.198 (3) 10 (Dalitz) e + e e + e 3.14 (30) 10 5 e + e 6. (5) 10 8 µ + e + ν ν 1.0 e + ν νγ 0.014 (4) e + ν νe + e 3.4 (4) 10 5 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 3 / 40

Overview Summary of known decays Pions, muons, fundamental interactions & symmetries Why isn t π e the dominant decay mode? Deep link to V A nature of the weak interaction PV; Pion triplet (π +, π 0, π ), are the Goldstone bosons in the spontaneous breaking of Chiral Symmetry; Explicit breaking of χs: m π m q (Gell-Mann Oakes Renner rel.); Conserved Vector Current: SU() V ; Why is the beta energy spectrum in µ e decay continuous (3-body decay, NO µ eγ)? Lepton Flavor Conservation. Today there are many excellent precise measurements exploring these topics: FAST, MEG, MULAN, Muon(g-), TWIST,... D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 4 / 40

Overview Recent measurements Recent π, µ allowed decay measurements π + π 0 e + ν e................................. PIBETA ( 99 01) SM checks related to CKM unitarity π + e + ν e γ(or e + e )......... PIBETA ( 99 04), PEN ( 06 10) F A /F V, π polarizability (χpt calibration) tensor coupling besides V A (?) µ + e + ν e ν µ................................ TWIST (003 04) departures from V A in L weak µ + e + ν e ν µ γ(or e + e )........... PIBETA ( 04), PEN ( 06 10) departures from V A in L weak { π + e + PEN ( 06 10) ν e..................................... PiENu ( 06 ) e-µ universality pseudoscalar coupling besides V A ν sector anomalies, Majoron searches, m h+, PS l-q s, V l-q s,... search for signs of SUSY (MSSM) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 5 / 40

Pion beta decay Pion beta decay: π + π 0 e + ν (PIBETA: 1999 001 runs) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 6 / 40

Pion beta decay Motivation Quark-Lepton (Cabibbo) Universality The basic weak-interaction V-A form (e.g., µ decay): M e l α ν e ū e γ α (1 γ 5 )u ν is replicated in hadronic weak decays M p h α n ū p γ α (G V G A γ 5 )u n with G V,A 1. Departure from G V = 1 (CVC) comes from weak quark (Cabibbo) mixing: G V = G µ cos θ C (= G µ V ud ) cos θ C 0.97 3 q generations lead to the V ud V us V ub Cabibbo-Kobayashi-Maskawa V cd V cs V cb (CKM) matrix (1973): V td V ts V tb CKM unitarity cond.: V = 1 ( V ud + V us + V ub )? = 0, stringently tests the SM. Prior to 004 there was a persistent.5σ shortfall in V, motivating many experiments to determine CKM m.e. s, esp. V ud and V us. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 7 / 40

Pion beta decay The apparatus and method The PIBETA/PEN apparatus stopped π + beam active target counter 40-det. CsI calorimeter central tracking digitized waveforms stable temp./humidity BC PEN Detector 009 π + beam vac. pure CsI mtpc AD AT PMT PH MWPC1 MWPC 10 cm D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 8 / 40

Pion beta decay The apparatus and method Number of events 7000 6000 5000 4000 3000 000 π + π 0 e + ν γ1 γ Simulation Data Number of Events 40000 30000 0000 10000 Simulation Data π e ν 1000 0 160 16.5 165 167.5 170 17.5 175 177.5 180 Opening angle Θ γ1γ (degr) 0 45 50 55 60 65 70 75 Positron Energy (MeV) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 9 / 40

Pion beta decay Results PIBETA result for π β decay [PRL 93, 181803 (004)] B exp-t πβ = [1.040 ± 0.004 (stat) ± 0.004 (syst)] 10 8, B exp-e πβ = [1.036 ± 0.004 (stat) ± 0.004 (syst) ± 0.003 (π e )] 10 8, McFarlane et al. [PRD 1985]: B = (1.06 ± 0.039) 10 8 SM Prediction (PDG): B = 1.038 1.041 10 8 (90% C.L.) (1.005 1.007 10 8 excl. rad. corr.) PDG 010: V ud = 0.9745() PIBETA: V ud = 0.9748(5) or V ud = 0.978(30). D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 10 / 40

Pion beta decay Results Present Status of V ud.9800 V ud V = 0.9744 + 0.000 ud.9750.9700.003 nuclear 0 + 0+ neutron nuclear mirrors pion Uncertainty.00.001 Experiment Radiative correction Nuclear correction (Courtesy of John Hardy, May 009) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 11 / 40

Radiative pion decay π + e + νγ Radiative pion decay: π + e + νγ PIBETA: 1999-001 & 004 runs ( PEN: 008 010 runs ) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 1 / 40

Radiative pion decay Motivation π + e + νγ: Standard IB and V A terms SM A tensor interaction, too? Exchange of S=0 leptoquarks P Herczeg, PRD 49 (1994) 47 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 13 / 40

Radiative pion decay Motivation The π eνγ amplitude and FF s The IB amplitude (QED): M IB = i eg F V ud f π m e ɛ µ ē ( kµ kq p µ pq + σ µνq ν ) (1 γ 5 ) ν. kq The structure-dependent amplitude: M SD = eg F V ud m π ɛ ν ēγ µ (1 γ 5 )ν [F V ɛ µνστ p σ q τ + if A (g µν pq p ν q µ )]. The SM branching ratio (γ F A /F V ; x = E γ /m π ; y = E e /m π ), dγ πeγ dx dy = α { ( π Γ FV m ) π πe IB (x, y) + f π m e [ (1 + γ) SD + (x, y) + (1 γ) SD (x, y) ] ( FV m π + f π ) [(1 + γ) S + int (x, y) + (1 γ) S int (x, y)] }. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 14 / 40

Radiative pion decay Previous data Available data on pion form factors F V CVC = 1 Γ(π 0 γγ) α πm π 0 = 0.059(9). F A 10 4 reference note 106 ± 60 Bolotov et al. (1990) (F T = 56 ± 17) 135 ± 16 Bay et al. (1986) 60 ± 30 Piilonen et al. (1986) 110 ± 30 Stetz et al. (1979) 116 ± 16 world average (PDG 004) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 15 / 40

Radiative pion decay Previous data Available data on pion form factors F V CVC = 1 Γ(π 0 γγ) α πm π 0 = 0.059(9). F A 10 4 reference note 106 ± 60 Bolotov et al. (1990) (F T = 56 ± 17) 135 ± 16 Bay et al. (1986) 60 ± 30 Piilonen et al. (1986) 110 ± 30 Stetz et al. (1979) 116 ± 16 world average (PDG 004) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 15 / 40

Radiative pion decay Previous data Available data on pion form factors F V CVC = 1 Γ(π 0 γγ) α πm π 0 = 0.059(9). F A 10 4 reference note 106 ± 60 Bolotov et al. (1990) (F T = 56 ± 17) 135 ± 16 Bay et al. (1986) 60 ± 30 Piilonen et al. (1986) 110 ± 30 Stetz et al. (1979) 116 ± 16 world average (PDG 004) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 15 / 40

Radiative pion decay Results F A Form Factor x 10 4 150 140 130 10 110 100 4σ σ 1σ F V CVC = 59(9) x 10-4 χ Contours Best values of pion form factor parameters: Combined analysis of 1999-001 and 004 data sets M. Bychkov, et al., PRL 103 (009) 05180. 90 80 0 30 40 50 60 70 F V Form Factor x 10 4 80 90 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 16 / 40

Radiative pion decay Results Experimental history of pion F A and F V THIS WORK POCANIC (004) BOLOTOV (1990) DOMINGUEZ (1988) EGLI 1 (1986) PIILONEN (1986) BAY (1986) STETZ (1978) DEPOMMIER (1963) F V =0.059 F V =0.053 1 F V =0.055 CVC PREDICTION (006) THIS WORK BOLOTOV (1990) EGLI (1986) -0.6-0.4-0. 0 0. 0.4 0.6 0.8 1 1. γ=f A /F V -0.0-0.01 0 0.01 0.0 0.03 0.04 F V D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 17 / 40

Radiative pion decay Results Summary of pion form factor and B.R. results F V = 0.058 ± 0.0017 (14 ) F A = 0.0119 ± 0.0001 exp (F CVC V ) (16 ) a = 0.10 ± 0.06 ( ) 5. 10 4 < F T < 4.0 10 4 90 % C.L. Derived pion polarizability and π 0 lifetime (at L.O.): α E = β M = (.783 ± 0.03 exp ) 10 4 fm 3 τ π 0 = (8.5 ± 1.1) 10 17 s { current PDG avg: 8.4 (4) PrimEx PRL 10: 7.8 () B πeγ (E γ > 10 MeV, θ eγ > 40 ) = 73.86(54) 10 8 (17 ) Above results will be improved with new PEN data and analysis. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 18 / 40

Muon decays µ + e + ν e ν µ(γ) Allowed muon decays: µ + e + ν e ν µ (TWIST 003 05) µ + e + ν e ν µ γ (PIBETA 004, PEN 008 10) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 19 / 40

Muon decays Basic theory Michel parameters of muon decay: µ eν µ ν e d Γ dx d(cos θ) = m µ 4π 3 W eµg 4 F x x0 [ F IS (x) + P µ + cos θ F AS (x) ] [ 1 + P ] e +(x, θ) ˆζ Isotropic part: Anisotropic part: F IS (x) = x(1 x) + 9 ρ(4x 3x x 0 ) + η x 0 (1 x) F AS (x) = 1 3 ξ x x 0 (1 x + 3 [ )]) δ 4x 3 + ( 1 x 0 1 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 0 / 40

Muon decays Michel theory of RMD Michel parameters of radiative muon decay: µ eν µ ν e γ d 3 B(x, y, θ) dx dy π d(cos θ) = f 1(x, y, θ) + ηf (x, y, θ) + (1 4 3 ρ)f 3(x, y, θ) ρ = 3 4 3 4 [ g V LR + g V RL + g T LR + g T RL ] + R(gRL S g RL T + g LR S g LR T ) SM 3 4, η = ( grl V + glr V ) + 1 ( g LR S 8 + g LR T + grl S + g RL T ) ( + glr T + grl T ) SM 0. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 1 / 40

Muon decays Michel theory of RMD OMD study: TWIST experiment (TRIUMF) Main results: ρ = 0.7501 (5) and δ = 0.7507 (7), MacDonald, et al., Phys. Rev. D 78 (008) 03010. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 / 40

Muon decays Michel theory of RMD RMD differential branching ratio [B. VanDevender, PhD thesis] PRELIMINARY (new analysis+data) due to small-angle bremsstrahlung uncertainties in GEANT B exp = [4.40 ± 0.0 (stat.) ± 0.09 (syst.)] 10 3 14! B theo = 4.30 10 3 (E γ > 10 MeV, θ eγ > 30 ) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 3 / 40

Muon decays Michel theory of RMD Experimental History of η PIBETA preliminary (B. VanDevender, PhD thesis; 004 data set): η = 0.084 ± 0.050(stat.) ± 0.034(syst.) η 0.033; new world average: η 0.08 (68 % c.l.) reduced by a factor of.5. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 4 / 40

The π e decay π + e + ν The π e decay: π + e + ν PEN and PiENu experiments (006 ) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 5 / 40

The π e decay π + e + ν π eν decay: SM calculations; measurements Modern theoretical calculations: B calc = Γ(π e ν(γ)) Γ(π µ ν(γ)) calc = 1.35 (5) 10 4 Marciano and Sirlin, [PRL 71 (1993) 369] 1.354 () 10 4 Finkemeier, [PL B 387 (1996) 391] 1.35 (1) 10 4 Cirigliano and Rosell, [PRL 99, 31801 (007)] Experiment, world average [current PDG]: Γ(π e ν(γ)) Γ(π µ ν(γ)) exp = (1.30 ± 0.004) 10 4 N.B.: PEN, PiENu aim at: δb B 5 10 4 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 6 / 40

The π e decay π + e + ν π eν decay: SM calculations; measurements Modern theoretical calculations: B calc = Γ(π e ν(γ)) Γ(π µ ν(γ)) calc = 1.35 (5) 10 4 Marciano and Sirlin, [PRL 71 (1993) 369] 1.354 () 10 4 Finkemeier, [PL B 387 (1996) 391] 1.35 (1) 10 4 Cirigliano and Rosell, [PRL 99, 31801 (007)] Experiment, world average [current PDG]: Γ(π e ν(γ)) Γ(π µ ν(γ)) exp = (1.30 ± 0.004) 10 4 N.B.: PEN, PiENu aim at: δb B 5 10 4 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 6 / 40

The π e decay π + e + ν π eν decay: SM calculations; measurements Modern theoretical calculations: B calc = Γ(π e ν(γ)) Γ(π µ ν(γ)) calc = 1.35 (5) 10 4 Marciano and Sirlin, [PRL 71 (1993) 369] 1.354 () 10 4 Finkemeier, [PL B 387 (1996) 391] 1.35 (1) 10 4 Cirigliano and Rosell, [PRL 99, 31801 (007)] Experiment, world average [current PDG]: Γ(π e ν(γ)) Γ(π µ ν(γ)) exp = (1.30 ± 0.004) 10 4 N.B.: PEN, PiENu aim at: δb B 5 10 4 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 6 / 40

The π e decay SM calculations; mass limits π e Decay and the SM B(π e ) in SM dominated by (V A) helicity suppression. Deviations primarily due to PS int. terms. Most general 4-fermion π e amplitude: G F [ ( dγ µ γ 5 u ) ( ν e γ µ γ 5 (1 γ 5 )e ) f e AL In the SM: f l AL + f e PL ( dγ 5 u ) ( ν e γ 5 (1 γ 5 )e ) ] + r.h. ν term = 1, while f l xr = f Px l = 0, with l = e, µ. Strong helicity suppression amplifies sensitivity to f e PL : B obs πe BSM πe B SM πe = B B SM =... m π m e (m u + m d ) f e PL 7700f e PL! Tgt accuracy of the PEN experiment, B/B 5 10 4, translates into attractive mass limits: D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 7 / 40

The π e decay SM calculations; mass limits Example mass bounds from PEN goal accuracy (a) Charged Higgs, m H+ [Shanker, NP B04 (8) 375] Given a mixing angle suppression S 10, we get f e PL S m tm τ m H+ yielding m H+ > 6.9 TeV. (b) Pseudoscalar leptoquarks, m P Given an estimated effective Yukawa coupling of y 1/50, we can find m P, mass of the color-triplet PS l-q: f e PL G F y m P yielding m P > 3.8 TeV. (c) Vector leptoquarks, M G Following Shanker who assumes gauge coupling g g SU(), we get: f e PL 4M W M G yielding M G > 630 TeV. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 8 / 40

The π e decay SUSY tests MSSM calculations (RPC) [Ramsey-Musolf et al., PR D76 (007) 095017] 0.005 0.005 minimal selectron, smuon masses: Re Μ SUSY R e Μ 0.00 0.001 0.0005 0.000 lowest mass chargino: Re µ SUSY R e µ 0.00 0.001 0.0005 0.000 0.005 100 150 00 300 500 700 1000 Min mel,mµ L GeV 100 150 00 300 500 700 1000 m GeV mχ1 slepton mass degeneracy: Re µ SUSY R e µ 0.00 ReHiggsino 0.001 mass 0.0005 param. µ and mũl : 0.000 0.1 1 10 mel mµ L RPV scenario constraints also discussed. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 9 / 40

The π e decay Lepton universality Lepton universality (and neutrinos) From R e/µ = R τ/π = Γ(π e ν(γ)) Γ(π µ ν(γ)) = g e me (1 me/m µ) ( ) 1 + δre/µ gµ mµ (1 mµ/m π) Γ(τ e ν(γ)) Γ(π µ ν(γ)) = g τ mτ 3 (1 mπ/m τ ) ( ) 1 + δrτ/π gµ mµm π (1 mµ/m π) one can evaluate ( ) ge = 1.001 ± 0.0016 and g µ π For comparison ( ) ge = 0.999 ± 0.011 and g µ W ( gτ g µ ( gτ g e ) πτ ) W = 1.0030 ± 0.0034. = 1.09 ± 0.014. [Presently allowed level of LUV could account for NuTeV anomaly. ] D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 30 / 40

The π e decay Lepton universality Loinaz et al., PRD 70 (004) 113004 ll = ( gl g l ) 1 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 31 / 40

The π e decay PEN experiment: status, plans 0.5*tgt_wf.mu3.mean-0.5*tgt_wf.pi3.mean {tgt_wf.fitattempt==1 && tgt_wf.subtintegral_left<10e3 && tgt_wf.subtintegral_middle<170e3 && tgt_wf.subtintegral_right<40e3 && 0.5*tgt_wf.e3.mean-0.5*tgt_wf.mu3.mean>10 && 0.5*tgt_wf.e3.mean-0.5*tgt_wf.mu3.mean<70 && trak.ecsi[0]<48} χ / ndf 976. / Constant 5.591 ± 0. PEN experiment: status and plans Approved in 006; development runs: 007, 08; data runs 09, 10. Improved beam tracking (minitpc) implemented in 09, 10 runs. > 0 M π e s recorded (δb/b) stat 10 4. Illustration: decays in the target detector (008 run): trigger-weighted events / ns 4 10 3 10 10 10 1 top: bottom: muons positrons Events 300 50 00 150 100 Measurement π decay curve -1 10 50-10 0 50 100 150 00 pion decay time [ns] 0 0 5 10 15 0 t µ - t π (ns) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 3 / 40

Mean RMS Underflow Overflow Integral 65000 Mean The π e decay PEN experiment: status, plans Waveform fitting in PEN [Anthony Palladino] 65000 60000 55000 50000 45000 40000 35000 30000 5000 500 550 600 650 700 t (0.5 ns) 65000 60000 55000 50000 45000 40000 35000 30000 60000 55000 50000 45000 40000 35000 30000 5000 500 550 600 650 700 t (0.5 ns) 65000 60000 55000 50000 45000 40000 35000 30000 5000 550 600 650 700 750 550 600 650 700 750 t (0.5 ns) t (0.5 ns) D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 33 / 40 5000

χ 3 The π e decay PEN experiment: status, plans χ 3 PEN: distinguishing π e and π µ e decays (measurement) 10 9 χ 3 vs χ for E e +<60MeV 0.005 0.0045 10 9 χ 3 vs χ for E e +>60MeV 0.00 0.0018 8 0.004 8 0.0016 7 0.0035 7 0.0014 6 0.003 6 0.001 [A. Palladino & L.P. Alonzi] 5 4 3 1 0 0 1 3 4 5 6 7 8 9 10 χ 10 8 6 4 χ vs E e + 0.005 0.00 0.0015 0.001 0.0005 0 0.0016 0.0014 0.001 0.001 5 4 3 1 0 0 1 3 4 5 6 7 8 9 10 χ 10 8 6 4 χ vs t e + 0.001 0.0008 0.0006 0.0004 0.000 0 0.0016 0.0014 0.001 0.001 χ 0 0.0008 χ 0 0.0008 0.0006 0.0006 4 6 8 0.0004 0.000 4 6 8 0.0004 0.000 10 0 0 10 0 30 40 50 60 70 80 E e + 10 0 0 50 100 150 00 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 34 / 40 t e +

χ 3 The π e decay PEN experiment: status, plans χ 3 PEN: distinguishing π e and π µ e decays (simulation) 10 9 χ 3 vs χ for E e +<60MeV 0.005 0.0045 10 9 χ 3 vs χ for E e +>60MeV 0.00 0.0018 8 0.004 8 0.0016 7 0.0035 7 0.0014 6 0.003 6 0.001 [A. Palladino & L.P. Alonzi] 5 4 3 1 0 0 1 3 4 5 6 7 8 9 10 χ 10 8 6 4 χ vs E e + 0.005 0.00 0.0015 0.001 0.0005 0 0.0016 0.0014 0.001 0.001 5 4 3 1 0 0 1 3 4 5 6 7 8 9 10 χ 10 8 6 4 χ vs t e + 0.001 0.0008 0.0006 0.0004 0.000 0 0.0016 0.0014 0.001 0.001 χ 0 0.0008 χ 0 0.0008 0.0006 0.0006 4 6 8 0.0004 0.000 4 6 8 0.0004 0.000 10 0 0 10 0 30 40 50 60 70 80 E e + 10 0 0 50 100 150 00 D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 35 / 40 t e +

The π e decay PiENu experiment PiENu experiment (TRIUMF) 3000 500 160 140 10 π e ν 000 100 1500 80 1000 500 π µ e π e ν 60 40 0 0 0 10 0 30 40 50 60 70 80 Energy (MeV) 0 60 65 70 75 80 Energy (MeV) π µ e 60000 300 50000 40000 50 00 150 30000 0000 100 50 π e ν 50 100 150 00 50 300 350 400 450 500 Time (ns) 0 0 100 00 300 400 500 Time (ns) Acceptance: Ω 0. 4π sr Excellent energy resolution. Project started in 006. Data taking currently under way. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 36 / 40

Summary Status of allowed π and µ decays A significant experimental effort is under way to make use of the unparalleled theoretical precision in the weak interactions of the lightest particles. Information obtained is complementary to expected collider results, and necessary for their proper interpretation. Orders of magnitude improvement in precision has been achieved; more lie in store. Modest scale of investment of resources required. Unique opportunity for scientific advancement. Great projects for graduate students and postdocs full range of professional training. D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 37 / 40

Summary PEN Collaboration Current and former PIBETA and PEN collaborators L. P. Alonzi a, K. Assamagan a, V. A. Baranov b, W. Bertl c, C. Broennimann c, S. Bruch a, M. Bychkov a, Yu.M. Bystritsky b, M. Daum c, T. Flügel c, E. Frlež a, R. Frosch c, K. Keeter a, V.A. Kalinnikov b, N.V. Khomutov b, J. Koglin a, A.S. Korenchenko b, S.M. Korenchenko b, M. Korolija d, T. Kozlowski e, N.P. Kravchuk b, N.A. Kuchinsky b, D. Lawrence h, W. Li a, J. S. McCarthy a, R. C. Minehart a, D. Mzhavia b,f, E. Munyangabe a, A. Palladino a,c, D. Počanić a, B. Ritchie h, S. Ritt a,c, P. Robmann g, O.A. Rondon-Aramayo a, A.M. Rozhdestvensky b, T. Sakhelashvili f, S.N. Shkarovskiy b, P. L. Slocum a, L. C. Smith a, N. Soić d, U. Straumann g, I. Supek d, P. Truöl g, Z. Tsamalaidze f, A. van der Schaaf g, E.P. Velicheva b, V.P. Volnykh b, Y. Wang a, C. Wigger c, H.-P. Wirtz c, K. Ziock a. a Univ. of Virginia, USA c PSI, Switzerland e Swierk, Poland g Univ. Zürich, Switzerland b JINR, Dubna, Russia d IRB, Zagreb, Croatia f IHEP, Tbilisi, Georgia h Arizona State Univ., USA Home pages: http://pibeta.phys.virginia.edu http://pen.phys.virginia.edu D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 38 / 40

Additional slides Current limits from RMD Additional slides D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 39 / 40

Additional slides Current limits from RMD Experimental Limits (90 % C.L.) on g γ αβ g γ αβ S V T LL 0.550 >0.960 0 LR 0.088 0.036 0.05 RL 0.417 0.104 0.104 RR 0.067 0.034 0 max. values: g S αβ g V αβ g T αβ 1 1 3 0.58 [Most recent global fit by C.A Gagliardi et al., PR D 7 (005) 07300; Add l TWIST constraints on L-R symmetric models: PRL 106 (011) 041804.] D. Počanić (UVa) rare π, µ decays IX LASNPA, 1 Jul 011 40 / 40