Diffusion in multicomponent solids. Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI

Similar documents
3.320 Lecture 23 (5/3/05)

Kinetic lattice Monte Carlo simulations of diffusion processes in Si and SiGe alloys

First-principles investigation of phase stability in Li x CoO 2

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

DIFFUSION IN SOLIDS. IE-114 Materials Science and General Chemistry Lecture-5

of Long-Term Transport

3.320: Lecture 19 (4/14/05) Free Energies and physical Coarse-graining. ,T) + < σ > dµ

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

A Thermodynamic Density-Functional Theory of Static and Dynamic Correlations in Complex Solids

Extrinsic Point Defects: Impurities

TiC 2 : A New Two Dimensional Sheet beyond MXenes

Long-Term Atomistic Simulation of Heat and Mass Transport

Jahn-Teller mediated ordering in layered Li x MO 2 compounds

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA)

Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects

Atomic Resolution of Lithium Ions in LiCoO 2

Electrochemical synthesis and properties of CoO 2, the x = 0 phase of the A x CoO 2 systems (A = Li, Na)

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

Kinetic Monte Carlo (KMC)

Concept of the chemical potential and the activity of elements

Surface Physics Surface Diffusion. Assistant: Dr. Enrico Gnecco NCCR Nanoscale Science

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1

Computational Structure Analysis of Multicomponent Oxides. Yoyo Hinuma

Module 16. Diffusion in solids II. Lecture 16. Diffusion in solids II

Monte-Carlo simulations of spinodal ordering and decomposition in compositionally modulated alloys

Kinetics. Rate of change in response to thermodynamic forces

CHAPTER 4 IMPERFECTIONS IN SOLIDS PROBLEM SOLUTIONS

Diffusion in Dilute Alloys

Drift-Diffusion of Highly Mobile Dopants in CdTe

It is known that the chemical potential of lithium ion in the cathode material can be expressed as:

The Atomic and Electronic Structure Changes Upon Delithiation of LiCoO 2 : From First Principles Calculations

6. Computational Design of Energy-related Materials

MSE 360 Exam 1 Spring Points Total

Supporting information for. Direct imaging of kinetic pathways of atomic diffusion in. monolayer molybdenum disulfide

Li ion migration in Li 3 PO 4 electrolytes: Effects of O vacancies and N substitutions. Winston-Salem, North Carolina 27106, USA

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques

Cherry-Pit Structures in Binary Immiscible Alloy Under Ion Irradiation

Coarse-graining molecular dynamics in crystalline solids

Supporting Online Material (1)

Part 2: Basics of Cluster Expansions and Getting a Optimal Cluster Expansion. What is the coarse-graining Cluster Expansion concept?

Lithium Diffusion in Graphitic Carbon: Supporting Information

Field Method of Simulation of Phase Transformations in Materials. Alex Umantsev Fayetteville State University, Fayetteville, NC

MECH 6661 lecture 9/1 Dr. M. Medraj Mech. Eng. Dept. - Concordia University

Title atoms in a graphite intercalation c. Citation PHYSICAL REVIEW B (2008), 78(21)

Supplementary Figure 1 Nano-beam electron diffraction Nano-beam electron diffraction

The Phase Field Method

Molecular Dynamics and Accelerated Molecular Dynamics

A Combined Computational/Experimental Study on LiNi 1/3 Co 1/3 Mn 1/3 O 2

III. Reaction Kinetics Lecture 15: Ion Adsorption and Intercalation

ATOMISTIC MODELING OF BORON ACTIVATION AND DIFFUSION IN STRAINED SIGE

Lecture 1: Atomic Diffusion

Available online at Physics Procedia 15 (2011) Stability and Rupture of Alloyed Atomic Terraces on Epitaxial Interfaces

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

Kinetic Monte Carlo: from transition probabilities to transition rates

EMA5001 Lecture 2 Interstitial Diffusion & Fick s 1 st Law. Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University

An EAM potential for the dynamical simulation of Ni-Al alloys

First-principles study of the structure of stoichiometric and Mn-deficient MnO 2

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of

Why thermodynamics for materials?

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Defects and diffusion in metal oxides: Challenges for first-principles modelling

Molecular Dynamics Saddle Search Adaptive Kinetic Monte Carlo

Stochastic equations for thermodynamics

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride

MODELING EXCESS HEAT IN THE FLEISCHMANN-PONS EXPERIMENT

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

Potentials, periodicity

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion

Sodium Trimer Ordering on Na x CoO 2 Surface. C. Chou 1,4. Taiwan, R.O.C. R.O.C. FL 32611, U.S.A.

Binding energy of 2D materials using Quantum Monte Carlo

Effective dynamics for the (overdamped) Langevin equation

Plan for concentrated course. Computer Calculations of Equilibria and Phase Diagrams. Schedule for seminar room. Lectures

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

Modified Maxwell-Garnett equation for the effective transport coefficients in inhomogeneous media

A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials

High Temperature Superconductivity In Pd-[H(D)] X System

Computational Study of ( ) and ( ) *

ATOMISTIC MODELING OF DIFFUSION IN ALUMINUM

Diffusion. Diffusion. Diffusion in Solid Materials

Effective Temperatures in Driven Systems near Jamming

Section 7: Diffusion. Jaeger Chapter 4. EE143 Ali Javey

MODELING DEFECT MEDIATED DOPANT DIFFUSION IN SILICON. by Brian T. Puchala

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

SCIENCE CHINA Physics, Mechanics & Astronomy

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors*

Identifying the rate-limiting processes at the Li-air cathode

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC)

Basic Concepts of Electrochemistry

Analysis of the simulation

Conduction Modeling in Mixed Alkali Borate Glasses

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models

arxiv: v2 [cond-mat.mtrl-sci] 18 Nov 2016

Atoms, electrons and Solids

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Density Functional Theory: from theory to Applications

Application of Linear, Nonlinear and Nanoscale Conductivity Spectroscopy for Characterising Ion Transport in Solid Electrolytes

Collective Effects. Equilibrium and Nonequilibrium Physics

Transcription:

Diffusion in multicomponent solids nton Van der Ven Department of Materials Science and Engineering University of Michigan nn rbor, MI

Coarse graining time Diffusion in a crystal Two levels of time coarse graining

Δ Γ = ν * exp kt Coarse graining time Diffusion in a crystal Two levels of time coarse graining Short-time coarse graining: transition state theory E - MD simulations - Harmonic approximation Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

Coarse graining time Diffusion in a crystal Two levels of time coarse graining Short-time coarse graining: transition state theory Δ Γ = ν * exp kt E - MD simulations - Harmonic approximation second level of coarse graining that leads to Fick s law J = D C Green-Kubo Kinetic coefficients derived from fluctuations at equilibrium Vineyard, J. Phys. Chem. Solids 3, 121 (1957). Zwanzig, nnu. Rev. Phys. Chem. 16, 67 (1965).

Interstitial diffusion C diffusion in bcc Iron (steel) Li diffusion in transition metal oxide host O diffusion on Pt-(111) surface In all examples, diffusion occurs on a rigid lattice which is externally imposed by a host or substrate

Example of interstitial diffusion

Irreversible thermodynamics: interstitial diffusion of one component J = L µ D = L dµ dc J = D C

Notation M = number of lattice sites N = number of diffusing atoms v s = volume per lattice site x = N/M C=x/v s

Interstitial diffusion: one component Kubo-Green relations (linear response statistical mechanics) D = L Θ Thermodynamic factor Kinetic coefficient L = Θ = 1 (2d)tMv s kt µ C N i=1 ( ) Δ r R i t 2 R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005).

Trajectories Δ r R j t ( ) Δ r R i t ( ) D J = 1 2d ( )t 1 N N i=1 ( ) Δ r R i t 2

More familiar form D = D J ~ Θ Thermodynamic factor ~ Θ = µ kt ln x Self diffusion coefficient D J = 1 2d ( )t 1 N N i=1 ( ) Δ r R i t 2 R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

Common approximation D Thermodynamic factor = ~ D * Θ ~ Θ = µ kt ln x Tracer diffusion coefficient D* = ( ΔR i ( t) ) 2 ( 2d)t R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

~ D = D J Θ Diffusion coefficient at 300 K Thermodynamic factor Θ. Van der Ven, G. Ceder, M. sta, P.D. Tepesch, Phys Rev. 64 (2001) 064112

Interstitial diffusion (two components) C & N diffusion in bcc Iron (steel) Li & Na diffusion in transition metal oxide host O & S diffusion on Pt-(111) surface In all examples, diffusion occurs on a rigid lattice which is externally imposed by a host or substrate

Diffusion of two species on a lattice J = L µ L µ J = L µ L µ D = L Θ D D D D = L L L L µ C µ C µ C µ C J = D C D C J = D C D C

lternative factorization = x kt x kt x kt x kt L L L L D D D D µ µ µ µ ~ ~ ~ ~ ( ) ( ) ( )tm d t R t R L j i ij 2 ~ Δ Δ = ξ ξ ς ς r r Kubo-Green. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005)..R. llnatt,.. Lidiard, tomic Transport in Solids (Cambridge Univ. Press, 1993).

Kinetic coefficients (fcc lattice in dilute vacancy limit, ideal solution) ( ) ( ) ( )tm d t R t R L j i ij 2 ~ Δ Δ = ξ ξ ς ς r r

Diffusion in an alloy: substitutional diffusion Not interstitial diffusion Instead, diffusing atoms form the lattice Dilute concentration of vacancies

Thermodynamic driving forces for substitutional diffusion J = L ~ µ L ~ µ J = L ~ µ L ~ µ ~ µ ~ µ = µ µ V = µ µ V. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005).

Textbook treatment of substitional diffusion Not Rigorous J = L ~ µ L ~ µ J = L ~ µ L ~ µ

Textbook treatment of substitional diffusion µ V Traditional = 0 dµ V Not Rigorous = 0 Gibbs-Duhem x dµ x dµ = 0 J = L ~ µ L ~ µ J = L ~ µ L ~ µ ssume vacancy concentration in equilibrium everywhere + J J = D = D C C

Textbook treatment of substitional diffusion µ V J J Traditional = 0 = D = D dµ V C C Not Rigorous = 0 Gibbs-Duhem x dµ x dµ = 0 J = L ~ µ L ~ µ J = L ~ µ L ~ µ + ssume vacancy concentration in equilibrium everywhere J J = D = D Rigorous C C D D C C

Lattice frame and laboratory frame of reference lattice m V m ( J J ) v = V J = V + Fluxes in the laboratory frame ~ J = J + xjv ~ J = J + x J V

Lattice frame and laboratory frame of reference J + x J J V = W ~ ~ = D C V C lattice m V m ( J J ) v = V J = V + ~ W Drift = D D Fluxes in the laboratory frame ~ J = J + xjv ~ J = J + x J V Interdiffusion ~ D = x D + x D

Rigorous treatment J J = D = D C C D D C C

Rigorous treatment J J = D = D C C D D C C Diagonalize the D-matrix Yields a mode corresponding to (a) density relaxation (b) interdiffusion D D D D = E λ 0 + 0 1 E λ K. W. Kehr, et al, Phys. Rev. 39, 4891 (1989)

Physical meaning of modes λ+ and λ-

Physical meaning of modes λ + and λ - Density fluctuations relax with a time constant of λ + K. W. Kehr, et al, Phys. Rev. 39, 4891 (1989)

Physical meaning of modes λ + and λ - Density fluctuations relax with a time constant of λ + Compositional inhomogeneities decay with a time constant of λ K. W. Kehr, et al, Phys. Rev. 39, 4891 (1989)

Comparisons of different treatments Random alloy Traditional and rigorous treatment are equivalent only when Γ =Γ Γ =10xΓ Γ =100xΓ

Example: Li x CoO 2

Intercalation Oxide as Cathode in Rechargeable Lithium attery LixCoO2

First-Principles (Density Functional Theory) Cluster Expansions Fit V α, V β, V γ, to first-principles energies ( ) F σ = V + V σ + V σ σ + V σ σ σ +... o α i β j k γ l m n i j, k l, m, n Monte Carlo Z = exp σ F ( σ ) k T

First principles energies (LD) of different lithium-vacancy configurations. Van der Ven, et al, Phys. Rev. 58 (6), p. 2975-87 (1998).

Cluster expansion for Li x CoO 2 ( ),,, E σ = V + V σ + V σ σ + V σ σ σ +... o i i i j i j i j k i j k i i, j i, j, k. Van der Ven, et al, Phys. Rev. 58 (6), p. 2975-87 (1998).

Calculated Li x CoO 2 phase diagram. Van der Ven, et al, Phys. Rev. 58 (6), p. 2975-87 (1998).

Calculated phase diagram Experimental phase diagram Reimers, Dahn, J.Electrochem. Soc, (1992) Ohzuku, Ueda, J. Electrochem. Soc. (1994) matucci et al, J. Electrochem. Soc. (1996)

Predicted phases confirmed experimentally Confirmed experimentally with TEM Y. Shao-Horn, S. Levasseur, F. Weill, C. Delmas, J. Electrochem. Soc. 150 (2003), 366

Predicted phases confirmed experimentally Confirmed experimentally by Z. Chen, Z. Lu, J.R. Dahn J. Electrochem. Soc. 149, 1604 (2002) Confirmed experimentally with TEM Y. Shao-Horn, S. Levasseur, F. Weill, C. Delmas, J. Electrochem. Soc. 150 (2003), 366

Calculated phase diagram? Experimental phase diagram Reimers, Dahn, J.Electrochem. Soc, (1992) Ohzuku, Ueda, J. Electrochem. Soc. (1994) matucci et al, J. Electrochem. Soc. (1996) M. Menetrier et al J. Mater Chem. 9, 1135 (1999)

Effect of metal insulator transition Holes in the valence band localize in space C.. Marianetti et al, Nature Materials, 3, 627 (2004). LD & GG fails to accurately describe localized electronic states

Diffusion Fick s Law J = D C

Interstitial diffusion and configurational disorder Kubo-Green relations D = D J ~ Θ Thermodynamic factor ~ Θ = µ kt ln x Self diffusion coefficient D J = 1 2d ( )t 1 N N i=1 ( ) Δ r R i t 2

Individual hops: Transition state theory ΔE Γ = ν * exp Δ kt E

Kinetically resolved activation barrier ΔE kra = E activated state 1 ( 2 E 1 + E ) 2 ΔE barrier = ΔE kra + 1 ( 2 E final E initial ). Van der Ven, G. Ceder, M. sta, P.D. Tepesch, Phys Rev. 64 (2001) 064112

Migration mechanism in Li x CoO 2 Lithium Cobalt Oxygen Single vacancy hop mechanism Divacancy hop Mechanism

Lithium Single vacancy hop Divacancy hop Cobalt Oxygen

Many types of hop possibilities in the lithium plane

Migration barriers depend configuration and concentration Single-vacancy mechanism Divacancy mechanism

Local Cluster expansion for divacancy migration barrier

Calculated diffusion coefficient (First Principles cluster expansion + kinetic Monte Carlo) D = Θ D J Diffusion coefficient at 300 K Thermodynamic factor Θ. Van der Ven, G. Ceder, M. sta, P.D. Tepesch, Phys Rev. 64 (2001) 064112

vailable migration mechanisms for each lithium ion Channels into a divacancy Number of vacancies around lithium Channels into isolated vacancies

Diffusion occurs with a divacancy mechanism

Diffusion and phase transformations in l-li alloys Dark field TEM. Kalogeridis, J. Pesieka, E. Nembach, cta Mater 47 (1999) 1953 Dark field in situ TEM, peak aged l-li specimen under full load H. Rosner, W. Liu, E. Nembach, Phil Mag, 79 (1999) 2935

fcc l-li alloy inary cluster expansion σ i σ i = +1 = 1 Li at site i l at site i Fit to LD energies of 70 different l-li arrangements on fcc ( ),,, E σ = V + V σ + V σ σ + V σ σ σ +... o i i i j i j i j k i j k i i, j i, j, k. Van der Ven, G. Ceder, Phys. Rev. 71, 054102(2005)

Calculated thermodynamic and kinetic properties of l-li alloy First principles cluster expansion + Monte Carlo. Van der Ven, G. Ceder, Phys. Rev. 71, 054102(2005)

Expand environment dependence of vacancy formation energy Local cluster expansion* (perturbation to binary cluster expansion) Fit to 23 vacancy LD formation energies in different l-li arrangements (107 atom supercells). σ i σ i = +1 = 1 Li at site i l at site i. Van der Ven, G. Ceder, Phys. Rev. 71, 054102(2005)

Equilibrium vacancy concentration (Monte Carlo applied to cluster expansion). Van der Ven, G. Ceder, Phys. Rev. 71, 054102(2005)

Vacancy surrounds itself by l Short range order around a vacancy 750 Kelvin. Van der Ven, G. Ceder, Phys. Rev. 71, 054102(2005)

Vacancies reside on lithium sublattice in L12 600 Kelvin Li l

Migration barriers for lithium and aluminum differ by ~150 mev l barriers Li barriers Calculated (LD) in 107 atom supercells v * l 4.5 10 13 Hz v * Li 7 10 13 Hz

Calculated interdiffusion coefficient Li l. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, 045901 (2005).

Hop mechanisms

Frequency of hop angles between successive hops. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, 045901 (2005).

Conclusion Green-Kubo formalism yields rigorous expressions for diffusion coefficients Discussed diffusion formalism for both interstitial and substitutional diffusion Intriguing hop mechanisms in multicomponent solids that can depend on ordering Thermodynamics plays a crucial role!