[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2

Similar documents
Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

7 The cigar soliton, the Rosenau solution, and moving frame calculations

8. Quadrilaterals. If AC = 21 cm, BC = 29 cm and AB = 30 cm, find the perimeter of the quadrilateral ARPQ.

Holographic Entanglement Entropy for Surface Operators and Defects

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution.

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

or i 2 = -1 i 4 = 1 Example : ( i ),, 7 i and 0 are complex numbers. and Imaginary part of z = b or img z = b


REGULARITY OF SUBELLIPTIC MONGE-AMPÈRE EQUATIONS IN THE PLANE

Lecturer: Bengt E W Nilsson

Exercise 8.1 We have. the function is differentiable, with. f (x 0, y 0 )(u, v) = (2ax 0 + 2by 0 )u + (2bx 0 + 2cy 0 )v.

Extra FP3 past paper - A

Dr. Allen Back. Dec. 3, 2014

Sobolev Spaces. Chapter Hölder spaces

cauchy s integral theorem: examples

Solution for Final Review Problems 1

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Phys 7221 Homework # 8

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

Solution to Homework 1. Vector Analysis (P201)

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

review To find the coefficient of all the terms in 15ab + 60bc 17ca: Coefficient of ab = 15 Coefficient of bc = 60 Coefficient of ca = -17

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

Some simple exact solutions to d = 5 Einstein Gauss Bonnet Gravity

Mathematical Journal of Okayama University

Math Final Exam.

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

Chapter 6. Differentially Flat Systems

WRT in 2D: Poisson Example

Left Invariant CR Structures on S 3

Solutions to Exercises 6.1


Progress, tbe Universal LaW of f'laiare; Tbodgbt. tbe 3olVer)t of fier Problems. C H IC A G O. J U N E

Announcements: Today: RL, LC and RLC circuits and some maths

j=1 ωj k E j. (3.1) j=1 θj E j, (3.2)

Wall Crossing and Quivers

arxiv: v2 [hep-th] 18 Oct 2018

Solutions for Math 411 Assignment #10 1

AP Calculus BC Chapter 4 AP Exam Problems. Answers

Lecture No 1 Introduction to Diffusion equations The heat equat

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants

/,!, W l *..il.'tn. INDEPENDENT AI.L THINUS. NKUTRAI. NOTHINfi" LOWELL, MICH 10AN,.FANUAKY, 5, WHOLE NO. 288.

Bourgain s Theorem. Computational and Metric Geometry. Instructor: Yury Makarychev. d(s 1, s 2 ).

The Quadrupole Moment of Rotating Fluid Balls

Physics/Astronomy 226, Problem set 4, Due 2/10 Solutions. Solution: Our vectors consist of components and basis vectors:

On Null 2-Type Submanifolds of the Pseudo Euclidean Space E 5 t

d F = (df E 3 ) E 3. (4.1)

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

ν(u, v) = N(u, v) G(r(u, v)) E r(u,v) 3.

NONINTEGER FLUXES, DOLBEAULT COMPLEXES, AND SUPERSYMMETRIC QUANTUM MECHANICS. based on [ ] and [ ] Hannover, August 1, 2011

MORE NOTES FOR MATH 823, FALL 2007

u = (u, v) = y The velocity field described by ψ automatically satisfies the incompressibility condition, and it should be noted that

Helicity fluctuation, generation of linking number and effect on resistivity

Einstein-Maxwell-Chern-Simons Black Holes

Chapter 2: Complex numbers

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

Q 1.5: 1/s Sol: If you try to do a Taylor expansion at s = 0, the first term, w(0). Thus, the Taylor series expansion in s does not exist.

A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal

Report submitted to Prof. P. Shipman for Math 641, Spring 2012

MS 3011 Exercises. December 11, 2013

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Chapter Given three points, A(4, 3, 2), B( 2, 0, 5), and C(7, 2, 1): a) Specify the vector A extending from the origin to the point A.

1 Complex numbers and the complex plane

8. Dirichlet s Theorem and Farey Fractions

Kinematics. B r. Figure 1: Bodies, reference configuration B r and current configuration B t. κ : B (0, ) B. B r := κ(b, t 0 )

Lecture 18 April 5, 2010

Particle Physics WS 2012/13 ( )

Math 185 Fall 2015, Sample Final Exam Solutions

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

) ) = γ. and P ( X. B(a, b) = Γ(a)Γ(b) Γ(a + b) ; (x + y, ) I J}. Then, (rx) a 1 (ry) b 1 e (x+y)r r 2 dxdy Γ(a)Γ(b) D

Roots and Coefficients Polynomials Preliminary Maths Extension 1

MATH 173: PRACTICE MIDTERM SOLUTIONS

University of Illinois at Chicago Department of Physics

Numerical Solutions to Partial Differential Equations

Applied Mathematics Masters Examination Fall 2016, August 18, 1 4 pm.

Minimax lower bounds I

Algebraic Expressions

Wave Phenomena Physics 15c. Lecture 17 EM Waves in Matter

Twisting versus bending in quantum waveguides

Convex Optimization in Computer Vision:

Mathematics of Physics and Engineering II: Homework problems

Higher dimensional Kerr-Schild spacetimes 1

Math 265 (Butler) Practice Midterm III B (Solutions)

Gravitational radiation

Simon Salamon. Turin, 24 April 2004

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Diffuison processes on CR-manifolds

Laplace s Equation. Chapter Mean Value Formulas

Introduction to Orientifolds.

Inductive and Recursive Moving Frames for Lie Pseudo-Groups

1 (2n)! (-1)n (θ) 2n

On time dependent black hole solutions

1 First and second variational formulas for area

Addendum: Symmetries of the. energy-momentum tensor

Chapter 31. The Laplace Transform The Laplace Transform. The Laplace transform of the function f(t) is defined. e st f(t) dt, L[f(t)] =

On the p-laplacian and p-fluids

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

Lefschetz-thimble path integral and its physical application

Transcription:

2 S 2 2 2 2 2 M M 4 S 2 S 2 z, w : C S 2 z = 1/w e iψ S 1 S 2 σ 1 = 1 ( ) [ zd z zdz dψ + 2i 2 1 + z 2, σ 2 = Re 2 e i ψ 2 dz 1 + z 2 ], σ 3 = Im [ 2 e i ψ 2 dz 1 + z 2 σ 2 σ 3 (σ 2 ) 2 (σ 3 ) 2 σ 2 σ 3 (σ 2 ) 2 +(σ 3 ) 2 = 4 dz 2 (1+ z 2 ) 2 1 S 2 1 σ 1, σ 2 σ 3 dσ 1 = σ 2 σ 3 (w, φ) = (1/z, ψ + 4 arg z) Z/2 M RP 2 M D 1 ].

M ds 2 = dr 2 + a 2 (σ 1 ) 2 + b 2 (σ 2 ) 2 + c 2 (σ 3 ) 2 a, b, c r [0, ) ( ) r a b c a = a2 (b c) 2 2bc, b = b2 (c a) 2 2ca, c = c2 (a b) 2 2ab, a(0) = 0 b(0) = m c(0) = m m dr σ 1 σ 2 σ 3 r r = 0 r = 0 2 Σ σ 2 σ 3 m Σ r > 0 a c b a b c (ca + ab) = 2 abc (ca)(ab), (ab + bc) = 2 abc (ab)(bc), (bc + ca) = 2 abc (bc)(ca). 2/(abc) Σ r = 0 a(0) = 0 b(0) = m = c(0) a(r) = 2r 1 2m 2 r3 + O(r 4 ), b(r) = m + 1 2 r 3 8m r2 + O(r 3 ), c(r) = m + 1 2 r + 3 8m r2 + O(r 3 ). b c q(r) = c(r) b(r) p(r) = c(r) + b(r). q(r) > 0 r 0 q(0) = 2m p(0) = 0 r > 0 (a p) > 0 p > 0 ( ) ds 2 = dr 2 + a2 zd z zdz 2 dψ + 2i 4 1 + z 2 + q2 + p 2 4 dz 2 [ e iψ (dz) 2 ] 4 (1 + z 2 (2 q p) Re ) 2 (1 + z 2 ) 2.

r = 0 a(r)/r p(r)/r q(r) r 2 a, p q a = 2(a2 q 2 ) p 2 q 2, q = 2q(p2 a 2 ) a(p 2 q 2 ), p = 2 + 2p(q2 a 2 ) a(p 2 q 2 ). a p = c + b r q = c b r a, p, q C k k N, R(X, Y, Z, W ) = Z W Y W Z Y [Z,W ] Y, X. {e i } 1 ω j i e i = ω j i e j ω j i = ωj i {ω i } ω j = ω j i ωi dω j = ω j i ωi. R j i = dωj i ωk i ω j k. R j i (X, Y ) = R(e j, e i, X, Y ) X Y M ω 0 = dr, ω 1 = a σ 1, ω 2 = b σ 2, ω 3 = c σ 3. ω 0 ω 1 ω 2 ω 3 dω 0 = 0, dω 1 = a a ω0 ω 1 + a bc ω2 ω 3,

dω 2 dω 3 ω0 1 = a a ω1, ω2 3 = 1 b 2 + c 2 a 2 ω 1, 2 abc ω0 2 = b b ω2, ω3 1 = 1 a 2 + c 2 b 2 ω 2, 2 abc ω0 3 = c c ω3, ω1 2 = 1 a 2 + b 2 c 2 ω 3. 2 abc 4 0 = R 1 0 + R3 2 = R2 0 + R1 3 = R3 0 + R2 1 (i, j, k) = (1, 2, 3) R i 0 + R k j = d(ω i 0 + ω k j ) + (ω j 0 + ωi k ) (ωk 0 + ω j i ), ω i 0 + ω k j = σ i. ω0 i + ωk j 2 ω 0 ω 1 ω 2 ω 3 Λ 2 + ω 0 ω 1 +ω 2 ω 3 ω 0 ω 2 +ω 3 ω 1 ω 0 ω 3 + ω 1 ω 2 Λ 2 + (ω 0 ω 1 + ω 2 ω 3 ) = σ 3 (ω 0 ω 2 + ω 3 ω 1 ) + σ 2 (ω 0 ω 3 + ω 1 ω 2 ), (ω 0 ω 2 + ω 3 ω 1 ) = σ 3 (ω 0 ω 1 + ω 2 ω 3 ) σ 1 (ω 0 ω 3 + ω 1 ω 2 ), (ω 0 ω 3 + ω 1 ω 2 ) = σ 2 (ω 0 ω 1 + ω 2 ω 3 ) + σ 1 (ω 0 ω 2 + ω 3 ω 1 ). SO(3) 2 Re(z) Im(e i ψ 2 + e i ψ 2 z 2 ) Re(e i ψ 2 e i ψ 2 z 2 ) 1 S = 1 + z 2 2 Im(z) Re(e i ψ 2 + e i ψ 2 z 2 ) Im(e i ψ 2 e i ψ 2 z 2 ). 1 z 2 2 Im(e i ψ 2 z) 2 Re(e i ψ 2 z) 0 σ 3 σ 2 S 1 ds = σ 3 0 σ 1, σ 2 σ 1 0 1 {ω 0 ω 1 + ω 2 ω 3, ω 0 ω 2 + ω 3 ω 1, ω 0 ω 3 + ω 1 ω 2 }

2 S ω 0 ω 1 + ω 2 ω 3 = a dr σ 1 + p2 q 2 4 2i dz d z (1 + z 2 ) 2, (ω 0 ω 2 + ω 3 ω 1 ) + i(ω 0 ω 3 + ω 1 ω 2 ) = (p ei ψ 2 dz q e i ψ 2 d z) (dr ia σ 1 ) 1 + z 2 p q [ ] S 1 z 2 [ (p 2 q 2 ] ) 2i dz d z 1 + z 2 4 (1 + z 2 a dr σ1 ) 2 [ ( z dz p (dr ia σ 1 ) ) q z d z ( e iψ (dr ia σ 1 ) ) ] 2 Im (1 + z 2 ) 2 [ ] + i [ ] [ 2z (p 2 q 2 ] ) 2i dz d z 1 + z 2 4 (1 + z 2 a dr σ1 ) 2 i dz ( p (dr ia σ 1 ) ) q d z ( e iψ (dr ia σ 1 ) ) (1 + z 2 2 + i q z2 dz ( e iψ (dr + ia σ 1 ) ) z 2 d z ( p (dr + ia σ 1 ) ) (1 + z 2 ) 2., a(r) = 2r + r p(r) = r + r q(r) = 2m + r r = 0 2 Σ 1 z 2 [ 2im 2 ] [ dz d z 2z 2im 2 ] dz d z 1 + z 2 (1 + z 2 ) 2 1 + z 2 (1 + z 2 ) 2, Σ Σ [Σ] 2 [i ] S J i Σ J S 2 Σ u : S 2 M J i du = x i du J S 2 x 1, x 2 x 3 S 2 x 1 + ix 2 = 2z/(1 + z 2 ) x 3 = (1 z 2 )/(1 + z 2 ) u du J S 2 = x 1 J 1 du x 2 J 2 du x 3 J 3 du.

M R 1 0 R 1 0 = dω 1 0 ω 2 0 ω 1 2 ω 3 0 ω 1 3 κ(a, b, c) κ(a, b, c) R 1 0 = a a ω0 ω 1 κ(a, b, c) ω 2 ω 3, 1 2(abc) 2 [ 2a 4 a 2 (b c) 2 a 3 (b + c) + a(b c) 2 (b + c) (b + c) 2 (b c) 2]. a /a = κ(a, b, c) R 1001 = R 2301 κ(a, b, c) = κ(a, c, b) κ(a, b, c) + κ(c, a, b) + κ(b, c, a) = 0 (a, b, c) R 1001 = R 2301 = R 2332 = κ(a, b, c) = a a, R 2002 = R 3102 = R 3113 = κ(b, c, a) = b b, R 3003 = R 1203 = R 1221 = κ(c, a, b) = c c. 4 z = 0 dr 2 + a2 4 dψ2 (r e iψ, z) = (s e 2iθ, e iθ ) (s, e iθ ) R S 1 ds 2 + c 2 dθ 2 s > 0 ds 2 + b 2 dθ 2 s < 0 S 1 {Im z = 0} {Re z = 0} R 1 re iψ

J = ( ) + R A (R A)(V ) = R lµlν V µ h µlk h νlk V µ e ν µ,ν l l,k V = µ V µ e µ k, l µ, ν R A J Σ Σ 2, 3 0, 1 1 2m = h 022 = h 033 = h 123 = h 132 0 = h 023 = h 032 = h 122 = h 133. Σ κ(a, b, c) = 3 2m 2 κ(b, c, a) = κ(c, a, b) = 3 4m 2 r = 0. R A 3 R j0j0 j=2 3 R j1j1 j=2 3 j,k=2 3 j,k=2 h 0jk h 0jk = R 2002 + R 3003 (h 022 ) 2 (h 033 ) 2 = 1 m 2, h 1jk h 1jk = R 2112 + R 3113 (h 123 ) 2 (h 132 ) 2 = 1 m 2, R A p Σ T p Σ z = 1 T p Σ arg z

z = 1 Σ Σ R A Σ C 1 ε > 0 Γ sup q Γ ( r 2 (q) + (1 + (ω 2 ω 3 )(T q Γ)) ) < ε Γ t Γ 0 = Γ Σ t r 2 ω 2 ω 3 Σ a b c r > 0 1 > r a (r) a(r) > r c (r) c(r) > r b (r) b(r) ξ r > 0 x = a c y = b c. x y x r = 0 (x(0), y(0)) = (0, 1) (x(r), y(r)) (1, 0) r x [0, 1) y [ 1, 0) r > 0 (x(r), y(r)) y < 1 + x, 0 < x < 1, 1 < y < 0. y 1 + x (x, y) = (0, 1) r = 0 r = 0 x(r) = 2 m r 1 m 2 r2 + O(r 3 ) y(r) = 1 + 1 m r 1 2m 2 r2 + O(r 3 ). a = x2 (y 1) 2 2y, b = y2 (x 1) 2 2x, c = 1 (x y)2 2xy.

x(r) y(r) x = 1 c (1 x)(1 + x y) y y = 1 c (1 y)(1 + y x) x. b > 0 r > 0 c c + b b = 1 c 1 x + y y a a c c = x x = 1 c, (1 x)(1 + x y) x( y) r > 0 a r a a a = r + 1 r 3 + O(r 4 ) r = 0 2m 2 a a > r r a a a r r ( a ) (a ) 2 a < 0 r > 0 a a r r r r > 0 a = a κ(a, b, c) = 1 c 2x 4 x 2 (y 1) 2 x 3 (1 + y) + x(1 y) 2 (1 + y) (1 y) 2 (1 + y) 2 κ 0 (0, 1) (1, 0) ( x a = y + 1 x2 y 2 ) dy dx 2y 2 dx dr, dy dx 1 b r > 0 c r r Σ 2xy 2.

2 Σ Θ = m 2 σ 2 σ 3 = m2 bc ω2 ω 3 m 2 σ 2 σ 3 dθ = 0 Θ Σ = dvol Σ (bc) < 0 r > 0 bc m 2 r Θ Q R n λ n λ 2 λ 1 k {1,, n} { trl (Q) L R n k } k j=1 λ j L {v 1,, v k } Qv j L j {1,..., k} L Q f k p k Hess(f) p M Σ Σ dr 2 = 2r ω 0, ) Hess(r 2 ) = 2 (ω 0 ω 0 + r a a ω1 ω 1 + r b b ω2 ω 2 + r c c ω3 ω 3. r 2 r > 0 r 2 Σ Σ ε δ tr L Hess(r 2 ) δ r 2

p r [0, ε) L T p M N M 2 r 2 N (r 2 N ) = tr N (Hess(r 2 )) 0. r 2 N tr N Hess(r 2 ) r 2 N r 2 r Hess(r 2 ) Hess(r 2 ) r 2 2 M D 1 2 2 D 0 M Z/2 Σ RP 2 Z/2

RP 2