A stable variant of Simpler GMRES and GCR

Similar documents
HOW TO MAKE SIMPLER GMRES AND GCR MORE STABLE

c 2008 Society for Industrial and Applied Mathematics

Adaptive version of Simpler GMRES

Numerical behavior of inexact linear solvers

On the loss of orthogonality in the Gram-Schmidt orthogonalization process

On the accuracy of saddle point solvers

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

Inexactness and flexibility in linear Krylov solvers

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

RESIDUAL SMOOTHING AND PEAK/PLATEAU BEHAVIOR IN KRYLOV SUBSPACE METHODS

Solving large sparse Ax = b.

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method

Principles and Analysis of Krylov Subspace Methods

ON ORTHOGONAL REDUCTION TO HESSENBERG FORM WITH SMALL BANDWIDTH

Lanczos tridigonalization and Golub - Kahan bidiagonalization: Ideas, connections and impact

Gram-Schmidt Orthogonalization: 100 Years and More

Krylov Space Methods. Nonstationary sounds good. Radu Trîmbiţaş ( Babeş-Bolyai University) Krylov Space Methods 1 / 17

NUMERICS OF THE GRAM-SCHMIDT ORTHOGONALIZATION PROCESS

On prescribing Ritz values and GMRES residual norms generated by Arnoldi processes

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

The Conjugate Gradient Method

PROJECTED GMRES AND ITS VARIANTS

Recent computational developments in Krylov Subspace Methods for linear systems. Valeria Simoncini and Daniel B. Szyld

1. Introduction. The GMRES algorithm by Saad and Schultz [28] is a popular iterative method for solving systems of linear equations: p n (A).

GMRES: Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems

Error Bounds for Iterative Refinement in Three Precisions

AMS526: Numerical Analysis I (Numerical Linear Algebra)

Key words. conjugate gradients, normwise backward error, incremental norm estimation.

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

JURJEN DUINTJER TEBBENS

On the influence of eigenvalues on Bi-CG residual norms

Chebyshev semi-iteration in Preconditioning

FEM and sparse linear system solving

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

Key words. GMRES method, convergence bounds, worst-case GMRES, ideal GMRES, field of values

Krylov Subspace Methods that Are Based on the Minimization of the Residual

ANY FINITE CONVERGENCE CURVE IS POSSIBLE IN THE INITIAL ITERATIONS OF RESTARTED FOM

The Lanczos and conjugate gradient algorithms

On the Superlinear Convergence of MINRES. Valeria Simoncini and Daniel B. Szyld. Report January 2012

ON A GENERAL CLASS OF PRECONDITIONERS FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS

Iterative Methods for Sparse Linear Systems

On the interplay between discretization and preconditioning of Krylov subspace methods

Generalized MINRES or Generalized LSQR?

9.1 Preconditioned Krylov Subspace Methods

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

A DISSERTATION. Extensions of the Conjugate Residual Method. by Tomohiro Sogabe. Presented to

Preconditioning for Nonsymmetry and Time-dependence

DELFT UNIVERSITY OF TECHNOLOGY

GMRESR: A family of nested GMRES methods

Iterative Methods for Linear Systems of Equations

Preconditioned inverse iteration and shift-invert Arnoldi method

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

Preface to the Second Edition. Preface to the First Edition

Combination Preconditioning of saddle-point systems for positive definiteness

Preconditioners for the incompressible Navier Stokes equations

Algorithms that use the Arnoldi Basis

Simple iteration procedure

Research Article Some Generalizations and Modifications of Iterative Methods for Solving Large Sparse Symmetric Indefinite Linear Systems

Lecture 8: Fast Linear Solvers (Part 7)

Course Notes: Week 1

Dedicated to Lothar Reichel on the occasion of his 60th birthday

Computational Linear Algebra

On the Preconditioning of the Block Tridiagonal Linear System of Equations

Chapter 7 Iterative Techniques in Matrix Algebra

AMS526: Numerical Analysis I (Numerical Linear Algebra)

ETNA Kent State University

Contents. Preface... xi. Introduction...

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices

GMRES ON (NEARLY) SINGULAR SYSTEMS

EECS 275 Matrix Computation

Contribution of Wo¹niakowski, Strako²,... The conjugate gradient method in nite precision computa

Some minimization problems

Augmented GMRES-type methods

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

Chapter 7. Iterative methods for large sparse linear systems. 7.1 Sparse matrix algebra. Large sparse matrices

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

Variants of BiCGSafe method using shadow three-term recurrence

Lab 1: Iterative Methods for Solving Linear Systems

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

Computational Linear Algebra

DELFT UNIVERSITY OF TECHNOLOGY

Krylov Space Solvers

IDR(s) as a projection method

The Rate of Convergence of GMRES on a Tridiagonal Toeplitz Linear System

Arnoldi Methods in SLEPc

c 2005 Society for Industrial and Applied Mathematics

Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations

The Loss of Orthogonality in the Gram-Schmidt Orthogonalization Process

Solving Sparse Linear Systems: Iterative methods

Solving Sparse Linear Systems: Iterative methods

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

On the Vorobyev method of moments

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

FINDING RIGHTMOST EIGENVALUES OF LARGE SPARSE NONSYMMETRIC PARAMETERIZED EIGENVALUE PROBLEMS

MS 28: Scalable Communication-Avoiding and -Hiding Krylov Subspace Methods I

Transcription:

A stable variant of Simpler GMRES and GCR Miroslav Rozložník joint work with Pavel Jiránek and Martin H. Gutknecht Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic miro@cs.cas.cz, http://www.cs.cas.cz/ miro Applied Linear Algebra Conference in honor of Hans Schneider University of Novi Sad, Serbia, May 24 28, 2010. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 1

Minimum residual methods for Ax = b We consider a nonsingular linear system Ax = b, A R N N, b R N. Krylov subspace methods: initial guess x 0, compute {x n} such that x n x 0 + K n r n b Ax 0 r 0 + AK n, K n span(r 0, Ar 0,..., A n 1 r 0 ) is the n-th Krylov subspace generated by A and r 0. Minimum residual approach: minimizing the residual r n = b Ax n = r 0 d n r n = min r 0 d r n AK n. d AK n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 2

Minimum residual methods for Ax = b We consider a nonsingular linear system Ax = b, A R N N, b R N. Krylov subspace methods: initial guess x 0, compute {x n} such that x n x 0 + K n r n b Ax 0 r 0 + AK n, K n span(r 0, Ar 0,..., A n 1 r 0 ) is the n-th Krylov subspace generated by A and r 0. Minimum residual approach: minimizing the residual r n = b Ax n = r 0 d n r n = min r 0 d r n AK n. d AK n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 2

Minimum residual methods for Ax = b GMRES by Saad and Schultz [1986]: Arnoldi process: AQ n = Q n+1 H n+1,n, x n = x 0 + Q ny n, where y n solves min y ϱ 0 e 1 H n+1,n y, ϱ 0 r 0. Numerical stability of GMRES: Drkošová, Greenbaum, R, and Strakoš [1995], Arioli and Fassino [1996], Greenbaum, R, and Strakoš [1997], Paige, R, and Strakoš [2006]. Other implementations: Simpler GMRES: Walker and Zhou [1994], ORTHODIR, ORTHOMIN( ) GCR: Young and Jea [1980], Vinsome [1976], Eisenstat, Elman, and Schultz [1983]. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 3

Minimum residual methods for Ax = b GMRES by Saad and Schultz [1986]: Arnoldi process: AQ n = Q n+1 H n+1,n, x n = x 0 + Q ny n, where y n solves min y ϱ 0 e 1 H n+1,n y, ϱ 0 r 0. Numerical stability of GMRES: Drkošová, Greenbaum, R, and Strakoš [1995], Arioli and Fassino [1996], Greenbaum, R, and Strakoš [1997], Paige, R, and Strakoš [2006]. Other implementations: Simpler GMRES: Walker and Zhou [1994], ORTHODIR, ORTHOMIN( ) GCR: Young and Jea [1980], Vinsome [1976], Eisenstat, Elman, and Schultz [1983]. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 3

Sketch of Simpler GMRES and GCR Z n [z 1,..., z n] a (normalized) basis of K n. V n [v 1,..., v n] an orthonormal basis of AK n: AZ n = V nu n, U n is upper triangular. Residual r n r 0 + AK n = r 0 + R(V n), r n R(V n) satisfies r n = (I V nv T n )r 0 = (I v nv T n )r n 1 = r n 1 α nv n, α n v T n r n 1, whereas x n x 0 + K n = x 0 + R(Z n) satisfes x n = x 0 + Z nt n, U nt n = V T n r 0 = [α 1,..., α n] T. Approximate solution can be updated at each step P n [p 1,..., p n] = A 1 V n, Z n = P nu n x n = x n 1 + α np n. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 4

Sketch of Simpler GMRES and GCR Z n [z 1,..., z n] a (normalized) basis of K n. V n [v 1,..., v n] an orthonormal basis of AK n: AZ n = V nu n, U n is upper triangular. Residual r n r 0 + AK n = r 0 + R(V n), r n R(V n) satisfies r n = (I V nv T n )r 0 = (I v nv T n )r n 1 = r n 1 α nv n, α n v T n r n 1, whereas x n x 0 + K n = x 0 + R(Z n) satisfes x n = x 0 + Z nt n, U nt n = V T n r 0 = [α 1,..., α n] T. Approximate solution can be updated at each step P n [p 1,..., p n] = A 1 V n, Z n = P nu n x n = x n 1 + α np n. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 4

Sketch of Simpler GMRES and GCR Z n [z 1,..., z n] a (normalized) basis of K n. V n [v 1,..., v n] an orthonormal basis of AK n: AZ n = V nu n, U n is upper triangular. Residual r n r 0 + AK n = r 0 + R(V n), r n R(V n) satisfies r n = (I V nv T n )r 0 = (I v nv T n )r n 1 = r n 1 α nv n, α n v T n r n 1, whereas x n x 0 + K n = x 0 + R(Z n) satisfes x n = x 0 + Z nt n, U nt n = V T n r 0 = [α 1,..., α n] T. Approximate solution can be updated at each step P n [p 1,..., p n] = A 1 V n, Z n = P nu n x n = x n 1 + α np n. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 4

Sketch of Simpler GMRES and GCR Z n [z 1,..., z n] a (normalized) basis of K n. V n [v 1,..., v n] an orthonormal basis of AK n: AZ n = V nu n, U n is upper triangular. Residual r n r 0 + AK n = r 0 + R(V n), r n R(V n) satisfies r n = (I V nv T n )r 0 = (I v nv T n )r n 1 = r n 1 α nv n, α n v T n r n 1, whereas x n x 0 + K n = x 0 + R(Z n) satisfes x n = x 0 + Z nt n, U nt n = V T n r 0 = [α 1,..., α n] T. Approximate solution can be updated at each step P n [p 1,..., p n] = A 1 V n, Z n = P nu n x n = x n 1 + α np n. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 4

Backward and forward errors Assume stable computation of U n (e.g., using modified Gram-Schmidt orthogonalization or Householder reflections), c εκ(a)κ(z n) < 1, and r n 0. Solution of a triangular system ( b Ax n A x n + b c εκ(zn) 1 + x ) 0, x n x x n x n c εκ(a)κ(zn) ( 1 + x ) 0. 1 c εκ(a)κ(z n) x n Updated approximate solutions ( b Ax n A x n + b c εκ(a)κ(zn) 1 + x ) 0, x n x x n x n c εκ(a)κ(zn) ( 1 + x ) 0. 1 c εκ(a)κ(z n) x n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 5

Backward and forward errors Assume stable computation of U n (e.g., using modified Gram-Schmidt orthogonalization or Householder reflections), c εκ(a)κ(z n) < 1, and r n 0. Solution of a triangular system ( b Ax n A x n + b c εκ(zn) 1 + x ) 0, x n x x n x n c εκ(a)κ(zn) ( 1 + x ) 0. 1 c εκ(a)κ(z n) x n Updated approximate solutions ( b Ax n A x n + b c εκ(a)κ(zn) 1 + x ) 0, x n x x n x n c εκ(a)κ(zn) ( 1 + x ) 0. 1 c εκ(a)κ(z n) x n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 5

Backward and forward errors Assume stable computation of U n (e.g., using modified Gram-Schmidt orthogonalization or Householder reflections), c εκ(a)κ(z n) < 1, and r n 0. Solution of a triangular system ( b Ax n A x n + b c εκ(zn) 1 + x ) 0, x n x x n x n c εκ(a)κ(zn) ( 1 + x ) 0. 1 c εκ(a)κ(z n) x n Updated approximate solutions ( b Ax n A x n + b c εκ(a)κ(zn) 1 + x ) 0, x n x x n x n c εκ(a)κ(zn) ( 1 + x ) 0. 1 c εκ(a)κ(z n) x n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 5

Choice of Z n 1. Z n = [r 0 / r 0, V n 1 ] (Simpler GMRES, ORTHODIR) Robust, but numerically less stable (Liesen, R, and Strakoš [2002]): r 0 r n 1 κ([ r 0 r 0, V n 1]) 2 r 0 r n 1. 2. Z n = R n, R n [r 0 / r 0,..., r n 1 / r n 1 ] (ORTHOMIN( ), GCR) Residuals are linearly independent iff the residual norms decrease, but R n is well conditioned: max k=1,...,n 1 ( rk 1 2 + r k 2 r k 1 2 r k 2 ) 1 ( ) 1 2 n 1 κ(rn) (n + 1) 1 r k 1 2 + r k 2 2 2 1 + r k=1 k 1 2 r k 2 3. Can we benefit from advantages of both bases without suffering from disadvantages? Adaptive choice of the direction z n: introduce ν [0, 1) and compute z n as r 0 / r 0 if n = 1, z n = r n 1 / r n 1 if n > 1 & r n 1 ν r n 2, v n 1 otherwise. PCR algorithm of Ramage and Wathen [1994]: hybridization of the fast ORTHOMIN and robust ORTHODIR Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 6

Choice of Z n 1. Z n = [r 0 / r 0, V n 1 ] (Simpler GMRES, ORTHODIR) Robust, but numerically less stable (Liesen, R, and Strakoš [2002]): r 0 r n 1 κ([ r 0 r 0, V n 1]) 2 r 0 r n 1. 2. Z n = R n, R n [r 0 / r 0,..., r n 1 / r n 1 ] (ORTHOMIN( ), GCR) Residuals are linearly independent iff the residual norms decrease, but R n is well conditioned: max k=1,...,n 1 ( rk 1 2 + r k 2 r k 1 2 r k 2 ) 1 ( ) 1 2 n 1 κ(rn) (n + 1) 1 r k 1 2 + r k 2 2 2 1 + r k=1 k 1 2 r k 2 3. Can we benefit from advantages of both bases without suffering from disadvantages? Adaptive choice of the direction z n: introduce ν [0, 1) and compute z n as r 0 / r 0 if n = 1, z n = r n 1 / r n 1 if n > 1 & r n 1 ν r n 2, v n 1 otherwise. PCR algorithm of Ramage and Wathen [1994]: hybridization of the fast ORTHOMIN and robust ORTHODIR Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 6

Choice of Z n 1. Z n = [r 0 / r 0, V n 1 ] (Simpler GMRES, ORTHODIR) Robust, but numerically less stable (Liesen, R, and Strakoš [2002]): r 0 r n 1 κ([ r 0 r 0, V n 1]) 2 r 0 r n 1. 2. Z n = R n, R n [r 0 / r 0,..., r n 1 / r n 1 ] (ORTHOMIN( ), GCR) Residuals are linearly independent iff the residual norms decrease, but R n is well conditioned: max k=1,...,n 1 ( rk 1 2 + r k 2 r k 1 2 r k 2 ) 1 ( ) 1 2 n 1 κ(rn) (n + 1) 1 r k 1 2 + r k 2 2 2 1 + r k=1 k 1 2 r k 2 3. Can we benefit from advantages of both bases without suffering from disadvantages? Adaptive choice of the direction z n: introduce ν [0, 1) and compute z n as r 0 / r 0 if n = 1, z n = r n 1 / r n 1 if n > 1 & r n 1 ν r n 2, v n 1 otherwise. PCR algorithm of Ramage and Wathen [1994]: hybridization of the fast ORTHOMIN and robust ORTHODIR Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 6

Conditioning of the adaptive Z n Assume a near stagnation in the initial phase and a fast convergence in the subsequent steps: Then where r k 1 > ν r k 2 for k = 2,..., q (Simpler GMRES basis), r k 1 ν r k 2 for k = q + 1,..., n (residual basis). { max 1, 1 } 2 γ r q 1 n,q r 0, r 0 r 0 γ 1 n,q κ(z n) 2γ r q 1 n,q r q 1, ( rk 1 2 + r k 2 ) 1 2 n 1 γ n,q max, γn,q k=q,...,n 1 r k 1 2 r k 2 (n q+1) 1 r k 1 2 1 2 + r k 2 + r k=q k 1 2 r k 2 Similar estimates for general case (for multiple switches between bases). Moreover, κ(z n) 2 2 ν q 1 1 + ν 1 ν. Quasi-optimal choice ν opt = ( 1 + n 2 1)/n leads to κ(z n) ν=νopt = O(n). 1 2. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 7

Conditioning of the adaptive Z n Assume a near stagnation in the initial phase and a fast convergence in the subsequent steps: Then where r k 1 > ν r k 2 for k = 2,..., q (Simpler GMRES basis), r k 1 ν r k 2 for k = q + 1,..., n (residual basis). { max 1, 1 } 2 γ r q 1 n,q r 0, r 0 r 0 γ 1 n,q κ(z n) 2γ r q 1 n,q r q 1, ( rk 1 2 + r k 2 ) 1 2 n 1 γ n,q max, γn,q k=q,...,n 1 r k 1 2 r k 2 (n q+1) 1 r k 1 2 1 2 + r k 2 + r k=q k 1 2 r k 2 Similar estimates for general case (for multiple switches between bases). Moreover, κ(z n) 2 2 ν q 1 1 + ν 1 ν. Quasi-optimal choice ν opt = ( 1 + n 2 1)/n leads to κ(z n) ν=νopt = O(n). 1 2. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 7

Conditioning of the adaptive Z n Assume a near stagnation in the initial phase and a fast convergence in the subsequent steps: Then where r k 1 > ν r k 2 for k = 2,..., q (Simpler GMRES basis), r k 1 ν r k 2 for k = q + 1,..., n (residual basis). { max 1, 1 } 2 γ r q 1 n,q r 0, r 0 r 0 γ 1 n,q κ(z n) 2γ r q 1 n,q r q 1, ( rk 1 2 + r k 2 ) 1 2 n 1 γ n,q max, γn,q k=q,...,n 1 r k 1 2 r k 2 (n q+1) 1 r k 1 2 1 2 + r k 2 + r k=q k 1 2 r k 2 Similar estimates for general case (for multiple switches between bases). Moreover, κ(z n) 2 2 ν q 1 1 + ν 1 ν. Quasi-optimal choice ν opt = ( 1 + n 2 1)/n leads to κ(z n) ν=νopt = O(n). 1 2. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 7

FS1836, b = A(1,..., 1) T : Simpler GMRES fails, adaptive wins backward errors ɛκ(basis) ɛκ(a basis) ɛκ(a) 10 0 backward error and condition numbers 10 5 10 10 10 15 5 10 15 20 25 30 35 40 45 50 55 60 iteration number n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 8

FS1836, b = A(1,..., 1) T : Simpler GMRES fails, adaptive wins backward errors ɛκ(basis) ɛκ(a basis) ɛκ(a) 10 0 backward error and condition numbers 10 5 10 10 10 15 5 10 15 20 25 30 35 40 45 50 55 60 iteration number n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 9

FS1836, b = u min : GCR fails, adaptive wins backward errors ɛκ(basis) ɛκ(a basis) ɛκ(a) 10 0 backward error and condition numbers 10 5 10 10 10 15 5 10 15 20 25 30 35 40 45 50 55 60 iteration number n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 10

FS1836, b = u min : GCR fails, adaptive wins backward errors ɛκ(basis) ɛκ(a basis) ɛκ(a) 10 0 backward error and condition numbers 10 5 10 10 10 15 5 10 15 20 25 30 35 40 45 50 55 60 iteration number n Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 11

Dependence of κ(z n ) on ν condition number of the basis Z m 10 18 10 16 10 14 10 12 10 10 10 8 10 6 SHERMAN2 E05R0000 UTM300 CAVITY03 PDE225 10 4 10 2 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 threshold parameter ν Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 12

Conclusions and references Simpler GMRES and ORTHODIR do not break down, but are potentially unstable in the case of the fast convergence. Simpler GMRES with residuals and ORTHOMIN( )/GCR can break down, but already moderate convergence implies good conditioning of the basis. Interpolation between both bases by adaptive selection of the new direction vector can benefit from advantages of both approaches and provides the stable variant of Simpler GMRES or GCR. References: P. Jiránek, R, M. H. Gutknecht, How to make Simpler GMRES and GCR more stable, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1483 1499. P. Jiránek, R, Adaptive version of Simpler GMRES, Numerical Algorithms, 53 (2010), pp. 93-112. Thank you for your attention! Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 13

Conclusions and references Simpler GMRES and ORTHODIR do not break down, but are potentially unstable in the case of the fast convergence. Simpler GMRES with residuals and ORTHOMIN( )/GCR can break down, but already moderate convergence implies good conditioning of the basis. Interpolation between both bases by adaptive selection of the new direction vector can benefit from advantages of both approaches and provides the stable variant of Simpler GMRES or GCR. References: P. Jiránek, R, M. H. Gutknecht, How to make Simpler GMRES and GCR more stable, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1483 1499. P. Jiránek, R, Adaptive version of Simpler GMRES, Numerical Algorithms, 53 (2010), pp. 93-112. Thank you for your attention! Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 13

Conclusions and references Simpler GMRES and ORTHODIR do not break down, but are potentially unstable in the case of the fast convergence. Simpler GMRES with residuals and ORTHOMIN( )/GCR can break down, but already moderate convergence implies good conditioning of the basis. Interpolation between both bases by adaptive selection of the new direction vector can benefit from advantages of both approaches and provides the stable variant of Simpler GMRES or GCR. References: P. Jiránek, R, M. H. Gutknecht, How to make Simpler GMRES and GCR more stable, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1483 1499. P. Jiránek, R, Adaptive version of Simpler GMRES, Numerical Algorithms, 53 (2010), pp. 93-112. Thank you for your attention! Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 13

References I M. Arioli and C. Fassino. Roundoff error analysis of algorithms based on Krylov subspace methods. BIT, 36(2):189 205, 1996. J. Drkošová, A. Greenbaum, M. Rozložník, and Z. Strakoš. Numerical stability of GMRES. BIT, 35(3):309 330, 1995. S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal., 20(2):345 357, 1983. A. Greenbaum, M. Rozložník, and Z. Strakoš. Numerical behaviour of the modified Gram-Schmidt GMRES implementation. BIT, 36(3):706 719, 1997. J. Liesen, M. Rozložník, and Z. Strakoš. Least squares residuals and minimal residual methods. SIAM J. Sci. Stat. Comput., 23(5):1503 1525, 2002. C. C. Paige, M. Rozložník, and Z. Strakoš. Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl., 28(1):264 284, 2006. A. Ramage and A. J. Wathen. Iterative solution techniques for the Stokes and Navier-Stokes equations. Internat. J. Numer. Methods Fluids, 19(1):67 83, 1994. Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7(3):856 869, 1986. P. K. W. Vinsome. Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In Proceedings of the Fourth Symposium on Reservoir Simulation, pages 149 159. Society of Petroleum Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 1976. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 14

References II H. F. Walker and L. Zhou. A simpler GMRES. Numer. Linear Algebra Appl., 1(6):571 581, 1994. D. M. Young and K. C. Jea. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods. Linear Algebra Appl., 34(1):159 194, 1980. Miro Rozložník (Prague) A stable variant of Simpler GMRES and GCR ALA10 15