MOS PTAT Floating reference voltage circuit for PTAT current generation using subthreshold MOS characteristics

Similar documents
Piecewise Curvature-Corrected Bandgap Reference in 90 nm CMOS

A Novel Sub-1 Volt Bandgap Reference with all CMOS

A Low Power Sub-1 V CMOS Voltage Reference Sameer Somvanshi 1, Santhosh Kasavajjala 2

A new curvature-corrected CMOS bandgap voltage reference

PAPER A CMOS Temperature Sensor Circuit

0.9V, 5nW, 9ppm/C Resistorless Sub- Bandgap Voltage Reference in 0.18um CMOS

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

A Precision SiGe Reference Circuit Utilizing Si and SiGe Bandgap Voltage Differences

Modeling of the Substrate Current and Characterization of Traps in MOSFETs under Sub-Bandgap Photonic Excitation

Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation

A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs

CMOS LOGARITHMIC CURVATURE-CORRECTED VOLTAGE REFERENCE BY USING A MULTIPLE DIFFERENTIAL STRUCTURE

A low-voltage band-gap reference circuit with second-order analyses

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

A SUBTHRESHOLD ANALOG MOS CIRCUIT FOR LOTKA VOLTERRA CHAOTIC OSCILLATOR

Simple Theory of the Ballistic Nanotransistor

Analysis of MOS Cross-Coupled LC-Tank Oscillators using Short-Channel Device Equations

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS. Yu-Hsing Cheng ON Semiconductor October 15, 2018

Modeling the Overshooting Effect for CMOS Inverter in Nanometer Technologies

Sub-Boltzmann Transistors with Piezoelectric Gate Barriers

An Analog-digital CMOS circuit for motion detection based on direction-selective neural networks

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

Nanoscale CMOS Design Issues

VTCMOS characteristics and its optimum conditions predicted by a compact analytical model

Digital Integrated Circuits

Lecture 11: MOSFET Modeling

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 1

Modeling and Parameter Extraction Technique for Uni-Directional HV MOS Devices

The Physical Structure (NMOS)

Design for Manufacturability and Power Estimation. Physical issues verification (DSM)

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Evaluation of Non-Quasi-Static Effects during SEU in Deep-Submicron MOS Devices and Circuits

Compact, very low voltage, temperature-independent reference circuit

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Bandgap References and Discrete Time Signals (chapter 8 + 9)

Analog CMOS Circuits Implementing Neural Segmentation Model Based on Symmetric STDP Learning

Nature-inspired Analog Computing on Silicon

Delay Modelling Improvement for Low Voltage Applications

A High-Order Compensated Op-amp-less Bandgap Reference with 39 ppm/ºc over -260~125 ºC Temperature Range and -50 db PSRR

Lecture 400 Discrete-Time Comparators (4/8/02) Page 400-1

Statistical Model of Hot-Carrier Degradation and Lifetime Prediction for P-MOS Transistors

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

University of Toronto. Final Exam

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

Chapter 5 MOSFET Theory for Submicron Technology

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Design of crystal oscillators

A Test Design Method for Floating Gate Defects (FGD) in Analog Integrated Circuits

Integrated Circuits & Systems

Lecture 4: CMOS Transistor Theory

Department of Electronic Engineering, Chienkuo Technology University, No. 1, Chieh Shou N. Rd., Changhua City, 500 Taiwan, R.O.C.

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Integrated Circuits & Systems

Unified MOSFET Compact I V Model Formulation through Physics-Based Effective Transformation

EE105 Fall 2014 Microelectronic Devices and Circuits

Complete Surface-Potential Modeling Approach Implemented in the HiSIM Compact Model Family for Any MOSFET Type

The K-Input Floating-Gate MOS (FGMOS) Transistor

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

ENHANCEMENT OF NANO-RC SWITCHING DELAY DUE TO THE RESISTANCE BLOW-UP IN InGaAs

Subthreshold Logical Effort: A Systematic Framework for Optimal Subthreshold Device Sizing

Estimation and Modeling of the Full Well Capacity in Pinned Photodiode CMOS Image Sensors

Integrated Circuits & Systems

Scaling Impact on Analog Circuit Performance

A Low Power Bandgap Voltage Reference with Nonlinear Voltage Curvature Compensation

EECS130 Integrated Circuit Devices

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

MOS Transistor Theory

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

A simple subthreshold swing model for short channel MOSFETs

ECE 305: Fall MOSFET Energy Bands

ECE 342 Electronic Circuits. 3. MOS Transistors

SILICON-ON-INSULATOR (SOI) technology has been regarded

Behavioural Modelling for Stability of CMOS SRAM Cells Subject to Random Discrete Doping

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Appendix A Butterworth Filtering Transfer Function

NEW VERSION OF LETI-UTSOI2 FEATURING FURTHER IMPROVED PREDICTABILITY, AND A NEW STRESS MODEL FOR FDSOI TECHNOLOGY

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

Stack Sizing for Optimal Current Drivability in Subthreshold Circuits REFERENCES

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

NRAM: High Performance, Highly Reliable Emerging Memory

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

ERROR SOURCE IDENTIFICATION AND STABILITY TEST OF A PRECISION CAPACITANCE MEASUREMENT SYSTEM

MOS Transistors Models

Introduction and Background

Lecture 5: CMOS Transistor Theory

Chapter 4 Field-Effect Transistors

EE 560 MOS TRANSISTOR THEORY

Measurement and Modeling of the n-channel and p-channel MOSFET s Inversion Layer Mobility at Room and Low Temperature Operation

A Leakage Control System for Thermal Stability During Burn-In Test

Predicting Short Circuit Power From Timing Models

Transcription:

MOS PTAT Floating reference voltage circuit for PTAT current generation using subthreshold MOS characteristics Ken Ueno Tetsuya Hirose Tetsuya Asai Yoshihito Amemiya Department of Electrical Engineering, Hokkaido University 1,, MOSFET PTAT,,,,, LSI,, 2 PTAT, MOSFET,, µw LSI PTAT(Proportional To Absolute Temperature), MOSFET PTAT MOSFET,, na,, MOS PTAT LSI [1] LSI [1] MOSFET V GS, MOSFET V T H I D, PTAT (Proportional, 01 V To Absolute Temperature),, I D [2], VGS V T H I D = I 0 exp (1) PTAT,,, I 0, PTAT V T (= k B T/e), k B, T

V, e, η DD, 2 I D1, /I D1, I D1 /, I 0, V T H V out2, V GS1 M1 M2 V GS2 M3 M4 V out1 I D1 = I D1 I ( D2 VGS2 V GS1 exp ) ( exp V GS2 V GS1 ) (2) M D1 I 1 I 2 I 1 I 2 M D2 V GS2 V GS1, 1: I D1 I D1 = 2 V GS2 V GS1 (3) Buck CMOS [4] (3),, 1 I D1 I = D1 2(V I GS2 V GS1 ) D2 31 ηk B = 2e(V GS2 V GS1 ) T (4) 1,, 2 I D1, MOSFET(M D1, M D2 ) V GS1, V GS2 V GS2 V GS1 2 (M1-M2, M3-M4) mv, MOSFET (K = W/L) PTAT, K D1 > K D2, K 1 < K 2, K 3 > K 4 (5) [1], V GS2 V GS1 MOSFET R,, MOSFET [5, 6], 2 V out1,, V out2 V GS2 V GS1 2 MOSFET (M D1, M D2 ) 3 V GS,Di, Ibias V GS,Di = V T H,Di + ln (i = 1, 2) (6) K Di I 0 [3] na MOS, V GS,D (= V GS,D2 V GS,D1 ), MΩ,, KD1 V GS,D = V T H,D21 + ln (7) K D2

, V T H,D21 (= V T H,D2 V T H,D1 ), V GS,D, M1-M2, M1, M2 I 1, I 2, Vs V GS,Di V T Hi 04 I i = K i I 0 exp (i = 1, 2) (8) 036 Temperature, V s, M1-M2 M2 I 2 2: (V out1, V out2 ) M4, M3, M4 V GS,3, V GS,4 105 Ii V GS,i+2 = V T H,i+2 + ln (i = 1, 2) K i+2 I 0 (9), V out1, V out2 V REF (=V out2 V out1 ), V REF = V GS,4 V GS,3 (10) 3: V REF (=V out2 V out1 ) (7), (8), (9), (10) V out1, V out2 (V) V REF (mv) 052 048 044 1025 10 975 V out2 V out1 V REF = V out2 - V out1 95 Temperature V REF = V T H,43 + V T H,12 V T H,D21 K3 K 2 K D2 + ln (11) K 4 K 1 K D1, V T H,43 (= V T H,4 V T H,3 ), V T H,12 (= 32, 035 µm-cmos SPICE, 15 V V T H,1 V T H,2 ), 2 V out1 V out2, (5) 20 C 100 C MOSFET, K 3 K 2 K D2 = K 4 K 1 K D1 (12) 3 V REF (=V out2 V out1 ) 10 mv, (11) ( 4, ), ±27 %, MOSFET(M D1, M D2 ) V REF = V T H,43 + V T H,12 V T H,D21 (13),, MOSFET, [5], 2 V out1, V out2 V REF, PTAT, PTAT,

4 MOSFET I PTAT, I REF1, (a) (b) [7]-[10], Rincon-Mora Allen 4: (, ) [10] PTAT CTAT V DD, I PTAT I REF1 I PTAT M I REF2 curv1 M curv2,, I I I PTAT CTAT curv1 I REF1 REF2 curv2 I R1 PTAT, generator Operating at low temp Operating at high temp 5: 41, I curv, I curv MOSFET(M D2 ), I curv,, V GS,D = V T H,D21 KD1 ( + I curv ) + ln (15) K D2 4(a), I REF 1 < V REF (=V out2 V out1 ) I REF 2, PTAT T 1, T 2 V REF = V T H,43 + V T H,12 V T H,D21 ( ) + ln (16) + I curv Currents PTAT current I REF2 Curvature-correcting currents (= I REF1 -I PTAT ) (= I PTAT -I REF2 ) T 1 T 2 T 1 T 2 Temperature Temperature 42 I curv, I M D2 V GS,D2 curv,,, Ibias + I curv I curv V GS,D2 = V T H,D2 + ln (14) K D2 I 0, I curv, 2 MOSFET(M D1, M D2 ) I curv1 (at low temp) V GS,D, I curv = 0 (at middle temp) (17) (at high temp) 0 I curv, PTAT I P T AT 2 I REF 1, I REF 2, T 1, PTAT I REF 1,, T 2, PTAT I REF 2 4(b),

V DD M curv1 M curv2 I curv I REF1 I REF2 V GS1 V out2 M1 M2 V GS2 M3 M4 V out1 I PTAT I PTAT M D1 I 1 I 2 I 1 I 2 M D2 I REF1 R1 I PTAT Current source Floating voltage reference PTAT current generator Operating at low temp Operating at high temp Curvature-correcting current generator 6: T 1, = I REF 1 I P T AT I P T AT I REF 2, M curv1, T 2 = I P T AT I REF 2 I curv, (17) I curv, I curv I curv, I REF 1 I P T AT (at low temp) 43 I curv = 0 (at middle temp) I P T AT I REF 2 (at high temp) 6, (18) SPICE 100 na, I REF 1 I REF 2 5 PTAT 2, 160 na, 190 na PTAT I P T AT, I REF 1 ( [11] ) I REF 2 7 I curv, PTAT I REF 1, I P T AT <I REF 1, PTAT M curv1, = I REF 2, I REF 1 I P T AT, M curv2 I curv MOSFET(M D2 ), I REF 1 < I P T AT < I REF 2, M curv1, M curv2 8 I curv V REF (=V out2 V out1 ), ±27 %, I REF 2 < I P T AT,,, M curv2, = ±03 %

, (na) 6 5 4 3 2 1 0 Temperature [1] K Ueno, T Hirose, T Asai, Y Amemiya, Ultralow-power smart temperature sensor with subthreshold CMOS circuits, Proc ISPACS, pp 546-549, Dec 2006 [2] Y Taur, TH Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, 2002 [3] PE Allen, DR Holberg, CMOS analog circuit design second edition New York Oxford University Press, 2002 [4] AE Buck, CL McDonald, SH Lewis, TR 7:, Viswanathan, A CMOS bandgap reference without resistors IEEE J Solid-State Circuits, vol37, no1, pp81-83, Jan 2002 V REF (mv) 105 1025 10 975 w/o curvature correction curvature correction 95 Temperature [5] MC Hsu, BJ Sheu, Inverse-geometry dependence of MOS transistor electrical parameters, IEEE Trans Computer-Aided Design, vol CAD- 6, pp582-585, July 1987 [6] YC Cheng, M-C Jeng, ZLiu, JH Huang, M Chen, K Chen, PK Ko, C Hu, A physical and scalable IV model in BSIM3v3 for analog/digitalcircuit simulation, IEEE Trans Electron DeVices, vol 44, No 2, pp277-287, Feb 1997 [7] B-S Song, PR Gray, A precision curvaturecompensated CMOS bandgap reference, IEEE J 8: Solid-State Circuits, vol SC-18, pp 634-643, Dec V REF (=V out2 V out1 ) 1983 [8] GCM Meijer, PC Schmale, KV Zalinge, A new curvature-corrected bandgap reference, IEEE J Solid-State Circuits, vol SC-17, pp 1139-1143, Dec 1982 [9] M Pertijs, K Makinwa, J H Huijsing, A CMOS 46 µw smart temperature sensor with a 3σ inaccuracy of (T =100 C) ±01 C from 55 C to 125 C, IEEE J Solid-State Circuits, vol 40, no 12, pp 2805-2815, Dec 2005 5 [10] GA Rincon-Mora, PE Allen, A 11-V currentmode and piecewise-linear curvature-corrected, PTAT 035 µm-cmos bandgap reference, IEEE J Solid-State Circuits, vol 33, pp 1551-1554, Oct 1998 SPICE 20 C 100 C [11] T Hirose, T Matsuoka, K Taniguchi, T Asai, Y Amemiya, Ultralow-power current reference circuit with low temperature dependence, IEICE, ±27 %, Trans Electron, VolE88-C, no6, pp1142-1147, ±03 % Nov 2004, PTAT,, 46 µw