COMPOSITIO MATHEMATICA

Similar documents
COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

Jacquet modules and induced representations

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

Séminaire Équations aux dérivées partielles École Polytechnique

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

Séminaire de Théorie spectrale et géométrie

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

TWO SIMPLE OBSERVATIONS ON REPRESENTATIONS OF METAPLECTIC GROUPS. In memory of Sibe Mardešić

ANNALES DE L I. H. P., SECTION C

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and Banach spaces

A note on the generic solvability of the Navier-Stokes equations

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANNALES DE L INSTITUT FOURIER

Séminaire d analyse fonctionnelle École Polytechnique

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

Séminaire Équations aux dérivées partielles École Polytechnique

A. I. BADULESCU AND D. RENARD

JACQUET MODULES AND IRRREDUCIBILITY OF INDUCED REPRESENTATIONS FOR CLASSICAL p-adic GROUPS

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

Marko Tadić. Introduction Let F be a p-adic field. The normalized absolute value on F will be denoted by F. Denote by ν : GL(n, F ) R the character

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

COMPOSITIO MATHEMATICA

TWO SIMPLE OBSERVATIONS ON REPRESENTATIONS OF METAPLECTIC GROUPS. Marko Tadić

REVUE FRANÇAISE D INFORMATIQUE ET DE

Séminaire Équations aux dérivées partielles École Polytechnique

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

Groupe de travail d analyse ultramétrique

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION A

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANNALES DE L I. H. P., SECTION B

INFORMATIQUE THÉORIQUE ET APPLICATIONS

COMPOSITIO MATHEMATICA

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES MATHÉMATIQUES BLAISE PASCAL

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

SOME REMARKS ON DEGENERATE PRINCIPAL SERIES. Chris Jantzen

RAIRO INFORMATIQUE THÉORIQUE

COMPOSITIO MATHEMATICA

Séminaire Dubreil. Algèbre et théorie des nombres

RICHARD HAYDON Three Examples in the Theory of Spaces of Continuous Functions

Groupe de travail d analyse ultramétrique

ANNALES DE L I. H. P., SECTION B

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and topological vector spaces

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

INFORMATIQUE THÉORIQUE ET APPLICATIONS

COMPOSITIO MATHEMATICA

Colette Mœglin and Marko Tadić

COMPOSITIO MATHEMATICA

SQUARE INTEGRABLE REPRESENTATIONS OF CLASSICAL p-adic GROUPS CORRESPONDING TO SEGMENTS

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION C

On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION A

ON THE STANDARD MODULES CONJECTURE. V. Heiermann and G. Muić

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L INSTITUT FOURIER

ANNALES DE L I. H. P., SECTION C

RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L I. H. P., SECTION B

Séminaire Brelot-Choquet-Deny. Théorie du potentiel

The center of the convolution algebra C u (G) Rendiconti del Seminario Matematico della Università di Padova, tome 52 (1974), p.

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

UNRAMIFIED UNITARY DUALS FOR SPLIT CLASSICAL p ADIC GROUPS; THE TOPOLOGY AND ISOLATED REPRESENTATIONS

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Cahiers de topologie et géométrie différentielle catégoriques, tome 32, n o 2 (1991), p.

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

REDUCIBLE PRINCIPAL SERIES REPRESENTATIONS, AND LANGLANDS PARAMETERS FOR REAL GROUPS. May 15, 2018 arxiv: v2 [math.

Série Mathématiques. C. RADHAKRISHNA RAO First and second order asymptotic efficiencies of estimators

RAIRO MODÉLISATION MATHÉMATIQUE

arxiv: v1 [math.rt] 11 Sep 2009

Transcription:

COMPOSITIO MATHEMATICA CHRIS JANTZEN Reducibility of certain representations for symplectic and odd-orthogonal groups Compositio Mathematica, tome 104, n o 1 (1996), p. 55-63. <http://www.numdam.org/item?id=cm_1996 104_1_55_0> Foundation Compositio Mathematica, 1996, tous droits réservés. L accès aux archives de la revue «Compositio Mathematica» (http: //http://www.compositio.nl/) implique l accord avec les conditions générales d utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Compositio Mathematica 104: 55-63, 1996. 1996 Kluwer Academic Publishers. Printed in the Netherlands. 55 Reducibility of certain representations for symplectic and odd-orthogonal groups CHRIS JANTZEN Department of Mathematics, University of Chicago, Chicago. IL 60637 Received 3 April 1995; accepted in final form 11 September 1995 Abstract. In this paper, we give a reducibility criterion for certain induced representations of p-adic symplectic and odd-orthogonal groups. Key words: p-adic field, induced representation, symplectic group, odd-orthogonal group. 1. Introduction In this paper, we give a necessary and sufficient condition for reducibility of a certain class of induced representations of p-adic symplectic or odd-orthogonal groups. This class includes representations obtained by inducing a one-dimensional representation from an arbitrary parabolic subgroup, as well as the representations obtained by inducing a Steinberg representation of an arbitrary parabolic twisted by a one-dimensional representation of that parabolic. In the next section, we review some notation and background that will be needed. In the third section, we give the main theorem in the paper (cf. Theorem 3.3). It gives a necessary and sufficient condition for the reducibility of a representation obtained by inducing a square-integrable representation twisted by a one-dimensional representation (for G SO2n+1 (F) = or SP2n(F)). In the fourth section, we determine when these conditions hold if the square-integrable representation is a Steinberg representation. By the involution of Aubert, the representation obtained by inducing the corresponding one-dimensional representation has the same reducibility points. (The results are a little more general than indicated above - e.g., one can replace one-dimensional representation with Zelevinsky segment representation and likewise for Steinbergs.) 2. Notation and preliminaries In this section, we introduce notation and recall some facts that will be needed in the rest of this paper. This largely follows the setup in (Tadié, 1993). Throughout this paper, we work in the setting of admissible representations; so in what follows, representation will always mean admissible representation.

56 Let F be a p-adic field with char F 0. Let 1-1 denote absolute value = on F. Set m = 1 det 1 on GLn (F). Define x on GLn (F) as in (Zelevinsky, 1980): if p1,..., Ok are representations of GLnl (F),..., GL "k (F), let pl X... X Pk denote the representation of GLnl+...+nk (F) obtained by inducing pl @... 0 Pk from the parabolic subgroup ofglnl+" +nk (F) with Levi factor GLnI (F) x " - x GLnk (F). We now tum to symplectic and odd-orthogonal groups. Let denote the n x n antidiagonal matrix above. Then, We use,s n to denote either S02n+ (F) or Sp2n (F). In either case, the Weyl group is W = {permutations and sign changes on n letters}. In Sn, one may take as minimal parabolic subgroup the subgroup consisting of upper triangular matrices in Sn. In general, the Levi factor of a parabolic subgroup of,s n has the form with ml + -.. + mk + m = n (with So the trivial group). If Pl,..., pk are representations of GLml (F),..., GLmk (F) and a a representation of Sm, let denote the representation of,s n obtained by inducing pl @... @ Pk @ a from the parabolic subgroup with Levi factor GLml (F) x... x GLmk (F) x Sm. Note that if " denotes contragredient, Note that for clarity, we use when defining something = or working in the Grothendieck group; EÉ when indicating an actual equivalence of two representations. We now recall Langlands classification for Sn. Suppose ô is an essentially square-integrable representation of GLn (F). Then, there is an E(Ó) e R such that v-c(ls) ô is unitarizable. Let 61,..., Ók be irreducible essentially square-integrable representations of GLm (F),..., GL 1-Ilk (F) satisfying -(61) >, - - -,>, E(Ók) >

57 X T... 0 and T an irreducible tempered representation of S. Then, 61 X âk has a unique irreducible quotient which we denote by L (61,..., dk, -r). Note that L( 81,..., 8k; T) occurs in 61 x " - X 8k T with multiplicity one. At this point, we introduce a little shorthand. Let p be a unitarizable supercuspidal representation of GLr(F). Then, y-k+i/2p x y-k+i/2p x x yk-i/2p... has a unique irreducible subrepresentation which we denote ((p, k) and a unique irreducible quotient which we denote by 8(p, k) (n.b. ô (p, k) is square-integrable). Similarly, suppose that is a supercuspidal representation of Sm and yq p cr reduces for some a > 0 (note that this implies p ^--J p). Then has a unique irreducible subrepresentation which we denote ( (p, R; cr) and a unique irreducible quotient which we denote 8 (p, R; cr) (n.b. ô(p, R; a) is square-integrable). Let p be an irreducible unitarizable supercuspidal representation of GLr (F) and cr an irreducible unitarizable supercuspidal representation of S. For ce > 0, let us say (p, a) satisfies (Ca), if it satisfies Let 1 px denote the trivial representation of F x, sgn an order two character of F x, and 1 the trivial representation of So. Then, for Sp2n (F), (1 F x, 1) satisfies (C 1 ) and (sgn, 1) satisfies (CO). For S02,,+l (F), both (lpx, 1 ) and (sgn,1 ) satisfy (C1/2). We close with the following observation (cf. Sect. 2, (Tadic, 1993)) : a conjecture of Shahidi (Shahidi, 1990) implies that for p, a as above, if va p a cr is reducible for some a e llg, then (p, cr) satisfies one of (CO), (Cl/2), (Cl). This explains why we restrict our attention to those conditions in the rest of this paper. 3. Reducibility criterion In this section, we give the main theorem in this paper (cf. Theorem 3.3); a necessary and sufficient condition for the reducibility of a representation obtained by inducing a square-integrable representation twisted by a one-dimensional representation. This is just a generalization of a result from (Tadié, 1994). LEMMA 3.1 Let bl,..., 8k be irreducible square-integrable representations of GLnI (F),..., GLnk (F) and ô an irreducible square-integrable representation of Sn. Set TT = di X X âk m 6. Then 7r is reducible if and only if at least one of ôi x ô reduces. Proof. First, suppose ôi x ô reduces for some i. In the Grothendieck group, we have

58 so 7r must be reducible. Now, suppose di >i ô is irreducible for all i. By (Silberger, 1978), to show 7r is irreducible, it is enough to show the R-group for ir is trivial. Without loss of generality, write where ôi( ) 1... 83:) are representations of GLki (F) with the ki all distinct. Let Ri dénote the R-group for 8i) x... x 6( ) x 6. If R dénotes the R-group for 7r, Theorems 4.9 and 4.18 in (Goldberg, 1994) tell us In particular, R is trivial if and only if each I@ is trivial. By Theorems 6.4 and 6.5(a) in (Goldberg, 1994), Ri is trivial if and only if 6( ) x 8,..., )4,8):) ô are all irreducible. (More generally, Ri = Zd where d is the number of inequivalent 6( ) having 8)i) x ô reducible.) The lemma follows. ~ LEMMA 3.2 If Pl, - - -, Pk are irreducible essentially square-integrable representations of GLml (F),..., GL "Ik (F) with E ( pi ) )... # s (pk ) > 0 and a- is a tempered representation of Sm, then Proof. See Chapter 6 (p. 147) of (Tadié, 1994). Il THEOREM 3.3 Let dl,..., 6 be irreducible square-integrable representations of GL,,, (F),..., GL,,, (F) and 6 an irreducible square-integrable representation of S.. For QI, al E IR, set 7hen 7r is reducible if and only if (at least) one of the following reduces: Proof. The proof parallels that used in Chapter 7 of (Tadié, 1994). First, consider v I JI 0... 0 v I di 0 5. If some cx2 0, replace vliôi with v-ai 8i. This corresponds to a block of sign changes - a Weyl group action - so the result of inducing this representation is the same as vr in the Grothendieck group (by Lemma 5.4 (Bernstein et. al., 1986)). In particular, it is irreducible if and only if 7r is. Thus we may without loss of generality assume that a2 > 0 for all i. Then,

take a permutation of the v i Ji so that a, > - - - _>, cx, > 0. Again, this corresponds to a Weyl group action, so in the Grothendieck group nothing has changed. Thus, without loss of generality, we assume 59 with ai,>, - - - >, ak > 0. Next, suppose the representations in (1), (2), (3) above are all irreducible. For convenience, let cr 8k+1 = X - - - X â x 6. By Lemma 3. 1, o, is irreducible and tempered. Note that by definition, 7r, L(va181,..., vak 8k; a) is the unique = irreducible quotient of 7r. The irreducibility in (1), (2), (3) gives the equivalences vai ôi x v i âj --- m i ôj x Then we have the following equivalences

60 Now, consider 7r* = val81 X... x Vak 8k x Jk+l X... X Ji )4 J. The representation 7T* has 7rÎ L(vaI81,..., vak8k;&) = as unique irreducible quotient. Taking contragredients, we see that 7r* = V-alll X... x v-ak6k x ôk+j x... ôg x à has unique irreducible subrepresentation 7rÎ. From the equations above, 7rÎ is the unique irreducible subrepresentation of7r. By Lemma 3.2, 7rÎ = Tri. Thus, if7r were reducible, it would contain 7r1 with multiplicity two - once as (unique) subrepresentation, once as (unique) quotient - contradicting multiplicity one in Langlands classification. We now address reducibility. Suppose, e.g., vai b2 x v-aj 8j Then, in the Grothendieck group, were reducible. This clearly reduces. D Remark 3.4. The same argument gives a necessary and sufficient condition for the reducibility of va181 x... X vak âk x T for T any tempered representation of S,,. It reduces if and only if one of vai b2 x v"3 8j, vai (2 4 T, Vai 8i x m- i Ji (i i- j) reduces. (Here, we are assuming al 0 for all i.) 4. Special case In this section, we determine when the conditions in Theorem 3.3 are satisfied for the special case where b2 b ( p2, ki ) and ô 8(p, f; a). We = = use the involution of Aubert to relate reducibility points for P 6(pi, ki) x 6(,p, Ê; o,) to those for LI ( (,pi, ki) >i ( (p, Ê; a), which are known. The reducibility points for U i ô (pi, k2 ) x maj 8 (pj, kj) are also known (n.b., (P J(p, k» - v-a 8 (p, k), so all the conditions in Theorem 3.3 are covered). In combination, these give the reducibility points for the special case mentioned. Aubert s involution implies the representation obtained by substituting 1/ i ( (pi, ki) for m i ô (pi, ki) and ( (p, Ê; o,) for ô (p, Ê; o,) has the same reducibility points (cf. Corollary 4.3). We start by recalling Aubert s involution. If L is the Levi factor of a standard parabolic PL C G, let igl denote induction from PL to G; rlg the functor taking the Jacquet module with respect to PL. THEOREM 4.1 (Aubert). Define the operator DG on the Grothendieck group 7Z (G) by where TI denotes the set of simple roots and for J? c TI, L+ is the Levi of the standard parabolic obtained by adjoining the simple reflections from lf to the minimal parabolic. DG has the following properties:

61 Proof. 1-4 are in Théorème 1.7 of (Aubert, 1995). 5 is in Corollaire 3.9 of (Aubert, 1995). 1:1 COROLLARY 4.2 Under Aubert s involution, up to :1:, and Proof. Suppose (p, u) satisfies (C1). Then ((p, n; a) and d(p, n; a) may be characterized by where M ^-- GLr (F) x... x GLr (F) x Sm. The claim then follows immediately from 3 in the theorem above. The other cases are similar. 1:1 COROLLARY 4.3 Under Aubert s involution, up to ± Proof. This follows immediately from Theorem 4.1 and Corollary 4.2. 0 Recall the segment notation of Zelevinsky THEOREM 4.4 Let pi, p2 be irreducible unitarizable supercuspidal representationsofglml(f), GLm2(F) and0152i,01522 E nt Thenval((PI,ml) x Va2((P2,m2) is reducible if and only if pi ^-- p2 and [val+(-ml+i)/2pi, val+(ml-i)/2pi] U[va2+( -m2+1)/2 Pl, va2+(m2-1)/2 Pl] is also a segment and is strictly larger than both [val +( -ml +1)/2 Pl, Val +(ml-i)/2 Pl] and [va2+( -m2+1)/2 Pl, va2+(m2-1)/2 Pl]

62 THEOREM 4.5 Let po, p be irreducible unitarizable supercuspidal representations ofglro(f), GLr (F), resp.; let a an irreducible unitarizable supercuspidal representation of Sm. (1) Suppose (p, a) satisfies (C1/2). Then v ( (po, k) x ( (p, Ê; o,), following reducibility points: (a) if po p, then VO;( (p, k) >4 ( (p, l; a) reduces if and only if a E R has the (b) ifpo Ô p, then v" Ç ( po, k) x ( (p, f; a) reduces if and only if va: ( (po, k) x a reduces (cf. Proposition 4.6 below). (2) Suppose (p,a) satisfies (C1). Then v"ç(po, k) x ((p,f;a), a E R has the following reducibility points: (a) if po EÉ p, then 1,, ( (p, k) x ( (p, f; a) reduces if and only if (b) ifpo Ô p, then v"ç (po, k) x ((p, f; a) reduces if and only ifv"ç (po, k) x a reduces (cf. Proposition 4.6 below). Proof. See Theorems 4.1 and 4.3 in (Jantzen, 1995). 1:1 PROPOSITION 4.6 Suppose po is an irreducible unitarizable supercuspidal representation ofglro (F) and u an irreducible unitarizable supercuspidal representation of Sm. Then va((po, k) x a has the following reducibility points: (1) if (po, a) satisfies (CO), v" Ç ( po, k) x a is reducible if and only if (2) if (po, u) satisfies (Cl/2), va( (po, k) x a is reducible if and only if

63 (3) if (po, a) satisfies (Cl), v" Ç ( po, k) x a is reducible if and only if (4) if po e po, v"ç (po, k) x a is irreducible for all a E R Proof. See Theorem 7.2 of (Tadié, 1993). ~ Acknowledgement 1 would like to close the introduction by thanking Marko Tadié, who suggested this project. 1 would also like to thank the referee. References Aubert, A.-M.: Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d un groupe reductif p-adique, Trans. Amer. Math. Soc. 347 (1995) 2179-2189. Bernstein, J. Deligne, P. and Kazhdan, D.: Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math. 47 (1986) 180-192. Goldberg, D.: Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math. 116 (1994) 1101-1151. Jantzen, C.: Degenerate principal series for symplectic and odd-orthogonal groups, to appear, Mem. Amer. Math. Soc.. Silberger, A.: The Knapp-Stein dimension theorem for p-adic groups, Proc. Amer. Math. Soc. 68 (1978) 243-246; Correction, Proc. Amer. Math. Soc. 76 (1979) 169-170. Shahidi, F.: A proof of Langlands conjecture on Plancherel measure; complementary series for p-adic groups Ann. of Math. 132 (1990) 273-330. Tadié, M.: Representations of p-adic symplectic groups, Comp. Math. 90 (1994) 123-181. Tadié, M.: On reducibility of parabolic induction, preprinted in Math. Gottingesis 19 (1993). Zelevinsky, A.: Induced representations of reductive p-adic groups II, On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. 13 (1980) 165-210.