Condensation of pairs of fermionic lithium atoms

Similar documents
Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Reference for most of this talk:

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Cold fermions, Feshbach resonance, and molecular condensates (II)

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

High-Temperature Superfluidity

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Cooling and Trapping Neutral Atoms

A study of the BEC-BCS crossover region with Lithium 6

Lecture 4. Feshbach resonances Ultracold molecules

Introduction to cold atoms and Bose-Einstein condensation (II)

Lecture 3. Bose-Einstein condensation Ultracold molecules

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

NanoKelvin Quantum Engineering

Superfluidity in interacting Fermi gases

From laser cooling to BEC First experiments of superfluid hydrodynamics

Confining ultracold atoms on a ring in reduced dimensions

Ultracold Fermi Gases with unbalanced spin populations

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

A Mixture of Bose and Fermi Superfluids. C. Salomon

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

A Mixture of Bose and Fermi Superfluids. C. Salomon

Evidence for Efimov Quantum states

Seoul National University Research Assistant Research topic: Atom optics, Hollow-core optical fiber Advisor: Prof.

BEC and superfluidity in ultracold Fermi gases

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Experiments with an Ultracold Three-Component Fermi Gas

Fermi Condensates ULTRACOLD QUANTUM GASES

(Noise) correlations in optical lattices

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Production of BECs. JILA June 1995 (Rubidium)

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Ultracold molecules - a new frontier for quantum & chemical physics

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

K. Campbell, Gretchen, E. Leanhardt, Aaron, Mun, Jongchul, Boyd, Micah, W. Streed, Erik, Ketterle, Wolfgang, Pritchard, David E.

Path-integrals and the BEC/BCS crossover in dilute atomic gases

Ytterbium quantum gases in Florence

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Quantum Properties of Two-dimensional Helium Systems

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Fluctuations between the BCS and BEC Limits in the System of Ultracold Alkali Atoms

hal , version 1-9 Jan 2007

1. Cold Collision Basics

Ultracold atoms and molecules

Design and realization of exotic quantum phases in atomic gases

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Pairing of a trapped Fermi gas with unequal spin populations

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

F. Chevy Seattle May 2011

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

BEC-BCS crossover, phase transitions and phase separation in polarized resonantly-paired superfluids

Condensate fraction for a polarized three-dimensional Fermi gas

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Fluids with dipolar coupling

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Contents Ultracold Fermi Gases: Properties and Techniques Index

COPYRIGHTED MATERIAL. Index

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Fermi gases in an optical lattice. Michael Köhl

arxiv:cond-mat/ v1 17 Apr 2000

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

Lecture 3 : ultracold Fermi Gases

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

Fundamentals and New Frontiers of Bose Einstein Condensation

What are we going to talk about: BEC and Nonlinear Atom Optics

Superfluidity of a 2D Bose gas (arxiv: v1)

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Raman Amplification of Matter Waves

BEC AND MATTER WAVES an overview Allan Griffin, University of Toronto

Many-Body Physics with Quantum Gases

PHYS598 AQG Introduction to the course

Bose-Einstein Condensate: A New state of matter

Bose-Bose mixtures in confined dimensions

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Publication List (including Talks)

Learning about order from noise

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Transcription:

Condensation of pairs of fermionic lithium atoms Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 5/10/04 KITP workshop, Santa Barbara BEC I Ultracold fermions Claudiu Stan Martin Zwierlein Christian Schunck Jamie Kerman Sebastian Raupach $$ NSF ONR ARO NASA DARPA BEC II Na 2 molecules Condensed matter physics with BECs Jamil Abo-Shaeer Kaiwen Xu Jit Kee Jin Daniel Miller Takashi Mukaiyama BEC III Atom chips, surface atom optics Yong-Il Shin Tom Pasquini Michele Saba Andre Shirotzek Christian Sanner D.E. Pritchard Optical lattices Superradiance N 0 (Rb) > 50 million BEC IV Atom optics and lower dimensions Micah Boyd Erik Streed Gretchen Campbell Jongchul Mun Dominik Schneble Aaron Leanhardt D.E. Pritchard Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 1

Quantum Reflection of Ultracold Atoms T.A. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D.E. Pritchard, W.K. Quantum Reflection U T x I R Quantum mechanical turning point without classical analogue. Reflection coefficient determined by matching condition. I R Long range, attractive Casimir- Polder potential. U = C 4 / r Reflection occurs far from surface at effective step. 4 R 1 2β k 4 Mody et. al., PRB 2001; Friedrich et. al. PRA 2002 Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 2

Reflection of cold atoms from surfaces Extremely weak interactions Normal incidence: Hydrogen on helium 1 K (Walraven 1986; Greytak/Kleppner 1991) Grazing incidence: Helium on helium (Masuhara 1983) All other atoms Normal incidence 10 nk Grazing incidence Cesium (Hinds 1986), Ne* (Shimizu 2001) Gravito-magnetic Trap Ultra-dilute condensates Easily adjustable trap position Long, slow dipole oscillation Very long lifetime Trap Parameters: N = 10 4-10 5 n=10 11 cm -3 HO = 1 10Hz LIFE ~ 1 min T C = 1 nk v TH = 1 mm/s v S = 1 mm/s Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 3

1.05 nk 780 pk 450 pk A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, and W. Ketterle, Science 301, 1513 (2003). Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 4

Interrupted Dipole Oscillations Interrupted Dipole Oscillations Time of Flight Position (µm) 150 100 50 0 0 50 100 150 200 Hold Time (ms) 250 300 Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 5

Reflection Probability = 3 Hz Good agreement with theory above 2 mm/s. Theoretical curve determined by numerical solution with van der Waals/Casimir potential Surface Reflection Trap U x A /2 A /2 Half magnetic and half surface confinement Trap center inside surface Load trap at zero velocity by using an intermediate trap Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 6

Surface Reflection Trap o = 3 Hz = 9 Hz T/2 Lifetime imply R > 50 % Outlook Enhance reflection coefficient Membrane surfaces or spongy materials New atomic mirrors and atom optics Confinement in surface trap Condensates in a cup Study density dependent effects Collective behavior Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 7

Pairs of bosonic atoms Quantum degenerate Na 2 molecules Takashi Mukaiyama, Kaiwen Xu, Jamil Abo-Shaeer, Jit Kee Chin, Daniel Miller, W.K. Phys. Rev. Lett. 91, 210402 (2003) Phys. Rev. Lett., in print; cond-mat/0311558. The new cold frontier: molecules E atoms Two atoms Molecule Magnetic field Feshbach resonance molecules Bosons: Boulder, Garching, Innsbruck, MIT Fermions: Boulder, Rice, Paris, Innsbruck, MIT Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 8

Blast away the atoms atoms Colder molecules! molecules Molecules with phasespace density of 20! 2.6 is critical phasespace density for BEC Conversion of gas of coherent atoms into a gas of coherent molecules Lifetime: 100 µs to 10 ms Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 9

Frequency doubling of coherent matter waves a + 2m a m a m 2 ω = E = mc Bragg spectroscopy J. Stenger, S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, D.E. Pritchard, W.K., PRL 82, 4569 (1999) Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 10

Bragg resonance transition p i p f = p i +q change of optical energy = change of kinetic energy ω 2 - ω 1 = (q 2 /2m) + q p i /m recoil energy Doppler shift q v Coherence length (Doppler broadening) -1 Doppler broadening momentum distribution of the condensate Bragg Spectrum Molecule optics! 0.20 T = m 2k B 2 ω k 50 nk Outcoupled Fraction 0.15 0.10 unburned atoms 0.05 0.00 outcoupled molecules remaining molecules 0 5 10 15 20 Relative Detuning (KHz) 25 30 Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 11

Width of Bragg spectrum (coherence length) -1 De Broglie Wavelength: 1.1 um Interparticle spacing: 0.86 um Phase space density: ~ 5 Possibly other contributions to the width: random motion excitations E Molecule Magnetic field Two atoms Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 12

τ p δe Wigner threshold law Quantum degeneracy in fermions Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 13

Evaporative cooling of fermions No s-wave collisions in single-component fermionic cloud use mixtures Fermion-Fermion Two hyperfine states of 40 K (Boulder, 1999) Two HFS of 6 Li (Duke, 2001; Innsbruck 2003) Fermion-Boson 6 Li- 7 Li (Rice, 2001; Paris, 2001) 6 Li- 23 Na (MIT, 2001) 40 K- 87 Rb (Florence, 2002; Boulder, 2002; Zürich, 2004) Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 14

Use sodium as a refrigerator and put Our in approach: some fermions Oven (Laser cooling) Zeeman slower MOT (Evaporative cooling) Magnetic trap Na BEC Add Li atoms Two species oven Add Li light Diode laser system (Sympathetic cooling) Li Fermi sea Quantum degenerate fermion-boson mixture: 6 Li-Na Dual-species oven Dual species MOT Hot Cold Lithium Sodium Colder Coldest Lithium Fermi sea Sodium Bose-Einstein condensate Z. Hadzibabic, C. Stan, S. Gupta, K. Dieckmann, M. Zwierlein, A. Görlitz, W. Ketterle, PRL 88, 160401(2002). Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 15

Sodium - Lithium Mixture Na F = 2 condensate as refrigerator cool Li F = 3/2 (state 6 ) in a magnetic trap - 20s forced evaporation 10 7 atoms in BEC (w/o Li) 50 10 6 Li atoms at 2.4 mm R F 2.4 mm 50 ms time of flight 12 ms time of flight = 2 (72,72,18) Hz = 2 (142,142,36) Hz Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M.W. Zwierlein, K. Dieckmann, W. K., Phys. Rev. Lett. 91, 160401 (2003) Preparation of an interacting Fermi system in 6 Li Setup: Optical trapping: 9 W @ 1064 nm = 2 (16,16, 0.19) khz E trap = 800 µk States 1> and 2> correspond to > and > Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 16

Energy Atoms Molecules Magnetic field Atoms form stable molecules Atoms repel each other a>0 Molecules are unstable Atoms attract each other a<0 Interacting Fermions Spin-mixture of Spin and Without interaction: a = 0 Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 17

Interacting Fermions Spin-mixture of Spin and With attractive interaction: a < 0 BCS-Transition Condensation of long-range Cooper pairs We want a large and negative scattering length T c /T F is predicted to be as high as 0.2 Many theorists: Eagles, Nozières, Schmitt-Rink, Holland, Zwerger, Timmermans, Levin, Strinati, Combescot, Griffin, Stoof, Randeira Interacting Fermions Spin-mixture of Spin and With repulsive interaction: a > 0 BEC-Transition Condensation of tightly bound Fermion pairs A bound state appears! per atom Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 18

Molecular BEC BCS superfluid The BEC-BCS Crossover Energy Atoms Molecules Magnetic field BEC of Molecules: Condensation of tightly bound fermion pairs BCS-limit: Condensation of long-range Cooper pairs Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 19

BCS Binding energy of pairs Fermi energy Transition termperature Fermi temperatue 10-5 10-4 normal superconductors 10-3 superfluid 3 He 10-2 high T c superconductors BEC Binding energy of bosons k B BEC transition temperature 10 5 superflluid 4 He 10 10 alkali BEC Binding energy of composite boson k B degeneracy temperature 10-5 10-4 normal superconductors 10-3 superfluid 3 He 10-2 high T c superconductors 1 BEC-BCS crossover 10 5 superflluid 4 He 10 10 alkali BEC Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 20

Direct evaporation of 6 Li molecules Long lifetime of Lithium molecules! (ENS, Rice) Directly evaporate at large and positive a Form molecules by three-body recombination when kt E B a > 0 Direct evaporation of 6 Li molecules Long lifetime of Lithium molecules! (ENS, Rice) Directly evaporate at large and positive a Form molecules by three-body recombination when kt E B a > 0 Cool further BEC of molecules! Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 21

BEC of Molecules Up to 3 million condensed molecules Boulder Nov 03 Innsbruck Nov 03, Jan 04 MIT Nov 03 Paris March 04 M.W. Zwierlein, C. A. Stan, C. H. Schunck, S.M. F. Raupach, S. Gupta, Z. Hadzibabic, W.K., Phys. Rev. Lett. 91, 250401 (2003) Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 22

V=38 Vibrational relaxation V=37 Lifetime of the Molecular BEC Molecules in v=38! Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 23

Crossover from a Degenerate Fermi Gas to a BEC of molecules Recent results of the last few months: Innsbruck Boulder MIT Paris Duke Crossover from a BEC to a Degenerate Fermi Gas and back 1 s ramp 1 s ramp Magnetic Field 770 G 920 G 770 G 900 G time Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 24

Energy Atoms Molecules Magnetic field Atoms form stable molecules Atoms repel each other a>0 Molecules are unstable Atoms attract each other a<0 E Unstable molecule Two atoms Stable molecule Magnetic field Momentum distribution of stable molecules at B<B 0 reflects distribution of center-of-mass momentum of atom pairs or quasi-molecules at B>B 0 Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 25

Starting field: 900 G Observation of Condensates! Initial T / T temperature: F = 0.2 T / T F = 0.1 T / T F = 0.05 Also : C. A. Regal et al., Phys. Rev. Lett. 92, 040403 (2004) M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W.K. Phys. Rev. Lett. 92, 120403 (2004). How to detect Condensates of Pairs of Fermions? Stable molecule Quasi-molecules Long-range pair Idea: Quickly ramp over resonance to rapidly transfer fermionic atom pairs into stable molecules B 0 Magnetic Field Limitation: probably works only for next neighbors Can only detect molecular pairs, not long-range Cooper pairs Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 26

Condensate Fraction vs. hold time k F a > 1 from 720 G on 5 ms 100 ms 10 s hold Phase diagram for pair condensation k F a > 1 Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 27

Molecular BEC BCS superfluid BEC Crossover superfluid BCS supe Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 28

Molecular BEC Crossover superfluid How to detect Condensates of Pairs of Fermions? Stable molecule Quasi-molecules Long-range pair Idea: Quickly ramp over resonance to rapidly transfer fermionic atom pairs into stable molecules B 0 Magnetic Field Limitation: probably works only for next neighbors Can only detect molecular pairs, not long-range Cooper pairs Is the ramp fast enough to neglect collisions or other dynamics? Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 29

Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 30

Today s data Molecular Condensate Fraction after Rapid Transfer 0.5 0.4 0.3 0.2 0 2 4 Time [ms] 6 8 960 940 920 Magnetic Field [G] 900 880 860 840 0 2 4 Time [ms] 6 8 570 µs Condensate Fraction after Rapid Transfer Magnetic Field [G] Molecular Condensate Fraction after Rapid Transfer 0.5 0.4 0.3 0.2 840 860 880 900 920 940 960 Magnetic Field [G] 0 2 4 Time [ms] 6 8 Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 31

What s going on? Tentative interpretation: High condensate fraction implies pre-existing molecules above the two-body resonance position stabilized by the Fermi sea Simple model, neglecting interactions What s going on? Tentative interpretation: High condensate fraction implies pre-existing molecules above the two-body resonance position stabilized by the Fermi sea Simple model, neglecting interactions Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 32

What s going on? Tentative interpretation: High condensate fraction implies pre-existing molecules above the two-body resonance position stabilized by the Fermi sea Cooper pairs become delocalized only when E Mol 2 E F or equivalently k F a 1 Simple model, neglecting interactions Also: H. T. C. Stoof, preprint cond-mat/0402xxx BEC BCS B field Feshbach resonance All experimental results are consistent with the existence of a molecular condensate above the Feshbach resonance Molecules above the Feshbach resonance and tightly bound Cooper pairs are probably the same Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 33

Heteronuclear fermionic molecules Li Na Feshbach scan Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 34

All new resonances (except at 510 G) are d wave (E. Tiesinga) New lithium Feshbach resonances p wave in state 1> Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 35

New lithium Feshbach resonances p wave in state 2> Broad Li Feshbach resonance at 821 G (previously 822 +/- 3 G) Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 36

Li Na Feshbach resonances Li Na Feshbach resonances at 746, 760, 795 G Stable LiNa molecules? Should be stable after blasting Li and Na away and outside the Feshbach resonance, when fermionic nature suppresses collisions Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 37

The Lithium Team Claudiu A. Stan, Sebastian M.F. Raupach, W.K., Christian H. Schunck, Martin W. Zwierlein, Andrew J. Kerman Not shown: Subhadeep Gupta, Zoran Hadzibabic Wolfgang Ketterle, MIT (KITP Quantum Gases Conference 5/10/04) 38