Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Similar documents
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62

TrenchStop Series. P t o t 270 W

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IKW40N120T2 TrenchStop 2 nd Generation Series

IGW25T120. TrenchStop Series

TrenchStop Series I C

IGW15T120. TrenchStop Series

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Soft Switching Series

SKP10N60 SKB10N60, SKW10N60

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

Soft Switching Series I C I F I FSM

SGP30N60HS SGW30N60HS

IGP03N120H2 IGW03N120H2

TRENCHSTOP Series. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology. Maximum Ratings Parameter Symbol Value Unit.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

I C P tot 138 W

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

IGD06N60T q. IGBT in TRENCHSTOP and Fieldstop technology. TRENCHSTOP Series. IFAG IPC TD VLS 1 Rev. 2.2,

IDP30E120. Fast Switching Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C

SGP30N60, SGB30N60, SGW30N60

SGP20N60, SGB20N60, SGW20N60

IDP45E60. Fast Switching Diode. Product Summary V RRM 600 V I F 45 A V F 1.5 V T jmax 175 C. Features 600V Emitter Controlled technology

Product Summary V RRM 600 V I F 23 A V F 1.5 V T jmax 175 C 600V diode technology

BSS123. Rev K/W. R thja

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

SPP08P06P H. SIPMOS Power-Transistor V DS -60 V I D T C = 25 C T C = 100 C. I D puls E AS I D = -8.8 A, V DD = -25 V, R GS = 25 W

Product Summary Drain source voltage. Lead free Yes I D. I D puls -320 E AS. P tot 340 W

CoolMOS Power Transistor

CoolMOS TM Power Transistor

CoolMOS Power Transistor

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

OptiMOS 2 Power-Transistor

TRENCHSTOP TM RC-Series for hard switching applications. IGBT chip with monolithically integrated diode in packages offering space saving advantage

SIPMOS Small-Signal-Transistor

CoolMOS TM Power Transistor

OptiMOS TM Power-Transistor

OptiMOS 2 Power-Transistor

CoolMOS Power Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS TM Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor

CoolMOS Power Transistor

CoolMOS TM Power Transistor

OptiMOS TM Power-MOSFET

OptiMOS 2 Small-Signal-Transistor

Silicon Carbide Schottky Diode IDM05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

OptiMOS TM Power-MOSFET

CoolMOS Power Transistor

OptiMOS -5 Power-Transistor

2 nd Generation thinq! TM SiC Schottky Diode

2 nd Generation thinq! TM SiC Schottky Diode

CoolMOS TM Power Transistor

OptiMOS P2 Small-Signal-Transistor

CoolMOS TM Power Transistor

OptiMOS TM Power-Transistor

OptiMOS (TM) 3 Power-Transistor

Product Summary Drain source voltage. Maximum Ratings,at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

OptiMOS 2 Power-Transistor

Product Summary Drain source voltage V DS -60 V Drain-source on-state resistance R DS(on) 8 W Continuous drain current I D A

SIPMOS Small-Signal-Transistor

CoolMOS TM Power Transistor

OptiMOS -5 Power-Transistor

OptiMOS TM Power-MOSFET

OptiMOS Small-Signal-Transistor

OptiMOS 2 Small-Signal-Transistor

BSS 223PW. ESD Class; JESD22-A114-HBM Class 0. Product Summary V DS -20 V R DS(on) 1.2 Ω I D A. Qualified according to AEC Q101

OptiMOS TM P3 Power-Transistor

OptiMOS -5 Power-Transistor

OptiMOS TM 3 Power-Transistor

BSS670S2L. OptiMOS Buck converter series. Avalanche rated 1) Qualified according to AEC Q101 Halogen-free according to IEC

SIPMOS Small-Signal-Transistor

OptiMOS (TM) 3 Power-Transistor

Dual N-Channel OptiMOS MOSFET

OptiMOS 2 Power-Transistor

CoolMOS Power Transistor

SIPMOS Small-Signal-Transistor

OptiMOS TM 3 Power-Transistor

OptiMOS -T Power-Transistor

OptiMOS TM Power-MOSFET

CoolMOS TM Power Transistor

OptiMOS 2 + OptiMOS -P 2 Small Signal Transistor

OptiMOS -5 Power-Transistor

OptiMOS TM -T2 Power-Transistor

OptiMOS 3 Power-MOSFET

OptiMOS Small-Signal-Transistor

Transcription:

Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 s Designed for: Motor controls Inverter NPTTechnology for 600V applications offers: very tight parameter distribution high ruggedness, temperature stable behaviour parallel switching capability Very soft, fast recovery antiparallel Emitter Controlled Diode Pbfree lead plating; RoHS compliant Qualified according to JEDEC 1 for target applications Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ G PGTO2473 C E Type V CE I C V CE(sat) T j Marking Package 600V 3 2.5V 150 C K30N60 PGTO2473 Maximum Ratings Parameter Symbol Value Unit Collectoremitter voltage V C E 600 V DC collector current I C A T C = 25 C T C = 100 C 41 30 Pulsed collector current, t p limited by T jmax I C p ul s 112 Turn off safe operating area 112 V CE 600V, T j 150 C Diode forward current T C = 25 C T C = 100 C 41 30 Diode pulsed current, t p limited by T jmax p ul s 112 Gateemitter voltage V G E 20 V Short circuit withstand time 2 t S C 10 s V GE = 15V, V CC 600V, T j 150 C Power dissipation P t o t 250 W T C = 25 C Soldering temperature T s 260 C wavesoldering, 1.6 mm (0.063 in.) from case for 10s Operating junction and storage temperature T j, T s t g 55...+150 C 1 JSTD020 and JESD022 2 Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Rev. 2_3 12.06.2013

Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic IGBT thermal resistance, junction case Diode thermal resistance, junction case Thermal resistance, junction ambient R t h J C 0.5 K/W R t h J C D 1 R t h J A 40 Electrical Characteristic, at T j = 25 C, unless otherwise specified Parameter Symbol Conditions Static Characteristic Value min. Typ. max. Collectoremitter breakdown voltage V ( B R ) C E S V G E =0V, I C =500 A 600 V Collectoremitter saturation voltage V C E ( s a t ) V G E = 15V, I C =3 T j =25 C T j =150 C Diode forward voltage V F V G E =0V, =3 T j =25 C T j =150 C Gateemitter threshold voltage V G E ( t h) I C =700 A,V C E =V G E 3 4 5 Zero gate voltage collector current I C E S V C E =600V,V G E =0V T j =25 C T j =150 C Gateemitter leakage current I G E S V C E =0V,V G E =20V 100 na Transconductance g f s V C E =20V, I C =3 20 S Dynamic Characteristic Input capacitance C i s s V C E =25V, Output capacitance C o s s V G E =0V, 150 180 Reverse transfer capacitance C r s s f=1mhz 92 110 Gate charge Q G a t e V C C =480V, I C =3 Internal emitter inductance measured 5mm (0.197 in.) from case V G E =15V Short circuit collector current 1) I C ( S C ) V G E =15V,t S C 10 s V C C 600V, T j 150 C 1.7 1.2 2.1 2.5 1.4 1.25 2.4 3.0 1.8 1.65 40 3000 Unit A 1600 1920 pf 140 182 nc L E 13 nh 300 A 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Rev. 2_3 12.06.2013

Switching Characteristic, Inductive Load, at T j =25 C Parameter Symbol Conditions IGBT Characteristic Value min. typ. max. Turnon delay time t d ( o n ) T j =25 C, 44 53 ns Rise time t r V C C =400V,I C =3, V G E =0/15V, 34 40 Turnoff delay time t d ( o f f ) R G =11, 291 349 1 ) Fall time t f L =180nH, 58 70 1 ) C =900pF Turnon energy E o n 0.64 0.77 mj Energy losses include Turnoff energy E o f f tail and diode 0.65 0.85 Total switching energy E t s reverse recovery. 1.29 1.62 AntiParallel Diode Characteristic Diode reverse recovery time t r r t S t F T j =25 C, V R =200V, =3, di F /dt=20/ s Diode reverse recovery charge Q r r 610 nc Diode peak reverse recovery current I r r m 5.5 A Diode peak rate of fall of reverse di r r /dt 180 A/ s recovery current during t b 400 32 368 Unit ns Switching Characteristic, Inductive Load, at T j =150 C Parameter Symbol Conditions IGBT Characteristic Value min. typ. max. Turnon delay time t d ( o n ) T j =150 C 44 53 ns Rise time t r V C C =400V,I C =3, V G E =0/15V, 34 40 Turnoff delay time t d ( o f f ) R G = 11, 324 389 1 ) Fall time t f L =180nH, 67 80 1 ) C =900pF Turnon energy E o n 0.98 1.18 mj Energy losses include Turnoff energy E o f f tail and diode 0.92 1.19 Total switching energy E t s reverse recovery. 1.90 2.38 AntiParallel Diode Characteristic Diode reverse recovery time t r r t S t F T j =150 C V R =200V, =3, di F /dt=20/ s Diode reverse recovery charge Q r r 1740 nc Diode peak reverse recovery current I r r m 9.0 A Diode peak rate of fall of reverse di r r /dt 200 A/ s recovery current during t b 520 56 464 Unit ns 1) Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E. 3 Rev. 2_3 12.06.2013

16 14 I c 10 t p =4 s 1 15 s IC, COLLECTOR CURRENT 10 8 6 4 T C =80 C T C =110 C IC, COLLECTOR CURRENT 1 1A 50 s 200 s 1ms I c DC 10Hz 100Hz 1kHz 10kHz 100kHz 0.1A 1V 10V 100V 1000V f, SWITCHING FREQUENCY V CE, COLLECTOREMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency (T j 150 C, D = 0.5, V CE = 400V, V GE = 0/+15V, R G = 11 ) Figure 2. Safe operating area (D = 0, T C = 25 C, T j 150 C) 300W 6 250W 5 Limited by bond wire Ptot, POWER DISSIPATION 200W 150W 100W IC, COLLECTOR CURRENT 4 3 50W 1 0W 25 C 50 C 75 C 100 C 125 C T C, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (T j 150 C) 25 C 50 C 75 C 100 C 125 C T C, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (V GE 15V, T j 150 C) 4 Rev. 2_3 12.06.2013

9 9 8 8 7 7 IC, COLLECTOR CURRENT 6 5 4 3 V GE =20V 15V 13V 11V 9V 7V 5V IC, COLLECTOR CURRENT 6 5 4 3 V GE =20V 15V 13V 11V 9V 7V 5V 1 1 0V 1V 2V 3V 4V 5V V CE, COLLECTOREMITTER VOLTAGE Figure 5. Typical output characteristics (T j = 25 C) 0V 1V 2V 3V 4V 5V V CE, COLLECTOREMITTER VOLTAGE Figure 6. Typical output characteristics (T j = 150 C) IC, COLLECTOR CURRENT 10 9 8 7 6 5 4 3 1 T j =+25 C 55 C +150 C 0V 2V 4V 6V 8V 10V VCE(sat), COLLECTOREMITTER SATURATION VOLTAGE 4.0V 3.5V 3.0V 2.5V 2.0V 1.5V 1.0V I C = 6 I C = 3 50 C 0 C 50 C 100 C 150 C V GE, GATEEMITTER VOLTAGE Figure 7. Typical transfer characteristics (V CE = 10V) T j, JUNCTION TEMPERATURE Figure 8. Typical collectoremitter saturation voltage as a function of junction temperature (V GE = 15V) 5 Rev. 2_3 12.06.2013

1000ns 1000ns t d(off) t d(off) t, SWITCHING TIMES 100ns t f t d(on) t, SWITCHING TIMES 100ns t f t d(on) t r t r 10ns 1 3 4 5 6 10ns 0 10 20 30 40 I C, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, R G = 11, R G, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, I C = 3, 1000ns 5.5V t, SWITCHING TIMES 100ns t d(off) t f t r t d(on) 10ns 0 C 50 C 100 C 150 C VGE(th), GATEEMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V max. typ. min. 50 C 0 C 50 C 100 C 150 C T j, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V, I C = 3, R G = 11, T j, JUNCTION TEMPERATURE Figure 12. Gateemitter threshold voltage as a function of junction temperature (I C = 0.7mA) 6 Rev. 2_3 12.06.2013

5.0mJ 4.5mJ *) E on and E ts include losses due to diode recovery. E ts * 4.0mJ 3.5mJ *) E on and E ts include losses due to diode recovery. E, SWITCHING ENERGY LOSSES 4.0mJ 3.5mJ 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ E on * E off E, SWITCHING ENERGY LOSSES 3.0mJ 2.5mJ 2.0mJ 1.5mJ 1.0mJ E ts * E off E on * 0.5mJ 0.5mJ 0.0mJ 1 3 4 5 6 7 0.0mJ 0 10 20 30 40 I C, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, R G = 11, R G, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, I C = 3, 3.0mJ 10 0 K/W E, SWITCHING ENERGY LOSSES 2.5mJ 2.0mJ 1.5mJ 1.0mJ 0.5mJ *) E on and E ts include losses due to diode recovery. E ts * E on * E off ZthJC, TRANSIENT THERMAL IMPEDANCE 10 1 K/W 10 2 K/W 10 3 K/W D=0.5 0.2 0.1 0.05 0.02 0.01 single pulse R, ( 1 / W ), ( s ) 0.3681 0.0555 0.0938 1.26*10 3 0.0380 1.49*10 4 R 1 R 2 C 1 = 1 / R 1 C 2 = 2 / R 2 0.0mJ 0 C 50 C 100 C 150 C 10 4 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s T j, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V, I C = 3, R G = 11, t p, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = t p / T) 7 Rev. 2_3 12.06.2013

25V 20V 120V 1nF C iss VGE, GATEEMITTER VOLTAGE 15V 10V 5V 480V C, CAPACITANCE 100pF C oss C rss 0V 0nC 50nC 100nC 150nC 200nC Q GE, GATE CHARGE Figure 17. Typical gate charge (I C = 3) 10pF 0V 10V 20V 30V V CE, COLLECTOREMITTER VOLTAGE Figure 18. Typical capacitance as a function of collectoremitter voltage (V GE = 0V, f = 1MHz) 25 s 50 tsc, SHORT CIRCUIT WITHSTAND TIME 20 s 15 s 10 s 5 s 0 s 10V 11V 12V 13V 14V 15V V GE, GATEEMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gateemitter voltage (V CE = 600V, start at T j = 25 C) IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 45 40 35 30 25 20 15 10 5 10V 12V 14V 16V 18V 20V V GE, GATEEMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (V CE 600V, T j = 150 C) 8 Rev. 2_3 12.06.2013

700ns 3500nC trr, REVERSE RECOVERY TIME 600ns 500ns 400ns 300ns 200ns 100ns = 6 = 15A = 3 Qrr, REVERSE RECOVERY CHARGE 3000nC 2500nC 2000nC 1500nC 1000nC 500nC = 6 = 3 = 15A 0ns 10/ s 30/ s 50/ s 70/ s 90/ s di F /dt, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (V R = 200V, T j = 125 C, 0nC 10/ s 30/ s 50/ s 70/ s 90/ s di F /dt, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (V R = 200V, T j = 125 C, 24A 100/ s Irr, REVERSE RECOVERY CURRENT 16A 12A 8A 4A = 3 = 6 = 15A d irr/ d t, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT 80/ s 60/ s 40/ s 20/ s 10/ s 30/ s 50/ s 70/ s 90/ s di F /dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (V R = 200V, T j = 125 C, / s 10/ s 30/ s 50/ s 70/ s 90/ s di F /dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V R = 200V, T j = 125 C, 9 Rev. 2_3 12.06.2013

6 2.0V 5 = 6 IF, FORWARD CURRENT 4 3 25 C 150 C 100 C VF, FORWARD VOLTAGE 1.5V = 3 1 55 C 0.0V 0.5V 1.0V 1.5V 2.0V V F, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage 1.0V 40 C 0 C 40 C 80 C 120 C T j, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 0 K/W 10 1 K/W 10 2 K/W D=0.5 0.2 0.1 0.05 0.02 0.01 single pulse R, ( 1 / W ), ( s ) 0.270 0.157 0.231 2.08*10 2 0.221 2.29*10 3 0.203 2.04*10 4 0.070 1.03*10 5 R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 10 3 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s t p, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = t p / T) 10 Rev. 2_3 12.06.2013

11 Rev. 2_3 12.06.2013

i,v di F /dt t =t Q =Q + t r r S F + Q r r S F t r r I F t S t F Q S Q F 10% I r r m t I r r m di 90% I r r m r r /dt V R Figure C. Definition of diodes switching characteristics T (t) j 1 r1 2 r 2 r n n p(t) r r 1 2 n r Figure A. Definition of switching times T C Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance L =180nH and Stray capacity C =900pF. Published by Infineon Technologies AG, 12 Rev. 2_3 12.06.2013

Published by Infineon Technologies AG 81726 Munich, Germany 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in lifesupport devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Rev. 2_3 12.06.2013