Exotic Hadrons: models applied to LHCb pentaquarks

Similar documents
Heavy Quark Baryons and Exotica

b-baryon decays and the search for exotic hardons at LHCb

Some recent progresses in heavy hadron physics. Kazem Azizi. Oct 23-26, Second Iran & Turkey Joint Conference on LHC Physics

Searches for exotic mesons

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Studies of pentaquarks at LHCb

Heavy flavour spectroscopy at LHCb

Exotic hadronic states XYZ

Exotic Hadrons. O Villalobos Baillie MPAGS PP5 November 2015

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

Triangle Singularities in the Λ b J/ψK p Reaction

Lecture 9 Valence Quark Model of Hadrons

TETRAQUARKS AND PENTAQUARK(S)

Charmed Baryons Productions and decays

Chengping Shen: Beihang University, Beijing XVI International Conference on Hadron Spectroscopy (Hadron 2015) September, 2015, JLab, USA

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko

Antimo Palano INFN and University of Bari, Italy On behalf of the LHCb Collaboration

Exo$c hadrons with heavy quarks

Universidad Complutense de Madrid September 8-9, In collaboration with A. Feijoo Aliau, A. Ramos & E. Oset

Hadronic molecules with heavy quarks

M.Yu. Barabanov, A.S. Vodopyanov, A.I. Zinchenko

Hidden-charm pentaquark states in QCD sum rules

Meson Spectroscopy Methods, Measurements & Machines

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14

Clebsch-Gordan Coefficients

Recent results on spectroscopy from

X states (X(3872),...)

Latest developments in the Spectroscopy of Heavy Hadrons

New types of sub-atomic particles

January 31, PHY357 Lecture 8. Quark composition of hadrons. Hadron magnetic moments. Hadron masses

Hadron Spectroscopy at LHCb

Pentaquarks and Exotic Charm Spectroscopy at LHCb

Gian Gopal Particle Attributes Quantum Numbers 1

Physics 492 Lecture 28

NEW PERSPECTIVES FOR STUDY OF CHARMONIUM AND EXOTICS ABOVE DD THRESHOLD. Barabanov M.Yu., Vodopyanov A.S.

Multiquark Hadrons - the Next Frontier of QCD

2007 Section A of examination problems on Nuclei and Particles

8. Quark Model of Hadrons

Part 7: Hadrons: quarks and color

Heavy Quark Spectroscopy at LHCb

Charmed baryon decays at Belle Yuji Kato (KMI, Nagoya University)

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Hadron Spectroscopy, exotics and Bc physics at LHCb. Biplab Dey

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Production of Tetraquarks at the LHC

Hadron Spectroscopy at BESIII

Charmonium & charmoniumlike exotics

Hadron Physics. D. G. Ireland (University of Glasgow) 30 August, 31 August and 1 September, 2017

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

Results on Charmonium-like States at BaBar

Probing of XYZ meson structure with near threshold pp and pa collisions

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration

Kai Zhu on behalf of BESIII collaboration Institute of High Energy Physics, Beijing March, Moriond QCD 2015

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

Meson-induced pentaquark productions

Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep EUNPC 2015, Groningen

Analyticity and crossing symmetry in the K-matrix formalism.

arxiv: v1 [hep-ph] 1 Aug 2018

the excited spectrum of QCD

Lecture 9. Isospin The quark model

Charmonium Transitions

Physics of the Multiquark States

PHYS 3446 Lecture #17

The Pentaquark and the Pauli Exclusion Principle

Dr Victoria Martin, Prof Steve Playfer Spring Semester 2013

Problem Set # 1 SOLUTIONS

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Gell- Mann- Nishijima formula FK

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Heavy Hidden-Flavour Molecules in a Finite Volume

PROBING OF STRONG INTERACTIONS AND HADRONIC MATTER WITH CHARMONIUM-LIKE STUDIES

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab

Lecture 6 Isospin. What is Isospin? Rota4ons in Isospin space Reac4on rates Quarks and Isospin Heavier quarks FK

Kärnfysikermötet, Umeå 1-2 November 2005 Agnes Lundborg, Uppsala Universitet

Examination paper for FY3403 Particle physics

Quarks and Hadrons. Properties of hadrons Pions and nucleons Strange particles Charm and beauty Breit-Wigner distribution Exotics

LHCb Spectroscopy: Results and Plans

Studies of charmonium production in e + e - annihilation and B decays at BaBar

Triangle singularity in light meson spectroscopy

Lecture 12 Weak Decays of Hadrons

Nuclear structure I: Introduction and nuclear interactions

Quark Model. Ling-Fong Li. (Institute) Note 8 1 / 26

Beyond Standard Model Effects in Flavour Physics: p.1

Exotic quarkonium-like resonances. Marek Karliner Tel Aviv University with S. Nussinov JHEP 7,153(2013) - arxiv:

CharmSpectroscopy from B factories

Invariance Principles and Conservation Laws

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

Recent Results on Spectroscopy from COMPASS

BaBar s Contributions. Veronique Ziegler Jefferson Lab

Structure of near-threshold s-wave resonances

Baryon Spectroscopy: what do we learn, what do we need?

Signs of supersymmetry

The newly discovered Ω c resonances and doubly charmed Ξ cc state. Kazem Azizi. Oct 4, School of Physics, IPM, Tehran- Iran

Coupled-channel approach to spin partners of hadronic molecules

Production cross sections of strange and charmed baryons at Belle

Quark Model. Mass and Charge Patterns in Hadrons. Spin-1/2 baryons: Nucleons: n: MeV; p: MeV

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

arxiv: v1 [hep-ex] 5 Nov 2015

The PANDA experiment at FAIR

Cornelius Bennhold George Washington University

Transcription:

Exotic Hadrons: models applied to LHCb pentaquarks Tim Burns Swansea University 6 September 017 [T.B., Eur.Phys.J. A51, 15 (015), 1509.0460] [T.B. & E.Swanson (ongoing)]

Conventional and exotic hadrons

Conventional and exotic hadrons Baryons Mesons

Conventional and exotic hadrons Baryons Mesons

Conventional and exotic hadrons Hybrids

Conventional and exotic hadrons Hybrids Compact multiquarks

Conventional and exotic hadrons Hybrids Compact multiquarks Hadronic molecules

Conventional and exotic hadrons Hybrids Compact multiquarks Hadronic molecules Threshold eect

P c (4380) and P c (4450)

P c (4380) and P c (4450) LHCb amplitude analysis of the three-body decay Λ b J/ψpK. [LHCb,PRL115,07001,015] u d b u d u ū s c c p K J/ψ Two J/ψp states, the avour of the proton with hidden charm (uudc c).

P c (4380) and P c (4450) P c (4380) + P c (4450) + Mass 4380 ± 8±9 4449.8 ± 1.7 ±.5 Width 05 ± 18 ± 86 35 ± 5 ± 19 Assignment 1 3/ 5/ + Assignment 3/ + 5/ Assignment 3 5/ + 3/

Compact pentaquark

Compact pentaquark The uudc c combination in S-wave gives: I (J P ) 1 3 4 5 6 7 8 9 10 ( ) 1 1 1 3 3 3 ( ( ( ( ( 1 3 5 1 3 5 ) ) ) ) )

Compact pentaquark

Compact pentaquark

Compact pentaquark

Threshold eect

Threshold eect P c (4380) + P c (4450) + Mass 4380 ± 8±9 4449.8 ± 1.7 ±.5 Width 05 ± 18 ± 86 35 ± 5 ± 19 Assignment 1 3/ 5/ + Assignment 3/ + 5/ Assignment 3 5/ + 3/

Threshold eect P c (4380) + P c (4450) + Mass 4380 ± 8±9 4449.8 ± 1.7 ±.5 Width 05 ± 18 ± 86 35 ± 5 ± 19 Assignment 1 3/ 5/ + Assignment 3/ + 5/ Assignment 3 5/ + 3/ Σ + c D 0 (udc)(u c) 438.3 ±.4 Σ + D c 0 (udc)(u c) 4459.9 ± 0.5 Λ + c (1P) D 0 (udc)(u c) 4457.09 ± 0.35 χ c1 p (udu)(c c) 4448.93 ± 0.07

Threshold eect u d b u d c s c

Threshold eect u d b u d c s c Λ b D s Λ c D K J/ψ p

Threshold eect u d b u d c s c Λ b D s Λ c D K J/ψ p c c b u d s u d

Threshold eect u d b u d c s c Λ b D s Λ c D K J/ψ p b u d c c s u d Λ b Λ J/ψ, χ c,... p K J/ψ p

Threshold eect u d b u d c s c Λ b D s Λ c D K J/ψ p b u d u b d c c s u d ū c s c d Λ b Λ J/ψ, χ c,... p K J/ψ p

Threshold eect u d b u d c s c Λ b D s Λ c D K J/ψ p b u d u b d c c s u d ū c s c d Λ b Λ b Λ Ξ c J/ψ, χ c,... p K D Λ c /Σ c K J/ψ p J/ψ p

Threshold eect Enhancements expected at Λ c D = 1/ Λ c D = 1/, 3/ not seen at LHCb Λ b D s Λ c D K J/ψ p J/ψ, χ c,... J/ψ Λ b Λ p K p D J/ψ Λ b Ξ c Λ c /Σ c K p

Threshold eect Λ c (1P) D P c (4450) mass, but S-wave = 1/ + Λ b P-wave = 1/, 3/ why no Λ c (1P) D states? D s Λ c D K J/ψ p J/ψ, χ c,... J/ψ Λ b Λ p K p D J/ψ Λ b Ξ c Λ c /Σ c K p

Threshold eect Λ c (1P) D P c (4450) mass, but S-wave = 1/ + Λ b P-wave = 1/, 3/ why no Λ c (1P) D states? D s Λ c D K J/ψ p χ c1 p = P c (4450) mass, but doubly suppressed S-wave = 1/ +, 3/ + P-wave = 1/, 3/, 5/ Λ b Λ J/ψ, χ c,... p K J/ψ p D J/ψ Λ b Ξ c Λ c /Σ c K p

Threshold eect Λ c (1P) D P c (4450) mass, but S-wave = 1/ + Λ b P-wave = 1/, 3/ why no Λ c (1P) D states? D s Λ c D K J/ψ p χ c1 p = P c (4450) mass, but doubly suppressed S-wave = 1/ +, 3/ + P-wave = 1/, 3/, 5/ Λ b Λ J/ψ, χ c,... p K J/ψ p Σ c D P c (4380) mass, and Σ c D P c (4450) mass, but doubly suppressed what restricts J P? why not Σ c D, Σ c D? Λ b Ξ c D Λ c /Σ c K J/ψ p

Hadronic molecule

Hadronic molecule Consider the deuteron, a 0(1 ) state. MeV below pn threshold. vs.

Hadronic molecule P c (4380) + P c (4450) + Mass 4380 ± 8±9 4449.8 ± 1.7 ±.5 Width 05 ± 18 ± 86 35 ± 5 ± 19 Assignment 1 3/ 5/ + Assignment 3/ + 5/ Assignment 3 5/ + 3/ Σ + c D 0 (udc)(u c) 438.3 ±.4 Σ + D c 0 (udc)(u c) 4459.9 ± 0.5 Λ + c (1P) D 0 (udc)(u c) 4457.09 ± 0.35 χ c1 p (udu)(c c) 4448.93 ± 0.07

Hadronic molecule P c (4380) + P c (4450) + Mass 4380 ± 8±9 4449.8 ± 1.7 ±.5 Width 05 ± 18 ± 86 35 ± 5 ± 19 Assignment 1 3/ 5/ + Assignment 3/ + 5/ Assignment 3 5/ + 3/ Σ + c D 0 (udc)(u c) 438.3 ±.4 Σ + D c 0 (udc)(u c) 4459.9 ± 0.5 Λ + c (1P) D 0 (udc)(u c) 4457.09 ± 0.35 χ c1 p (udu)(c c) 4448.93 ± 0.07

Hadronic molecule P c (4380) + P c (4450) + Mass 4380 ± 8±9 4449.8 ± 1.7 ±.5 Width 05 ± 18 ± 86 35 ± 5 ± 19 Assignment 1 3/ 5/ + Assignment 3/ + 5/ Assignment 3 5/ + 3/ Σ + c D 0 (udc)(u c) 438.3 ±.4 Σ + D c 0 (udc)(u c) 4459.9 ± 0.5 Λ + c (1P) D 0 (udc)(u c) 4457.09 ± 0.35 χ c1 p (udu)(c c) 4448.93 ± 0.07

Hadronic molecule The (udc)(u c) combinations in S-wave are: I (J P ) Λ c D Λ c D Σ c D Σ D c Σ c D Σ D c ( ) 1 1 1 3 3 3 ( ( ( ( ( 1 3 5 1 3 5 ) ) ) ) )

Hadronic molecule Forbidden vertices: Λ c Λ c 0 0 + 1 (isospin) π D D 0 0 + 0 (spin-parity) π

Hadronic molecule c u d c u d Λ c, Σ c, Σ c π π u c u c D, D V ( r) = ij [ C(r) σi σ j + T (r)s ij (ˆr) ] τ i τ j

Hadronic molecule c u d c u d Λ c, Σ c, Σ c π π V ( r) = ij u c u c [ C(r) σi σ j + T (r)s ij (ˆr) ] τ i τ j D, D All I = 3/ potentials suppressed by 1/.

Hadronic molecule c u d c u d Λ c, Σ c, Σ c π π V ( r) = ij u c u c [ C(r) σi σ j + T (r)s ij (ˆr) ] τ i τ j D, D All I = 3/ potentials suppressed by 1/. Coecient of C(r) is important.

Hadronic molecule I (J P ) Λ c D Λ c D Σ c D Σ c D Σ c D Σ c D 1 ( 1 ) 1 ( 3 ) 1 ( 5 ) 3 ( 1 ) 3 ( 3 ) 3 ( 5 )

Hadronic molecule I (J P ) Λ c D Λ c D Σ c D Σ c D Σ c D Σ c D 1 ( 1 ) 1 ( 3 ) 1 ( 5 ) 3 ( 1 ) 3 ( 3 ) 3 ( 5 )

Hadronic molecule I (J P ) Λ c D Λ c D Σ c D Σ c D Σ c D Σ c D 1 ( 1 ) 1 ( 3 ) 1 ( 5 ) 3 ( 1 ) 3 ( 3 ) 3 ( 5 )

Hadronic molecule I (J P ) Λ c D Λ c D Σ c D Σ c D Σ c D Σ c D 1 ( 1 ) 1 ( 3 ) P c (4450)? 1 ( 5 ) 3 ( 1 ) 3 ( 3 ) 3 ( 5 )

Summary exotic-ness high! low medium d.o.f. quarks hadrons hadrons interactions g exchange rescattering π exchange colour (1 1) (8 8) (1 1) (1 1) size compact extended masses model dependent at thresholds at thresholds J PC all restricted restricted avours all restricted restricted(i -mix) channels most restricted HQ restricted falsiability low medium high

Backup slides

Ξ c D molecules Λ c = ((ud) 0 c) 1/ = Ξ c = ((us) 0 c) 1/ Σ c = ((ud) 1 c) 1/ = Ξ c = ((us) 1 c) 1/ Σ c = ((ud) 1 c) 3/ = Ξ c = ((us) 1 c) 3/ c u d c u s π = π u c u c The potential matrices (central + tensor) are directly related. Predict loosely bound 0(5/ ) Ξ c D state, observable in Λ b J/ψΛη.

Isospin mixing: P c (4380) and P c (4450) uudc c comes in two charge combinations { (udc)(u c) = Σ + c D 0 (uuc)(d c) = Σ ++ c D Isospin-conserving interactions would produce I, I 3 eigenstates, ( 1, 1 ) 3, 1 = ( ) 1 3 3 Σ + c D 0 Σ ++ c D but only if the masses Σ + c = Σ ++ c and D 0 = D. 3 1 3 Otherwise, isospin is not a good quantum number.

Isospin mixing: P c (4380) and P c (4450) Σ + c D 0 = 438.3 ±.4 Σ + c D 0 = 4459.9 ± 0.5 Σ ++ c D = 4387.5 ± 0.7 Σ ++ c D = 4464.4 ± 0.3

Isospin mixing: P c (4380) and P c (4450) P c (4380) = 4380 ± 8 ± 9 P c (4450) = 4449 ± 1.7 ±.5 D 0 = 438.3 ±.4 Σ + D c 0 = 4459.9 ± 0.5 Σ + c Σ ++ c D = 4387.5 ± 0.7 Σ ++ c D = 4464.4 ± 0.3

Isospin mixing: P c (4380) and P c (4450) P c (4380) = 4380 ± 8 ± 9 P c (4450) = 4449 ± 1.7 ±.5 D 0 = 438.3 ±.4 Σ + D c 0 = 4459.9 ± 0.5 Σ + c Σ ++ c D = 4387.5 ± 0.7 Σ ++ c D = 4464.4 ± 0.3 The P c states have mixed isospin: P c = cos φ 1, 1 + sin φ 3, 1

Isospin mixing: P c (4380) and P c (4450) P c (4380) = 4380 ± 8 ± 9 P c (4450) = 4449 ± 1.7 ±.5 D 0 = 438.3 ±.4 Σ + D c 0 = 4459.9 ± 0.5 Σ + c Σ ++ c D = 4387.5 ± 0.7 Σ ++ c D = 4464.4 ± 0.3 The P c states have mixed isospin: P c = cos φ 1, 1 + sin φ 3, 1 They should decay also into J/ψ + and η c +, with weights: J/ψp : J/ψ + : η c + = cos φ : 5 sin φ : 3 sin φ [P c (4380)] J/ψp : J/ψ + : η c + = cos φ : 10 sin φ : 6 sin φ [P c (4450)]

Isospin mixing: predicted 5/ states Σ c D 1/(5/ ) Σ + c D 0 = 454.4 ±.4 Σ ++ c D = 458. ± 0.7 Mixed isopsin: P = cos φ 1, 1 + sin φ 3, 1 Decays: J/ψp: D-wave, spin ip Reason for absence at LHCb? J/ψ : S-wave, spin cons. = I = 3/ decay enhanced.

Isospin mixing: predicted 5/ states Σ c D 1/(5/ ) Ξ c D 0(5/ ) Σ + c D 0 = 454.4 ±.4 Σ ++ c D = 458. ± 0.7 Ξ 0 c D 0 = 465.9 ± 0.6 Ξ + c D = 4656. ± 0.7 Mixed isopsin: P = cos φ 1, 1 + sin φ 3, 1 Mixed isopsin: P = cos φ 0, 0 + sin φ 1, 0 Decays: J/ψp: D-wave, spin ip Reason for absence at LHCb? Decays: J/ψΛ: D-wave, spin ip e.g. Λ 0 b J/ψΛη, J/ψΛφ J/ψ : S-wave, spin cons. = I = 3/ decay enhanced. J/ψΣ : S-wave, spin cons. = I = 1 decay enhanced.

Pion exchange: central potential C(r) r(gev 1 ) Yukawa

Pion exchange: central potential C(r) without delta term C(r) with delta term 1 GeV r(gev 1 ) GeV Yukawa

Pion exchange: central potential C(r) without delta term C(r) with delta term 1 GeV r(gev 1 ) GeV +C(r) Yukawa +C(r)