A Simple Method for Identifying Compelled Edges in DAGs

Similar documents
The University of Sydney MATH 2009

Lecture 20: Minimum Spanning Trees (CLRS 23)

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

Weighted Graphs. Weighted graphs may be either directed or undirected.

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Minimum Spanning Trees (CLRS 23)

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Isomorphism In Kinematic Chains

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

In which direction do compass needles always align? Why?

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

(Minimum) Spanning Trees

Lecture II: Minimium Spanning Tree Algorithms

2 Trees and Their Applications

Closed Monochromatic Bishops Tours

Minimum Spanning Trees (CLRS 23)

Strongly connected components. Finding strongly-connected components

Graph Search (6A) Young Won Lim 5/18/18

Applications of trees

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

23 Minimum Spanning Trees

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

CSE 332. Data Structures and Parallelism

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

Graphs Depth First Search

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H

An Introduction to Clique Minimal Separator Decomposition

Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010

(4, 2)-choosability of planar graphs with forbidden structures

Tangram Fractions Overview: Students will analyze standard and nonstandard

1 Introduction to Modulo 7 Arithmetic

Single Source Shortest Paths (with Positive Weights)

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

d e c b a d c b a d e c b a a c a d c c e b

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Constructive Geometric Constraint Solving

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

17 Basic Graph Properties

Planar convex hulls (I)

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Dental PBRN Study: Reasons for replacement or repair of dental restorations

A RANKING PROCEDURE FOR FUZZY DECISION-MAKING IN PRODUCT DESIGN

An Application to Search for High-Priority War Opponent in Spatial Games Using Dynamic Skyline Query

DOCUMENT STATUS: RELEASE

18 Basic Graph Properties

a ( b ) ( a ) a ( c ) ( d )

Fun sheet matching: towards automatic block decomposition for hexahedral meshes

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Mechanisms of 10 Links, 13-Joints, 1-F Kinematic Chains of Group B

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks.

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

A New Interface to Render Graphs Using Rgraphviz

One-Dimensional Computational Topology

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

23 Minimum Spanning Trees

Planar Upward Drawings

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

Boosting Margin Based Distance Functions for Clustering

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

CS September 2018

EFFICIENT EXTRACTION OF CLOSED MOTIVIC PATTERNS IN MULTI-DIMENSIONAL SYMBOLIC REPRESENTATIONS OF MUSIC

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Introduction to Fourier optics. Textbook: Goodman (chapters 2-4) Overview:

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

EE1000 Project 4 Digital Volt Meter

OpenMx Matrices and Operators

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION

Priority Search Trees - Part I

Detecting Change in Snapshot Sequences

QUESTIONS BEGIN HERE!

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

A Gentle Introduction to Matroid Algorithmics

A Multi Objective Graph Based Model for Analyzing Survivability of Vulnerable Networks. Saeedeh Javanmardi 1, Ahmad Makui 2.

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CS 103 BFS Alorithm. Mark Redekopp

Fractions. Mathletics Instant Workbooks. Simplify. Copyright

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

Re-synthesis for Delay Variation Tolerance

0.1. Exercise 1: the distances between four points in a graph

Problem solving by search

Transcription:

A Smpl Mto or Intyn Compll Es n DAGs S.K.M. Won n D. Wu Dprtmnt o Computr Sn Unvrsty o Rn Rn Ssktwn Cn S4S 0A2 Eml: {won, nwu}@s.urn. Astrt Intyn ompll s s mportnt n lrnn t strutur (.., t DAG) o Bysn ntwork. A rpl mto (Ckrn 1995) ws propos to solv ts prolm. In ts ppr, w sow tt jont prolty struton n y Bysn ntwork n unquly rtrz y ts ntrns torzton. Bs on su n lr rtrzton, w sust smpl lortm to nty t ompll s o Bysn ntwork strutur. 1. Introuton Bysn ntworks v n wly us or mnn unrtnty usn prolty (Prl 1988). A Bysn ntwork onssts o rpl strutur, rt yl rp (DAG) n st o ontonl prolty strutons (CPDs). Ts two omponnts n jont prolty struton. T ontonl npnns sts y jont prolty struton n rprsnt y rnt DAGs. T noton o n quvln lss o DAGs ws stu y (Vrm & Prl 1990; Ckrn 1995). An quvln lss o DAGs onssts o ll t Bysn ntworks w n t sm jont prolty struton ut r n tr rsptv DAGs. Altou rnt DAGs n t sm quvln lss v rnt rpl struturs, rtn rt s rtn tr rtonlty n ll tos quvlnt DAGs. Ts s r rrr to s ompll s. Itsusul to nty ts ompll s n lrnn Bysn ntwork rom t. Ckrn (Ckrn 1995) propos rpl lortm or ntyn su s. In ts ppr, w sow tt jont prolty struton n y Bysn ntwork n unquly xprss s prout o mrnls v y notr prout o mrnls. W rr to su rtrzton o jont prolty struton s n ntrns torzton. All Bysn ntwork struturs vn t sm ntrns torzton lon to t sm quvln lss. Bs on ts lr lsston o Bysn ntworks, w sust smpl mto to nty ll t ompll s n vndag. Copyrt 2003, Amrn Assoton or Artl Intlln (www..or). All rts rsrv. T ppr s ornz s ollows. W rst rvw t noton o quvlnt DAGs n Ston 2. Our lr rtrzton o jont prolty struton n y Bysn ntwork s suss n Ston 3. In Ston 4, w sr our lortm or ntyn ompll s o Bysn DAG. T onluson s vn n Ston 5. 2. Equvlnt DAGs In t ppr, w us uppr s lttrs to rprsnt st o vrls n lowr s lttrs to rprsnt snl vrl unlss otrws mnton. Lt U not nt st o srt vrls. W us p(u) to not jont prolty struton (jp) ovr U. Wll p(v ), V U, t mrnl (struton) o p(u) n p(x Y ) t ontonl prolty struton (CPD), or smply ontonl. By XY, wr X U, Y U,wmn X Y. Smlrly, y, wr U, U, wmn {} {}. Aorn to t nton o ontonl prolty, p(x Y )= p(xy ), wnvr p(y ) > 0, p(y ) w tus sy tt n t ov xprsson, t nomntor p(y ) s sor y t numrtor p(xy ) to yl ontonl p(x Y ). Itsnot tt p(w ) n sor y p(v ) to yl p(v W W ) n only W V. A Bysn ntwork (BN) n ovr st U = { 1, 2,..., n } o vrls onssts o two omponnts: () rt yl rp (DAG) D. E vrtx n D rprsnts vrl U. T prnts o t vrtx r not p( ). T rpl strutur o t DAG nos st o ontonl npnny normton; () quntton o D. E vrl n D s qunt wt ontonl prolty p( p( )). Ts two omponnts n (nu) jont prolty struton (jp) ovr U s ollows: n p(u) = p( p( )). (1) =1 W ll t quton n (1) t Bysn torzton. It s wort mntonn tt y lookn t t tors n t ov Bysn torzton, t DAG n rwn y rtn n rrow rom no n p( ) to t no. A v strutur n DAG D s n orr trpl o nos 516 FLAIRS 2003

(,, ) su tt (1) D ontns s n, n (2) n r not rtly onnt n D. T sklton o DAG s t unrt rp otn y roppn t rtonlty o vry n t DAG. Sn BN s lt y ts rpl strutur, nmly, t DAG, W tus wll us t trm BN or DAG ntrnly no onuson rss. It s n not (Vrm & Prl 1990) tt DAGs o rnt BNs my n t sm jp. Dnton 1 (Ckrn 1995) Two DAGs D n D r quvlnt or vry BN nu y D, tr xsts notr BN nu y D su tt ot nu BNs ns t sm jp, n v vrs. W us D 1 D 2 to not tt DAG D 1 s quvlnt to DAG D 2,orquvlntly, BN1 BN2. Grpl rtr (Vrm & Prl 1990; Ckrn 1995) v n propos to trmn wtr two vn DAGs r quvlnt or not. Torm 1 (Vrm & Prl 1990) Two DAGs r quvlnt n only ty v t sm sklton n t sm v-struturs. It s not r to s tt t rlton nus n quvln rlton. Lt {D} not ll t DAGs n ovr xst U o vrls. Nturlly, t rtrsts o t quvln rlton n us to roup t DAGs n {D} nto rnt quvln lsss. It s not tt sn quvlnt DAGs n t sm jp, ty rtnly no t sm st o ontonl npnny normton. Tror, ll t DAGs n t sm quvln lss no t sm ontonl npnny normton. () () Fur 1: Four quvlnt DAGs omprs n quvln lss. Exmpl 1 Consr t our DAGs sown n Fur 1. By Torm 1, ty r quvlnt to otr. Morovr, no otr DAGs n ovr t sm st o vrls r quvlnt to ny o tm, tror, ty omprs n quvlnt lss. Gvn n quvln lss o DAGs, t s not tt som s rtn tr rtonlty n ll t quvlnt DAGsnt quvln lss. Dnton 2 An x y n DAG D s ompll, or ny D D, x y s lso n D. Otrws, t s rvrsl. () (v) Exmpl 2 It n vr tt n t DAGs sown n F 1, t s,,,,,, n ppr n ll o t quvlnt DAGs, tror, ty r ompll s. On t otr n, t, or xmpl, s rvrsl. It s n suss n (Ckrn 1995) tt t ompll s n DAG v prtulr mportn n lrnn t strutur o Bysn ntworks rom osrv t. Morovr, n lortm ws vlop to nty ll ompll s n vn DAG. T lortm rst ns totl orrn ovr ll t s n t v DAG n tn ns out ll t ompll s s on t totl orrn. Howvr, t prsntton o t lortm n t proo o ts orrtnss r rtr omplt n r to omprn. For tls o t susson o t mportn on ntyn ompll s n t lortm, rrs r rrr to (Ckrn 1995). 3. Alr Rprsntton o Equvlnt DAGs In ts ston, w rst rly rvw rnt rpl rprsnttons o quvln lss o DAGs, w tn v novl lr rprsntton o quvlnt DAGs y stuyn t orm o Bysn torzton. Ts lr rprsntton o quvlnt DAGs wll srv s t ss or smpl n sy to unrstn mto or ntyn ompll s. Sn ll t DAGs n t sm quvln lss n t sm jp n rprsnt t sm ontonl npnny normton, t s tus ly srl to v unqu rprsntton to rprsnt t wol lss o quvlnt DAGs. Svrl rpl rprsnttons v n propos. Vrm (Vrm & Prl 1990) propos t noton o rumntry pttrn n omplt pttrn to rtrz t quvln lss usn prtlly rt rp. Anrson (Anrsson, Mn, & Prlmn 1997) sust t noton o ssntl rp, w s spl n rp (Frynr 1990), to rprsnt Mrkov quvlnt DAGs. Mor rntly, Stuny (Stuny 1998) us t noton o lrst n rp (rnt tn t ssntl rp) to rtrz t quvln lss o Bysn ntworks. Sn ll t quvlnt DAGs lso ns t sm jp, w lv tt ts sm jp soul t rprsntton o t wol quvln lss n t soul lso possss t lty to srn rnt DAGs n t sm quvln lss. In t ollown, w prsnt novl lr rprsntton to rprsnt t wol quvln lss s on t noton o Bysn torzton. Dnton 3 Consr DAG n ovr st U = { 1,..., n } o vrls wt ts Bysn torzton s ollows: p(u) = p( 1 ) p( 2 p( 2 ))... p( n p( n )), (2) = p( 1) 1 =, j p( 2,p( 2 )) p(p( 2 ))... p( n,p( n )),(3) p(p( n )) p(,p( )), (4) p(p( j )) FLAIRS 2003 517

wr {, p( )} {p( j )} or ny 1, j n. E p( p( )) n quton (2) s ll tor. Wll t quton n (3) t rton torzton o t DAG. T xprsson n quton (4) s otn y nln ny ppll numrtor n nomntor n quton (3) n s ll t ntrns torzton o t DAG. T ntrns torzton s n prov to t nvrnt proprty o n quvln lss o DAGs. Torm 2 (Won & Wu 2002) Two DAGs r quvlnt n only ty v t sm ntrns torzton. Torm 2 mpls tt ll t DAGs n t sm quvln lss v t sm ntrns torzton. It mmtly ollows: Corollry 1 T ntrns torzton o vn DAG D s unqu n t rtrzs n srs lrlly t wol quvln lss tt t vn DAG D lons to. Exmpl 3 Consr t our DAGs n ovr U = {,,,,,,,, } s sown n F 1. T ntrns torzton or t DAG n () s s ollows n quton (6): p(u) = p() p() p( ) p( ) p( ) p( ) p( ) p( ) p( ) (5) p() p() p() p() p() p() = p() p() p() p() p() p() p() p(). (6) Smlrly, t ntrns torzton or t DAGs n F 1 (), () n (v) n otn n t sm son. It n sly vr tt t our rnt DAGs o v t sm ntrns torzton sown n quton (6). 4. Compll Es Intton In ts ston, w wll prsnt vry smpl mto to nty ompll s n vn DAG s on ts ntrns torzton. T n our propos mto s vry ntutv. As wll monstrt sortly, t ntrns torzton o vn DAG rprsnts t wol quvlnt lss n t ontns ll t normton n to rstor quvlnt DAG (mor prsly, to rstor ts Bysn torzton.) Ts osrvton vs rs to t propos mto or ntyn ompll s. Exmpl 4 Contnu on Exmpl 3 n onsr t ntrns torzton o t Bysn ntwork sown n Fur 1 () rpt s ollows: p() p() p() p() p() p() p(u) = p() p() p() p() p() p() p() p(). (7) W now monstrt ow w n rstor quvlnt DAG (ts Bysn torzton) n t quvln lss rtrz y t ov ntrns torzton. In orr to trnsorm t ntrns torzton n quton (7) nto Bysn torzton, w n to sor ll t nomntors n quton (7) s ollows. p(u) = or p() p() p() p() p() p() p() p() p() p() p() p() p() p(), (8) = p() 1 p() p() p() p() 1 p() p() p() p() p() p() p() p() p(), (9) = p() p( ) p() p( ) p( ) p( ) p( ) p( ), (10) = p() p( ) p() p( ) p( ) p( ) p( ) p( ) p( ), (11) p(u) = p() 1 p() p() 1 p() p() p() p() p() p() p() p() p() p() p(), (12) = p() p() p( ) p( ) p( ) p( ) p( ) p( ) p( ), (13) or p(u) = p() 1 p() p() p() p() p() p() p() 1 p() p() p() p() p() p(), (14) = p() p( ) p( ) p( ) p() p( ) p( ) p( ) p( ), (15) In qutons (9), (12), n (14), w v sor nomntor n t ntrns torzton y n pproprt numrtor, ts sorptons rsult n qutons (11), (13), n (15), rsptvly. W tus v nlly otn tr rnt Bysn torztons, w xtly orrspon to t tr quvlnt DAGs sown n F 1 (), () n (v), rsptvly. Tror, w v sussully rstor ll t DAGs tt r quvlnt to t on sown n F 1 (). Tr r w osrvtons tt n m wt rspt to t ov monstrton n Exmpl 4. 1. Drnt DAGs n t sm quvln lss r otn, pnn on ow nomntor n t ntrns torzton s sor. It s ovous tt rnt sorpton wll rsult n rnt Bysn torztons, n, prou rnt ut quvlnt DAGs. 2. It s not tt urn t ours o sorn nomntors, som nomntor s or to sor y prtulr x numrtor, no otr os. In otr wors, som nomntor s no lxlty so tt t s to sor y x numrtor. 518 FLAIRS 2003

Bor w mov on, lt s srutnz t nomntor sorpton w v m n Exmpl 4. Not tt or nomntor p(x) to sor y numrtor p(y ), tmust t s tt X Y. Unr ts rstrton, t possl sorpton o t nomntors,,,,, n n summrz y t ollown xprssons, = {, }, (16) = {}, (17) = {,, }, (18) = {,,, }, (19) = {, }, (20) = {, }, (21) wr X = {Y 1,..., Y n } mns tt t nomntor p(x) n possly sor y p(y 1 ),..., p(y n ). W urtr ll t st {Y 1,..., Y n }, not AS(X), t sorpton st or X. It s not tt Y AS(X) X Y. W wll us AS(X) to not ts rnlty. It s lso not tt t st D = {X p(x ) s nomntor n t ntrns torzton} s multst, n w wll us X to not t numr o ourrn o X n t multst D. Rll tt t DAG o Bysn ntwork n rwn s on ts Bysn torzton, mor prsly, s on ts tor p( p( )), yrtn n rom no n p( ) to t no. Follown ts ln o rsonn, t ollows tt nomntor, sy p(x), s no o ut s or to sor y x numrtors, sy p(y ), tn t s xpt tt t s y x, wr y Y X, x X, wll ppr n vry rsultn Bysn torztons. Tror, ty wll ompll s y nton. For nstn, n xprsson (17), t only numrtor tt s ppll to sor p() s p(), n, t tor p( ) wll otn y ts sorpton n t s n wll ppr n ll possl rsultn Bysn torztons, w mpls tt ty r ompll s s n vr y F 1. Spl ttnton soul p to t two ntl nomntors p() n p() n xprssons (20) n (21), rsptvly. Altou ts two nomntors r synttlly ntl, ot o tm v to sor n orr to otn t Bysn torzton. T ppll numrtors or ot o tm s t sorpton st {, }, w ontns xtly two lmnts, t sm numr o t ourrn o p() s nomntors. Ts nts tt on o t p() must sor y p(), n t otr p() must sor y p(), nootr os. Ts sorptons mply tt t tors p( ) n p( ) wll otn n t s,,, n wll ppr n ll possl rsultn Bysn torztons, w mpls tt ty r ompll s s n vr y F 1 s wll. Sn t numrtors p(), p(), n p() v n snt to sor t nomntors p(), p(), n p(), rsptvly, ts ns t sorpton st or rom {,,, } sown n xprsson (19) to t nw rn snlton st {}, w mpls tt t nomntor p() wll v to sor y t numrtor p() to otn p( ). Tror, t s lso ompll s s n vr y F 1. T ov nlyss rsult n t ollown rn xprssons or t sorptons o nomntors, ontrstn wt tos n t xprssons (16-21), = {, }, (22) = {}, (23) = {, }, (24) = {}, (25) = {, }, (26) = {, }, (27) rom w t ompll s n oun out rt wy nomntor n only sor y x nomntor. Bs on t ov sussons, w tus propos t ollown prour to nty ompll s n vn DAG. T orrtnss o t prour wll vn sortly. PROCEDURE Fn-Compll-Es Input: vn DAG D. Output: Compll s n D ollt n t st E. { 1: Otn t ntrns torzton o t vn D, n lt E =. 2: Lt D = { 1,..., m } multst, wr p( ) s nomntor n t ntrns torzton otn n stp 1. 3: For D, =1,..., m, omput s sorpton st AS( ); 4: For D s.t. =1, =1,..., m, I AS( ) s snlton st, AS( j )=AS( j ) AS( ), or ll j, 5: For D s.t. > 1, =1,..., m, I AS( ) =, AS( j )=AS( j ) AS( ), or ll j, 6: For D, =1,..., m, I k = AS( ) =, E = E {p(y j ) Y j AS( ),j =1,..., k}, 7: Rturn E. } Compll s, rom t prsptv o t ntrns torzton o vn DAG, s otn y ntyn wtr nomntor p(x) n sor y only on numrtor or n possly sor y multpl numrtors. I nomntor p(x) n only sor y only on numrtor p(y ), tn t tor p(y X X) wll ppr n ll possl rsultn Bysn torztons, tror, t s y x, wr y Y X, x X, wll ompll s. Stp 1-5 n t prour omputs t sorpton st or nomntor. In stp 6, or ny nomntor p(x) n ts sorpton st AS(X), wtry to s wtr t n sor y unqu numrtor or y multpl os o rnt numrtors. Tr r two ss: 1. p(x) s nomntor su tt X = 1, onsr AS(X). FLAIRS 2003 519

I AS(X) > 1, notr wors, p(x) n sor y t lst two rnt numrtors, tn tr s no n to v ny ompll s prou y sorn p(x). I AS(X) =1, notr wors, p(x) wll sor y only on nomntor p(y ), tn t tor p(y X X) otn wll v rs to ompll s y x, wr y Y X, x X. 2. p(x) s nomntor su tt X > 1, onsr AS(X). I AS(X) = X, tn tr xsts on-to-on orrsponn twn mmr o Y AS(X) n ourrn o p(x) s nomntor, n w s vry p(x) wll sor y unqu p(y ). Tror, ompll s wll otn y su sorptons. I AS(X) > X, tn t s mor numrtor p(y ), wr Y AS(X) tn t nomntor p(x), n w s nomntor s not unquly sor y numrtor. Tror, tr s no n to otn t ompll s. T nlyss o t two ss s n xtly ptur y stp 6 n t prour. T ov susson tully provs t ollown torm. Torm 3 Gvn DAG D, t output o t prour Fn-Compll-Es ov s xtly t ompll s n D. T prour Fn-Compll-Es only nvolvs som st oprtons n n mplmnt sly. Stuny, M. 1998. Bysn ntworks rom t pont o vw o n rps. In Prons o t 14t Conrn on Unrtnty n Artl Intllrn (UAI-98), 496 503. Morn Kumnn. Vrm, T., n Prl, J. 1990. Equvln n syntss o usl mols. In Sxt Conrn on Unrtnty n Artl Intlln, 220 227. GE Corport Rsr n Dvlopmnt. Won, S., n Wu, D. 2002. An lr rtrzton o quvlnt ysn ntworks. In Numnn;, M. M. B., n Stur, R., s., Intllnt Inormton Prossn, T 17t IFIP Worl Computr Conrss, Strm 8, IIP-2002, 177 189. Kluwr Am Pulsr. 5. Conluson In ts ppr, w v monstrt tt t noton o ntrns torzton n srv s t lr rtrzton o t quvln lss o DAGs, s on w w v prsnt smpl mto or ntyn ompll s n Bysn ntwork. T nw mto s ntutvly smpl n n sly mplmnt. It rvls t mportn o t ntrns torzton o n quvln lss o Bysn ntworks. T pplton o ntrns torzton n ts ppr susts mor rsr on t torzton o t jp n y Bysn ntwork s wort pursun. Rrns Anrsson, S.; Mn, D.; n Prlmn, M. 1997. A rtrzton o mrkov quvln lsss or yl rps. T Annls o Sttsts 25(2):505 541. Ckrn, D. 1995. A trnsormtonl rtrzton o quvlnt ysn ntwork struturs. In Elvnt Conrn on Unrtnty n Artl Intlln, 87 98. Morn Kumnn Pulsrs. Frynr, M. 1990. T n rp mrkov proprty. Snnvn Journl o Sttsts 11:333 353. Prl, J. 1988. Prolst Rsonn n Intllnt Systms: Ntworks o Plusl Inrn. Sn Frnso, Clorn: Morn Kumnn Pulsrs. 520 FLAIRS 2003