Novel Bose-Einstein Interference in the Passage of a Jet in a Dense Medium. Oak Ridge National Laboratory

Similar documents
Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Isotropic Non-Heisenberg Magnet for Spin S=1

Calculation of Effective Resonance Integrals

Decompression diagram sampler_src (source files and makefiles) bin (binary files) --- sh (sample shells) --- input (sample input files)

Chapter 2. Review of Hydrodynamics and Vector Analysis

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

Global and Collective Dynamics at PHENIX

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

Ultra-Relativistic Heavy Ion Collision Results

Overview of flow results from ALICE experiment

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

I I M O I S K J H G. b gb g. Chapter 8. Problem Solutions. Semiconductor Physics and Devices: Basic Principles, 3 rd edition Chapter 8

Heavy Ions at the LHC: First Results

Questions for the LHC resulting from RHIC Strangeness

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion

Collective and non-flow correlations in event-by-event hydrodynamics

θ = θ Π Π Parametric counting process models θ θ θ Log-likelihood: Consider counting processes: Score functions:

INITIAL ENERGY DENSITY IN P+P AND A+A COLLISIONS UNIVERSE 3 (2017) 1, 9 ARXIV: MANUSCRIPT IN PREPARATION

P-Convexity Property in Musielak-Orlicz Function Space of Bohner Type

Unscented Transformation Unscented Kalman Filter

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Event anisotropy at RHIC

ONE APPROACH FOR THE OPTIMIZATION OF ESTIMATES CALCULATING ALGORITHMS A.A. Dokukin

BEST PATTERN OF MULTIPLE LINEAR REGRESSION

Jet and bulk observables within a partonic transport approach

Anisotropic Flow: from RHIC to the LHC

A L A BA M A L A W R E V IE W

Heavy Ion Physics Lecture 3: Particle Production

Predictions for hadronic observables from. from a simple kinematic model

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

Outline: Introduction

Final Exam Applied Econometrics

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Review of Signals of Deconfinement

4. Runge-Kutta Formula For Differential Equations

Solution of Impulsive Differential Equations with Boundary Conditions in Terms of Integral Equations

Science & Technologies GENERAL BIRTH-DEATH PROCESS AND SOME OF THEIR EM (EXPETATION- MAXIMATION) ALGORITHM

Conquering kings their titles take ANTHEM FOR CONGREGATION AND CHOIR

The Poisson Process Properties of the Poisson Process

STOCHASTIC CALCULUS I STOCHASTIC DIFFERENTIAL EQUATION

Introduction to Neural Networks Computing. CMSC491N/691N, Spring 2001

First results with heavy-ion collisions at the LHC with ALICE

Beam energy scan using a viscous hydro+cascade model

LHCb results from proton-ion collisions

Quark-Gluon Plasma Physics

1 The pion bump in the gamma reay flux

Assessment of triangular flow in jet background fluctuations for Au+Au collisions First look at dijet imbalance (A J )

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Moments of Order Statistics from Nonidentically Distributed Three Parameters Beta typei and Erlang Truncated Exponential Variables

Introduction. Free Electron Fermi Gas. Energy Levels in One Dimension

Partial Molar Properties of solutions

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root

14. Poisson Processes

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

(1) Cov(, ) E[( E( ))( E( ))]

Midterm Exam. Tuesday, September hour, 15 minutes

K 0 sk 0 s correlations in 7 TeV pp collisions from the ALICE experiment at the LHC

Beam energy scan using a viscous hydro+cascade model: an update

Recent flow results at RHIC

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

CMS results on CME and CMW in ppb and PbPb

Results with Hard Probes High p T Particle & Jet Suppression from RHIC to LHC

Stat 6863-Handout 5 Fundamentals of Interest July 2010, Maurice A. Geraghty

Space-time Evolution of A+A collision

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX

QCD Studies with CMS at LHC. Gunther Roland for the Collaboration

Jets, flows and Joseph Fourier

Reinforcement Learning

Angular correlations of identified particles in the STAR BES data

QGP Physics from Fixed Target to LHC

Soft QCD Results from ATLAS and CMS

Ultrarelativistic Heavy-Ions

Name: Period: Date: 2.1 Rules of Exponents

Measuring the Higgs Quantum Numbers

Density estimation III.

Big Bang to Little Bang ---- Study of Quark-Gluon Plasma. Tapan Nayak July 5, 2013

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

() t ( ) ( ) ( ) ( ) ( ) ( ) ω ω. SURVIVAL Memorize + + x x. m = = =

Continuous Indexed Variable Systems

The Dilepton Probe from SIS to RHIC

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

arxiv: v2 [nucl-ex] 3 Jun 2008

Bianchi Type II Stiff Fluid Tilted Cosmological Model in General Relativity

Systematics of Soft Particle Production at RHIC: Lessons from

The Core Corona Model

arxiv:nucl-ex/ v2 1 Mar 2007

Event geometrical anisotropy and fluctuation viewed by HBT interferometry

The Z-Transform in DSP Lecture Andreas Spanias

Coherent photo-production of ρ 0 mesons in ultra-peripheral Pb-Pb collisions at the LHC measured by ALICE

Solution. The straightforward approach is surprisingly difficult because one has to be careful about the limits.

Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus

Momentum Kick Model and the Clustering of Heavy Quarks in QGP Cheuk-Yin Wong Oak Ridge National Laboratory

Parameter Estimation and Hypothesis Testing of Two Negative Binomial Distribution Population with Missing Data

AML710 CAD LECTURE 12 CUBIC SPLINE CURVES. Cubic Splines Matrix formulation Normalised cubic splines Alternate end conditions Parabolic blending

Heavy Ion Results from the ALICE Experiment

Transcription:

Rdge Worksho, INT, My 7-, 0 Novel Bose-Ese Ierferece he Pssge of Je Dese Medu Cheuk-Y Wog Ok Rdge Nol Lborory Our focus: recols of edu ros fer je collso Poel odel versus Fey lude roch Bose-Ese erferece of Fey ludes Sgures d evdece for Bose-Ese erferece Rdge s evdece for Bose-Ese erferece Coclusos C.Y.Wog, rv:.09( C.Y.Wog, Phy.Rev.C76,054908( 07 C.Y.Wog, ChesePhys.Le.5,3936( 08 C.Y.Wog, J.Phys.G35,04085( 08 C.Y.Wog, Phys. Rev.C78,064905( 08 C.Y.Wog, Phys. Rev.C80,034908( 09 C.Y.Wog, Phys. Rev.C80,05497( 09 C.Y.Wog, Phys.Rev.C84,0490(

Logudl recols of edu ros fer je collso? Poel odel: (Gluber 58; Gyulssy+Wg, 94, ( Medu ros re rereseed by sc oels he edu. No edu ro recols he lowes order. ( Medu ro logudl recols re correced fer je collso z = je - je cos θ = je θ / = T / je ( Medu ro logudl recols re o deede vrbles. Poel odel s good for us-elsc je-edu collsos

Fey lude roch for geerl je-edu collso We would lke o ob he dsrbuo of edu ro logudl recols for geerl collso We eed o gve u he oel odel d o do he Fey lude roch The se ses of l d fl ses c be coeced by dffere Fey ludes. These ludes erfere. We eed o dsgush cohere d cohere collsos. C.Y.Wog, Rdge Worksho 3

Cohere d cohere collsos A wo-body collso bewee je d edu ro s chrcerzed by logudl oeu rsfer z : z = T / je, d coherece legh ( he edu fre Δz coh = ћ / z = ћ je / T. The coherece legh c be cosdered s he logudl legh over whch he wo-body collso kes lce, wh he echge of gluo. If Δz coh «λ, je-edu collsos re cohere. If Δz coh» λ, je-edu collsos re cohere. C.Y.Wog, Rdge Worksho 4

Icohere collsos λ >> Δz coh = ћ z / T Oe collso s fshed before oher collso begs. Collsos re lke clsscl errcle cscde. Ech wo-body collso leds o logudl oeu rsfer z = T / z (je 5

Cohere collsos λ << Δz coh = ћ z (je / T Oe collso s o fshed before oher collso begs. The cde je collde wh scerers s fc sgle collso u (+-body collso. Dffere Fey ludes corbue o he se rocess d he ludes erfere. Logudl oeu c flow fro he je o he scerers. The scerers c cure subsl frcos of je z. 6

Je & edu collsos RHIC d LHC Mje z ~ 0 GeV T ~ 0.4 GeV Δz coh = ћ z / T ~ 5 f Δz coh >> R >> λ Je-(edu ro ulle collsos RHIC d LHC re cohere collsos C.Y.Wog, Rdge Worksho 7

Cohere collsos λ << Δz coh (II Δz coh = ћ z / T λ Ele: Becuse of Bose-Ese syery, he Fey scerg ludes fro syerzed orderg of verces erfere. The effec of he erferece s he collecve recols of he scerers log he je dreco. C.Y.Wog, Rdge Worksho 8

Bose-Ese erferece cohere collsos Hug Cheg & T-Tsu Wu (969 Ch-Sg L & Ke-Fe Lu (997 BE syery he erchge of he vrul boso verces led o rerkble erferece of he Fey ludes r We cosder he hgh - eergy l : >> We cosder he scered rcle ' o be o ss shell : The su of! syerzed Fey ludes s M δ ( ', ( ' δ ( δ ( δ (... δ ( 3 = 9

0 Bose-Ese erferece for je collsos wh edu ros + + + + + + = = >> = for gluo scerers ' for fero scerers ' ' ' ~ ~ ( ' ( verces s Fey ludes wh syerzed erchges of! The su of ( o be o ss shell : ' We cosder he scered rcle, We cosder he hgh - eergy l : 0 0 0 0 M ' δ δ r CYWog rv:.09(0

3 4 3 4 3 4 ( ( ~ ~ ' ( ( o gve he wo Fey ludes ccel rs of The rel 0 ( ' ( d he hgh - eergy l, s o he ss shell, ' Prcle ~ ~ ~ ~ g M M g M g M = + = = = δ δ δ ε ε Ele:

Coseueces of he Bose-Ese erferece 0 for gluo scerers / ( cosh /...,..,, ( for fero scerers,..,, (... (,..,, (...... re dsrbued ccordg o / d Therefore,... ( ~ ( Cross seco s gve by Boso rogor 0 0 ( 4 4 4 0 0 0 0 0 0 4 0 0 0 0 f f f d d d d d d d d d d gt je je gt z z T T T T T T z z T z T T T T z z T T z T T z z < = = = = = = = δ σ δ σ δ r r r r r r r r r r

Sgures of he Bose-Ese erferece d r T dσ r T d r T r T f (,,.., f (,,.., collecve recols of edu scerers log he je dreco Sgure I: Sgure II: 4 4... d r r T 4 T... d d... d z ~ z (je / Sgure III: I s uu -body effec wh hreshold = f (,,.., δ (... = = cosh for fero scerers gt ( / je je / gt ' z for gluo scerers z C.Y.Wog, Rdge Worksho 3

Collecve recols of edu ros kcked by he je Je frges rdge. Je frges (Δφ, Δη ~ 0. Medu ros re rdge rcles 3. Rdge dsrbuo erly fl Δη Δφ Δη he fl dsrbuo Δη coes fro he oeu dsrbuo of edu ros, ror o he collso wh he je 4. Je d edu ros re correled wh Δφ ~ 0 collecve recols of edu ros log he je dreco, fer he ros re kcked by he je C.Y.Wog, Rdge Worksho 4

Schec cure of he reco he oeu kck odel C.Y.Wog, rv:.09( CMS d C.Y.Wog, Phy.Rev.C76,054908( 07 C.Y.Wog, ChesePhys.Le.5,3936( 08 C.Y.Wog, J.Phys.G35,04085( 08 C.Y.Wog, Phys. Rev.C78,064905( 08 C.Y.Wog, Phys. Rev.C80,034908( 09 C.Y.Wog, Phys. Rev.C80,05497( 09 C.Y.Wog, Phys.Rev.C84,0490( C.Y.Wog, Rdge Worksho 5

BE Sgure II: z versely roorol o? The rdge wdh Δφ deeres he gude of z The overll hegh of he rdge yeld. deeres he uber of kcked edu ros The she of he rdge log Δη deeres he dn/dη of edu ros z z z C.Y.Wog, Phy.Rev.C76,054908( 07 6

Moeu Kck Model ercs z,, dn/dyd T fro STAR d Cerl Au+Au s=00 GeV C.Y.Wog, Phys. Rev.C78,064905( 08 z = GeV, ~ 6 D fro PRL95,530(05 & J. Phy. G34, S679 (07 C.Y.Wog, Rdge Worksho 7

Moeu kck odel gves he correc redco for PHOBOS z = GeV, ~ 6 C.Y.Wog, Rdge Worksho 8

Moeu Kck Model ercs z,, dn/dyd T fro PHENIX d C.Y.Wog, Phys. Rev.C80,034908( 09 rg ssoc Cerl Au+Au s=00 GeV z =0.8 GeV, ~ 6 C.Y.Wog, Rdge Worksho 9

For collsos 7 TeV z = GeV, ~.5, for N ~ 0 C.Y.Wog, Phys.Rev.C84,0490( 0

Why s he rdge os roe bewee <T<3 GeV/c? L = GeV/c L = GeV/c C.Y.Wog, Rdge Worksho

< z > d <> erced fro rdge d The rdy dsrbuo dn/dy of erly ros hs leu srucure For he os cerl AuAu s / =00 GeV, < z >~0.8-.0 GeV, <uber of kck edu ros, > ~ 6.0 3. For he os elsc s / =7 TeV < z >~.0 GeV, <> ~.5 z s roely versely roorol o C.Y.Wog, Rdge Worksho

BE Sgure III: Threshold =? [Nuber of je-(edu ro collsos] deeds o cerly We eed o serch wheher here s rd chge of he Δφ~0 rdge yeld s fuco of cerly C.Y.Wog, Rdge Worksho 3

BE Sgure III: Threshold =? C.Y.Wog, Rdge Worksho 4

BE Sgure III: Threshold =? 5

Where s he hreshold =? Threshold = C.Y.Wog, Rdge Worksho 6

BE Sgure III: Threshold =? Threshold =? C.Y.Wog, Rdge Worksho 7

BE Sgure III: Threshold =? C.Y.Wog, Rdge Worksho Threshold =? 8

roo-roo 00 GeV Au-Au d 84-93% Δρ There s rso of he se-sde low rdge 74-84% Alyzed.M bs 00 GeV Au+Au eves; cluded ll rcks wh > 0.5 GeV/c, η <, full φ oe: 38-46% o show 64-74% 55-64% 46-55% ρ ref φ Δ 8-38% η Δ 8-8% 9-8% 5-9% 0-5% Δρ ρ ref STAR Prelry φ Δ η Δ Fro M. Dughery s Ph.D Thess (008 C.Y.Wog, Rdge Worksho 9

BE Sgure III: Threshold =? C.Y.Wog, Rdge Worksho 30

Coclusos The Bose-Ese erferece s uu ybody effec whch occurs whe fs rcle colldes coherely wh y rge rcles dese edu The Bose-Ese erferece leds o he collecve recols of scerers log he je dreco The Bose-Ese erferece y hve bee observed gulr correlos of roduced hdros RHIC d LHC: (I collecve recols log he je dreco (II relo bewee z d (III hreshold = C.Y.Wog, Rdge Worksho 3

Bcku sldes

The oeu dsrbuo for hgh T rggger cosss of wo cooes N rg dn ch dδη dδφ d ol f N N R k k = f s R d f JF 3 he N deeds k df dδη dδφ uber of re he survvl kcked d o c reer rdge fcor due + f JF edu ros o fl dn dδη dδφ er se je frge je d erco s. je frge df dη dφ d rdge = df dy dφ d E r E = r f r e L je cosh y C.Y.Wog, Rdge Worksho 33

Il ro oeu dsrbuo We rerze he she of df dy dφ d = A ( he l ro dsrbuo by e { ( } - + / T d + MP = = The reers re :, T ( 0 + z ( + MP 0 ro z df dy dφ d ro re d B b = y dy dφ be A s orlzo cos such h, = ; π = y + e{ y y } d C.Y.Wog, Rdge Worksho 34 = B