Table of Contents. Chapter 1. Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity... 1

Similar documents
Piezoelectric Materials and Devices

Piezoelectric Resonators ME 2082

Solid State Physics (condensed matter): FERROELECTRICS

Advanced. piezoelectric. materials. Science and technology. Edited by. Kenji Uchino WOODHEAD PUBLISHING. Oxford Cambridge Philadelphia New Delhi

Piezoelectric Multilayer Beam Bending Actuators

Ferroelectric Materials and Their Applications

Diode Lasers and Photonic Integrated Circuits

PHYSICAL PROPERTIES OF CRYSTALS

Electromechanical Sensors and Actuators Fall Term

FIELD MODELS OF POWER BAW RESONATORS

PIEZOELECTRIC TECHNOLOGY PRIMER

Piezoelectric materials for MEMS applications Hiroshi Funakubo Tokyo Institute of Technology

Ferroelectric Phenomena in Crystals

Classification of Dielectrics & Applications

Supplementary Figure 1: SAW transducer equivalent circuit

NANO/MICROSCALE HEAT TRANSFER

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Functional Materials. Optical and Magnetic Applications. Electrical, Dielectric, Electromagnetic, Deborah D. L Chung.

Addition 1. Shear Stack Piezoelectric Elements and Shear Effect Basics

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

NON-EQUILIBRIUM THERMODYNAMICS

ACOUSTIC EMISSION MEASUREMENTS ON PIEZOELECTRIC/ FERROELECTRIC MATERIALS

SENSORS and TRANSDUCERS

Contents. I Introduction 1. Preface. xiii

SURFACE ACOUSTIC WAVE FERROELECTRIC PHONONIC CRYSTAL TUNABLE BY ELECTRIC FIELD

ELECTRODYNAMICS OF CONTINUOUS MEDIA

COMSOL for Modelling of STW Devices

Foundations of Ultraprecision Mechanism Design

Structure and Dynamics : An Atomic View of Materials

INTRODUCTION TO PIEZO TRANSDUCERS

Contents. Associated Editors and Contributors...XXIII

Transduction Based on Changes in the Energy Stored in an Electrical Field

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Introduction to the Electronic Properties of Materials

Optics of Liquid Crystal Displays

ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM BEHAVIOR UNDER THE EFFECT OF EXTERNAL SOLICITATIONS

Microelectromechanical systems (MEMS) have become an increasingly important area of

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

7.Piezoelectric, Accelerometer and Laser Sensors

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Solid Surfaces, Interfaces and Thin Films

Table of Contents. Preface...xvii. Part 1. Level

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

Micromechanical modeling and simulation of piezoceramic materials

Epitaxial piezoelectric heterostructures for ultrasound micro-transducers

Chapter 2 Dielectric, Mechanical, and Electromechanical Properties of Ferroelectrics and Piezoelectrics

Dielectric, Piezoelectric and Nonlinear Optical Properties of Lead Titanate based Ferroelectric Thin films

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 7

ESO 205 Nature and Properties of Materials

Intelligent Materials and their applications. Autors: Jana Pintea, Ionut Balan INCDIE ICPE-CA Bucharest, ROMANIA

ELECTRONICS DEVICES AND MATERIALS

Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter

I. INTRODUCTION II. SAMPLE PREPARATION JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 5 1 SEPTEMBER

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

Ferroelectric materials contain one or more polar axes along which a spontaneous

Nonlinear Optics. Second Editio n. Robert W. Boyd

Active elastomer components based on dielectric elastomers

Configurational Forces as Basic Concepts of Continuum Physics

Phase Transitions and Crystal Symmetry

VIBRATION PROBLEMS IN ENGINEERING

Piezo materials. Actuators Sensors Generators Transducers. Piezoelectric materials may be used to produce e.g.: Piezo materials Ver1404

Ferroelectrics investigation

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

«Modelling of piezoelectric actuators : an EMR approach»

FINITE ELEMENT ANALYSIS OF PIEZOELECTRIC TRANSDUCERS

Piezoelectric Bimorph Response with Imperfect Bonding Conditions

Creation of DIPOLE (two poles) (distortion of crystal structure by the small displacement of the ion in direction of electric field)

PIEZO-ON-SILICON MICROELECTROMECHANICAL RESONATORS

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

vii Preface ix Acknowledgements

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

IMECE SINGLE CRYSTAL PIEZOELECTRIC ACTUATORS FOR ADVANCED DEFORMABLE MIRRORS

Modelling of Different MEMS Pressure Sensors using COMSOL Multiphysics

Module 6: Smart Materials & Smart Structural Control Lecture 33: Piezoelectric & Magnetostrictive Sensors and Actuators. The Lecture Contains:

Bridging to the Continuum Scale for Ferroelectric Applications

Supplementary Information

A flexoelectric microelectromechanical system on silicon

ELECTRICITY AND MAGNETISM

ONR Grant No. N C Fabrication of Electrostrictive Ceramic Rings for Navy Sonar Transducers

Innovative MEMS Voltage-to-Frequency Converter using Cascaded Transducers

Distributed feedback semiconductor lasers

1990. Temperature dependence of soft-doped / hard-doped PZT material properties under large signal excitation and impact on the design choice

Optics, Light and Lasers

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Dielectric Properties of Solids

Foundations of MEMS. Chang Liu. McCormick School of Engineering and Applied Science Northwestern University. International Edition Contributions by

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Application and analysis of phononic crystal energy harvesting devices

FUNDAMENTALS OF POLARIZED LIGHT

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Electronic and Optoelectronic Properties of Semiconductor Structures

Aberration-corrected TEM studies on interface of multilayered-perovskite systems

List of Comprehensive Exams Topics

Roger Johnson Structure and Dynamics: Displacive phase transition Lecture 9

Microstructural Randomness and Scaling in Mechanics of Materials. Martin Ostoja-Starzewski. University of Illinois at Urbana-Champaign

Finite Element Analysis of Piezoelectric Cantilever

Optics, Optoelectronics and Photonics

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

CLASSICAL ELECTRICITY

Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal

Transcription:

Preface... General Introduction... xiii xvii Chapter 1. Dielectricity, Piezoelectricity, Pyroelectricity and Ferroelectricity.... 1 1.1. Crystal structure... 1 1.1.1. Crystal = lattice + pattern... 1 1.1.2. Seven primitive lattices 14 Bravais lattices... 4 1.1.3. Two-hundred and thirty space groups... 5 1.1.4. Thirty-two point groups (or crystal classes)... 5 1.1.5. Reticular planes... 7 1.1.6. X-rays see crystals... 8 1.2. Piezoelectricity, pyroelectricity and ferroelectricity definitions... 9 1.3. Simplified examples... 10 1.3.1. Dielectric effect... 10 1.3.2. Piezoelectric effect... 12 1.3.3. Pyroelectric effect... 13 1.3.4. Ferroelectric effect... 14 1.3.5. Electrostrictive effect... 15 1.4. Three typical structures: wurtzite, ilmenite and perovskite... 16 1.4.1. Wurtzite structure... 16 1.4.2. Ilmenite structure... 17 1.4.3. Perovskite structure... 18 1.5. Bibliography... 23

vi Integration of Ferroelectric and Piezoelectric Thin Films Chapter 2. Thermodynamic Study: a Structural Approach... 25 2.1. History... 25 2.2. Revisiting statistical thermodynamics... 26 2.2.1. Introduction... 26 2.2.2. Notion of equilibrium, statistical postulate... 27 2.2.3. Numbers of accessible states of a system... 28 2.2.4. Energy variation work and heat... 31 2.2.5. Heat transfer: entropy and absolute temperature... 33 2.2.6. Thermal energy: heat transfer... 35 2.2.7. Quasistatic transformation with work and heat transfer... 37 2.2.8. Example of a constant pressure and temperature experiment... 39 2.3. State functions... 41 2.4. Linear equations piezoelectricity... 44 2.5. Non linear equations electrostriction... 47 2.6. Bibliography... 48 Chapter 3. Ferroelectric-paraelectric Phase Transition Thermodynamic Modeling... 49 3.1. Hypothesis on Gibbs elastic energy... 49 3.2. Second-order transition... 52 3.3. Effects of stresses... 58 3.4. First-order transition... 60 3.5. Conclusion... 65 3.6. Bibliography... 65 Chapter 4. Mechanical Formalism... 67 4.1. Introduction... 67 4.2. Hooke s law... 67 4.3. Definitions of local strains... 69 4.3.1. Local strains in small strains hypothesis... 69 4.3.2. Meaning of matrix S... 75 4.4. Definition of local strains... 77 4.4.1. The strain tensor... 77 4.4.2. Physical meaning of T ij... 81 4.4.3. Equations of motion in a deformable solid... 82 4.5. Stress-strain relation... 83 4.5.1. Hooke s generalized law... 83 4.5.2. Dynamic relation... 84 4.6. Elastic energy density... 86

vii 4.6.1. Expression of elastic energy density... 86 4.6.2. Symmetry of the elasticity tensor... 88 4.7. Expression of the elasticity tensor as a function of elements of symmetry... 89 4.8. Bibliography... 93 Chapter 5. Dielectric Formalism... 95 5.1. Introduction... 95 5.2. The dielectric effect seen by Faraday... 95 5.3. Electric polarization and displacement... 99 5.4. The dielectric constant... 104 5.5. The local field in dielectrics: polarization catastrophe... 105 5.6. Dielectric relaxation... 109 5.6.1. The various relaxations... 109 5.6.2. Kramers-Kronig relations... 112 5.7. Electric energy density... 115 5.8. Bibliography... 117 Chapter 6. Piezoelectric Formalism... 119 and Mathieu PIJOLAT 6.1. Thermodynamic equations... 119 6.2. Reducing coefficients using crystal symmetry... 121 6.2.1. Example of a calculation: point group 3m... 122 6.3. One-dimensional microscopic model... 126 6.4. Electromechanical coupling coefficient... 130 6.5. Piezoelectric coefficients of key materials... 134 6.6. Calculating coupling as a function of crystal orientation... 136 6.7. Piezoelectric coefficients in the case of ferroelectric materials... 138 6.8. Relation between piezoelectric formalism and matter... 139 6.9. Bibliography... 141 Chapter 7. Acoustic Formalism... 143 Alexandre REINHARDT 7.1. Propagation of bulk waves... 143 7.1.1. Propagation of bulk waves in an elastic medium... 143 7.1.2. Elastic wave propagation in a piezoelectric medium... 153 7.2. Bulk wave resonator... 163 7.2.1. Piezoelectric plate vibrations... 163 7.2.2. Plate delimited by arbitrary acoustic impedance media... 171 7.2.3. Bimorph plate... 173

viii Integration of Ferroelectric and Piezoelectric Thin Films 7.2.4. Piezoelectric plate between two electrodes... 176 7.2.5. Equivalent electric circuit... 181 7.3. Bulk acoustic waves filter... 185 7.4. Bibliography... 190 Chapter 8. Electrostrictive Formalism... 191 8.1. Foundations of electrostriction... 191 8.2. Thermodynamic model of electrostriction case of the resonator... 192 8.3. The electrostriction tensor... 195 8.4. Microscopic model of electrostriction... 197 8.4.1. One-dimensional model... 197 8.4.2. Origin of spontaneous polarization in perovskite crystals... 199 8.5. Electrostrictive resonator... 202 8.6. Bibliography... 206 Chapter 9. Electric Characterization... 207, Gwenaël LE RHUN and Emilien BOUYSSOU 9.1. Static piezoelectric characterization of thin films... 207 9.1.1. Notion of effective coefficients... 207 9.1.2. Piezoelectric characterization of coefficient e 31eff... 208 9.1.3. Model... 210 9.1.4. Example of characterization: PZT films... 213 9.2. Piezoelectric and atomic force microscopy... 215 9.2.1. Atomic force microscope... 215 9.2.2. Piezoresponse force microscope... 218 9.3. Ferroelectric measurement... 225 9.3.1. Sawyer-Tower circuit... 227 9.3.2. Virtual ground circuit... 229 9.4. Dielectric measurement... 232 9.5. Leakage current in metal/insulator/metal structures... 236 9.5.1. Metal/insulator contact: definitions... 236 9.5.2. Conduction mechanisms limited by the interfaces... 240 9.5.3. Bulk-limited conduction mechanisms... 243 9.6. Bibliography... 245 Chapter 10. Piezoelectric Resonators and Filters... 249 Alexandre REINHARDT and Christophe BILLARD 10.1. Acoustic resonators: principle and history... 249 10.1.1. Quartz resonators... 249 10.1.2. High-frequency operation of resonators... 251

ix 10.1.3. Perfecting FBAR and SMR resonators... 256 10.2. BAW technology... 269 10.2.1. Introduction... 269 10.2.2. BAW filter topology... 270 10.2.3. Parameters of the BAW resonator and their impact on filter response... 272 10.2.4. Examples of realizations... 280 10.3. CRF technology... 283 10.3.1. Introduction... 283 10.3.2. Operating principles of CRF filters... 283 10.3.3. Example of implementations... 287 10.4. Bibliography... 291 Chapter 11. High Overtone Bulk Acoustic Resonator (HBAR)... 297 Mathieu PIJOLAT, Chrystel DEGUET and Sylvain BALLANDRAS 11.1. About HBAR... 297 11.1.1. Generalities... 298 11.1.2. Principle... 298 11.1.3. Description of the spectrum... 299 11.2. Technology... 302 11.2.1. Technological constraints... 302 11.2.2. Choice of materials... 303 11.2.3. Geometry of resonators... 304 11.3. Examples of implementations... 305 11.3.1. LNO on LNO... 305 11.3.2. Validation of parameter extractions: LNO on HBAR/FBAR Si... 309 11.4. Conclusions about HBAR... 312 11.5. Bibliography... 313 Chapter 12. Electrostrictive Resonators... 315 Alexandre VOLATIER, Brice IVIRA, Christophe ZINCK, Nizar BEN HASSINE and 12.1. Introduction... 315 12.2. State of the art... 316 12.2.1. Introduction... 316 12.2.2. Formalism of the electrostrictive resonator... 317 12.3. Experimental implementations... 326 12.3.1. 70/30 BST resonator without acoustic insulation... 326 12.3.2. STO resonator on Bragg mirror... 333 12.3.3. BST resonator on an acoustic Bragg mirror... 338 12.3.4. BST resonator on a membrane... 340

x Integration of Ferroelectric and Piezoelectric Thin Films 12.4. Simulation of a filter with electrostrictive resonators... 341 12.5. Status of perovskite electrostrictive resonators... 342 12.6. PZT-based tunable frequency ferroelectric acoustic resonator... 344 12.6.1. Introduction... 344 12.6.2. Technology... 345 12.6.3. RF characterization and discussion... 346 12.7. Nonlinear effect in piezoelectric AlN... 348 12.7.1. Introduction... 348 12.7.2. Piezoelectric-electrostrictive phenomenological model... 349 12.7.3. Application: AlN resonator on a Bragg mirror... 351 12.7.4. Conclusion with nonlinear AlN... 354 12.8. Conclusion with electrostriction... 354 12.9. Bibliography... 355 Chapter 13. Thin Film Piezoelectric Transducers... 357 Matthieu CUEFF, Patrice REY, Fabien FILHOL and 13.1. Introduction... 357 13.2. State of the art... 358 13.3. Resonant membranes... 361 13.3.1. Technology of PZT resonant membranes... 361 13.3.2. Frequency characterization of membranes... 363 13.3.3. A resonant pressure sensor... 364 13.3.4. Conclusion on the study of Si/PZT resonant membranes... 366 13.4. Resonant micromirror... 366 13.4.1. Introduction... 366 13.4.2. Technology and design of the resonant micromirror... 366 13.4.3. Characterization of the devices... 369 13.4.4. Conclusion about micromirrors... 371 13.5. Piezoelectric micro-switch... 371 13.5.1. Interest in piezoelectric films for micro-switches... 371 13.5.2. General description of the component... 373 13.5.3. Analytical development of the bimorph beam as actuator of the micro-switch... 374 13.5.4. Stack chosen for the piezoelectric actuator... 383 13.5.5. Multilayer analytical model... 384 13.5.6. Effect of temperature compensation... 386 13.5.7. The piezoelectric film... 387 13.5.8. Releasing the membrane... 387 13.5.9. Electrical characterizations... 388

xi 13.6. Sign of piezoelectric coefficients... 391 13.7. Bibliography... 394 List of Authors... 397 Index... 399