Active elastomer components based on dielectric elastomers

Size: px
Start display at page:

Download "Active elastomer components based on dielectric elastomers"

Transcription

1 Gummi Fasern Kunststoffe, 68, No. 6, 2015, pp Active elastomer components based on dielectric elastomers W. Kaal and S. Herold Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany Selected from International Polymer Science and Technology, 42, No. 8, 2015, reference GK 15/06/412; transl. serial no Translated by M. Grange A new design concept developed at the Fraunhofer LBF allows dielectric elastomers to be integrated efficiently as load-bearing components, serving as both actuator and sensor at the same time. Since the concept is based on perforated metal electrodes with high electrical conductivities, it can also be used for highly dynamic and acoustic applications to which dielectric elastomers would not usually lend themselves. This article focuses on the adaptive properties of these elastomer components. By applying a static voltage, the effective complex elastic modulus and the loss angle of the composite material can be adjusted within certain limits and varied as required. Experimental results are provided to illustrate this approach and the potential of this new technology for innovative solutions is discussed. INTRODUCTION Passive elastomer components have proved their ability to influence the dynamic behaviour of machine and vehicle structures in specific ways. Individual components can be tailored to particular applications thanks to the wide range of available materials with their different suspension and damping characteristics. In addition, electroactive polymers (EAPs), and particularly dielectric elastomers (DEs), allow active elastomer components to be produced which are capable of integrating adaptive and active functionalities. For example, the elastomer components mechanical properties can be modified by electrical stimulation during operation and, if necessary, active forces can also be applied. New concepts are therefore available for optimising vibration behaviour and acoustics, which can enhance performance, increase comfort or extend service life depending on the application. A concept that has been developed at the Fraunhofer LBF allows dielectric elastomers to be integrated particularly efficiently as load-bearing components which can, at the same time, serve as actuators and sensors. Experimental results are provided to illustrate this approach and the potential of this new technology for innovative solutions is discussed. DE ACTUATORS Dielectric elastomer stack actuators The term electroactive polymers refers to a variety of flexible functional materials with electromechanical coupling characteristics. The dielectric elastomers (DEs) are the most well-established and most widely researched of these. Their high deformability and rapid response times make them suitable for use as actuators in a variety of applications. A DE transducer generally consists of a thin polymer film provided on both sides with a compliant electrode, thus forming a flexible capacitor (Figure 1). The deformation that occurs when an electrical voltage is applied is based on electrostatic attraction between opposite charge carriers, causing a mechanical pressure s M inside the capacitor which is known as Maxwell stress. Depending on the construction, the elongation in the plane of the film or its change in thickness can be utilised for actuation purposes. This is achieved 2015 Smithers Information Ltd. T/1

2 by stacking multiple individual layers with alternately arranged electrodes electrically connected in parallel to form a stack actuator. From an electrical point of view, a stack transducer of this type essentially represents a capacitance which is calculated using the formula for a plate capacitor from the geometric values A (plate area), h (plate spacing), n (number of layers) and the permittivity e of the dielectric as: DE transducers are also characterised by a parallel resistance R p, which is obtained from the resistivity of the elastomer, and by a series resistance R s, which is determined by the conductivity of the electrodes and supply lines as well as the contact resistances. This gives the simplified equivalent model of a DE actuator shown in Figure 2. The series connection of serial resistance (1) and capacitance leads to low-pass behaviour by the actuator, since at high frequencies only part of the voltage U o applied to the terminals is effectively applied to the capacitor. Some of the properties of conventional DE stack actuators would be disadvantageous if used in structural dynamics applications. On the one hand, rigid connections as used in mechanical engineering applications restrict elongation at the edges (Figure 3a), which can entail significant overall reductions in performance. This effect is more pronounced in flatter actuators with larger surface areas, which are needed in load-bearing applications for reasons of stability. On the other hand, the relatively poor conductivity of the compliant electrodes leads to a high series resistance. For the system as a whole, this means a low upper limit to the frequencies at which the actuator can reasonably be operated (Figure 3b). DE stack actuators with perforated electrodes Figure 1. Operating principle of dielectric elastomers To facilitate the use of DE stack actuators in structural dynamics applications, an actuator design based on nonelongating metal electrodes with a microscopically fine perforated structure (Figure 4) has been developed at the Fraunhofer LBF. This design enables the incompressible elastomer to expand locally into the hollow spaces, giving a macroscopically compressible composite stack. The actuator area therefore remains constant under both mechanically and electrically induced pressure, and even very flat versions of the actuator can be attached to rigid structures with low losses. The extremely high conductivity of the metal electrodes also favours operation at high frequencies and ensures that electrical losses are low. The precise design of the pattern of holes can be optimised and fine-tuned by numerical methods, particularly using finite element models [1]. Figure 2. Simplified equivalent electrical circuit diagram of a DE stack actuator Figure 3. Disadvantages of conventional DE stack actuators for dynamic applications: a) mechanical restriction of elongation with rigid connection, b) low-pass electrical characteristics Functional model of a DE stack actuator with perforated electrodes Based on the design concept described above, various functional models of DE stack actuators with perforated metal electrodes have been constructed at the LBF. The stack actuator illustrated in Figure 5 consists of 44 active layers of natural latex in a polymer housing, which was made from polyamide in a rapid prototyping process. The 45 electroformed electrodes consist of nickel and they each T/2 International Polymer Science and Technology, Vol. 42, No. 9, 2015

3 contain over 280,000 holes with a 90 µm diameter. This and similar functional models have already been used successfully to demonstrate active vibration reduction in structural dynamic systems [2]. Potential semi-active applications for dielectric elastomers As well as active applications, dielectric elastomers are also suitable for semi-active uses since their mechanical properties can be varied by electrical stimulation. Because passive elastomer components are already used in a variety of ways for vibration reduction in structural dynamics, the approach of varying their stiffness and damping properties in operation represents an obvious extension of their field of use [3]. In some cases, their mechanical properties vary substantially when voltage is applied because of the extent of their deformation. The advantage of the semi-active application of dielectric elastomers lies in the low amount of electrical energy that has to be supplied. Since the element s capacitance only has to be charged statically and leakage currents have to be compensated, high currents are not needed. The high voltage can therefore be generated by compact, quasi-static voltage amplifiers. Figure 4. Operating principle of DE stack actuator with perforated electrodes Figure 5. Functional model of a DE stack actuator with perforated electrodes, CAD model and photo (without cover) EXPERIMENTAL CHARACTERISATION OF THE FUNCTIONAL MODEL When voltage is applied in the design approach using perforated electrodes, the mechanical pre-stressing of the stack changes and, because of the nonlinear characteristics, even with small deformations the external stiffness also changes. In order to quantify this effect, the functional model described above was measured in a test rig for the dynamic characterisation of elastomer components. The set-up is illustrated in Figure 6. The test involves subjecting the elastomer sample or stack transducer to cyclic loads from an electrodynamic shaker, using closed-loop control to establish a constant force amplitude. The acting force is measured at the bottom of the stack transducer to minimise the dynamic effect of the upper vibrating mass. Since the entire test rig is set up on a low-frequency vibration isolation table, the lower mounting of the sample is almost completely at rest above the fundamental resonance of the isolation table at approx. 10 Hz. The sample deformation is determined from the difference between two acceleration signals which record acceleration in the vertical direction at the upper and lower points of force application. Figure 7 first shows an example of measurement data over the time range and illustrates the way in which adaptive stiffness works. The elastomer stack Figure 6. Test rig for the experimental characterisation of elastomer components was excited with a constant force amplitude of 5 N (top) and the high voltage was activated at t = 0. This voltage was generated by a miniature high voltage amplifier from Emco (Q30 model, dimensions 38 x 38 x 16 mm 3 ), supplying a maximum of 0.5 ma with a maximum of 3 kv and requiring an input current of less than 300 ma. The electrically activated increase in stiffness is associated with a corresponding reduction in amplitude of the differential acceleration (bottom); the amplitude drops after a certain time delay mainly because of the limited charging current that can be generated by the amplifier. In the present case, it was clearly possible to reduce the differential acceleration 2015 Smithers Information Ltd. T/3

4 Figure 7. Influence of offset voltage on deformation in the time range and thus the deflection to approx. 65% of the initial amplitude. In order to quantify this effect and present it in the frequency range more precisely, the stack transducer was excited with a harmonic signal at various frequencies from 10 to 150 Hz and the deformation, stiffness and loss angle between force and deformation were determined from the acceleration data. These measurements were performed for different offset voltages (0 V, 500 V, 750 V, 1250 V, 1500 V and 1920 V). The test results are compiled in Figure 8. The amplitude curves for force and deflection can be seen on the left-hand side and the resulting values for stiffness and loss angle on the right-hand side. It is apparent that the deflection amplitude decreases as the offset voltage rises over the whole of the frequency range observed, which translates as an increase in stiffness. This effect is slightly more pronounced at low frequencies than in the higher frequency range. The loss angle decreases over the frequency range from a maximum of about 20 at 10 Hz to about 7 at 150 Hz. In the lower frequency range in particular, the loss angle is reduced by the offset voltage, which corresponds to a reduction in system damping. As an example, Figure 9 shows the resulting stiffness at 20 Hz as a function of offset voltage. It is clear that the stiffness can be increased semi-actively by a factor of about 2. Because of the quadratic relationship between Maxwell stress and electrical field, the stiffness increases disproportionately to the voltage and so a further increase in offset voltage will make the effect even more pronounced. The elastomer s breakdown voltage, which is over 4 kv for the present material under ideal conditions, determines the maximum possible voltage. However, the present actuator was only tested up to about half of this voltage owing to imperfections in the material and because the manual production method is prone to errors. CONCLUSIONS Variable stiffness elements are of interest wherever system parameters (e.g. speed, mass etc.) vary and structural properties have to be adjusted accordingly. However, possible applications for semiactive stiffness adjustment can also be seen in the area of adaptive vibration absorbers. Many different solutions with mechanically adjustable stiffness have already been designed and implemented [4, 5]. Some of these approaches use a change in the effective length of a bending beam while others are based on changes to their cross-section or pre-stressing. All of these approaches, however, contain mechanically adjustable components which are therefore susceptible to wear. They also need a motor to activate the adjusting mechanism. To adjust stiffness and therefore resonant frequency, even when operated under load, this motor generally has to be correspondingly powerful and therefore heavy and expensive. Figure 8. Test results in the frequency range Hz Figure 9. Evaluation of measurements at 20 Hz T/4 International Polymer Science and Technology, Vol. 42, No. 9, 2015

5 In contrast, adaptive vibration absorbers based on semi-active DE stack transducers need no mechanical adjustment mechanisms and can react quickly to the need for frequency changes, while being cheap to produce and energy-efficient to operate. They take up little space and the high-voltage generator can be located separately so that it can supply multiple elastomer components with high voltage. This paper has only been able to demonstrate the effect of semi-active stiffness adjustment in DE stack actuators with perforated electrodes in principle. It will certainly be possible to increase this effect by optimising the electrode geometry, elastomer properties (particularly the surface characteristics) and design. Further work in this field will therefore enable cost-effective, energyefficient adaptive stiffness elements to be produced in the future for broad areas of application. REFERENCES 1. Kaal, W., Herold, S., Numerical investigations on dielectric stack actuators with perforated electrodes, Smart Materials and Structures 22/10 (2013), , Herold, S., Kaal, W., Melz, T., Novel dielectric stack actuators for dynamic applications, Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stone Mountain, GA, USA, Carpi, F. (Hrsg.), Dielectric Elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology., Elsevier, Amsterdam, Franchek, M.A., Ryan, M.W., Bernhard, R.J., Adaptive passive vibration control, Journal of Sound and Vibration 189 (1995), Brennan, M.J., Vibration control using a tunable vibration neutraliser, Journal of Mechanical Engineering Sciences 211 (1997), Smithers Information Ltd. T/5

6 T/6 International Polymer Science and Technology, Vol. 42, No. 9, 2015

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

SENSOR DESIGN FOR PIEZOELECTRIC CANTILEVER BEAM ENERGY HARVESTERS

SENSOR DESIGN FOR PIEZOELECTRIC CANTILEVER BEAM ENERGY HARVESTERS SENSOR DESIGN FOR PIEZOELECTRIC CANTILEVER BEAM ENERGY HARVESTERS Michael I. Friswell and Sondipon Adhikari School of Engineering Swansea University Singleton Park, Swansea SA2 8PP, UK E-mail: m.i.friswell@swansea.ac.uk;

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS

MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS MEMS INERTIAL POWER GENERATORS FOR BIOMEDICAL APPLICATIONS P. MIAO, P. D. MITCHESON, A. S. HOLMES, E. M. YEATMAN, T. C. GREEN AND B. H. STARK Department of Electrical and Electronic Engineering, Imperial

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

MAS.836 PROBLEM SET THREE

MAS.836 PROBLEM SET THREE MAS.836 PROBLEM SET THREE FSR, Strain Gauge, and Piezo Circuits: The purpose of this problem set is to familiarize yourself with the most common forms of pressure and force measurement. The circuits you

More information

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS

CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 77 CHAPTER 5 FIXED GUIDED BEAM ANALYSIS 5.1 INTRODUCTION Fixed guided clamped and cantilever beams have been designed and analyzed using ANSYS and their performance were calculated. Maximum deflection

More information

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE INSTRUMENTATION ECE Fourth Semester Presented By:- Sumit Grover Lect., Deptt. of ECE Detailed Contents Objectives Sensors and transducer Classification of transducers Temperature transducers Resistance

More information

7.Piezoelectric, Accelerometer and Laser Sensors

7.Piezoelectric, Accelerometer and Laser Sensors 7.Piezoelectric, Accelerometer and Laser Sensors 7.1 Piezoelectric sensors: (Silva p.253) Piezoelectric materials such as lead-zirconate-titanate (PZT) can generate electrical charge and potential difference

More information

EAP - ElectroActive Polymers

EAP - ElectroActive Polymers A Short Introduction to Robotics Applications AIRLab - Artificial Intelligence and Robotics Lab Politecnico di Milano http://www.airlab.elet.polimi.it/ February 2007 Introduction to EAP Focus: Emulate

More information

The strain response of silicone dielectric elastomer actuators

The strain response of silicone dielectric elastomer actuators The strain response of silicone dielectric elastomer actuators G. Yang a, G. Yao b, W. Ren a, G. Akhras b, J.P. Szabo c and B.K. Mukherjee a* a Department of Physics, Royal Military College of Canada,

More information

OPTIMAL PLACEMENT OF SIX INERTIAL MASS ACTUATORS FOR MIMO ACTIVE VIBRATION CONTROL ON A LABORATORY TRUSS STRUCTURE

OPTIMAL PLACEMENT OF SIX INERTIAL MASS ACTUATORS FOR MIMO ACTIVE VIBRATION CONTROL ON A LABORATORY TRUSS STRUCTURE OPTIMAL PLACEMENT OF SIX INERTIAL MASS ACTUATORS FOR MIMO ACTIVE VIBRATION CONTROL ON A LABORATORY TRUSS STRUCTURE Giovanni Lapiccirella and Jens Rohlfing Fraunhofer Institute for structural durability

More information

Microstructure cantilever beam for current measurement

Microstructure cantilever beam for current measurement 264 South African Journal of Science 105 July/August 2009 Research Articles Microstructure cantilever beam for current measurement HAB Mustafa and MTE Khan* Most microelectromechanical systems (MEMS) sensors

More information

INTRODUCTION TO PIEZO TRANSDUCERS

INTRODUCTION TO PIEZO TRANSDUCERS PIEZO SYSTEMS, INC. 65 Tower Office Park Woburn, MA 01801 USA Tel: 781 933 4850 Fax: 781 933 4743 email: sales@piezo.com Find Search for a product or category HOME PRODUCTS CUSTOM OEM CATALOG TECHNICAL

More information

Electro-statically stricted polymers (ESSP)

Electro-statically stricted polymers (ESSP) Proceedings of SPIE's 61h Annual International Symposium on Smart Structures and Materials, 1-5 March, 1999, Newport CA. Beach, No. 3669-41 SPIE Copyright 0 1999 Electro-statically stricted polymers (ESSP)

More information

Variable capacitor energy harvesting based on polymer dielectric and composite electrode

Variable capacitor energy harvesting based on polymer dielectric and composite electrode 2.8.215 Variable capacitor energy harvesting based on polymer dielectric and composite electrode Robert Hahn 1*, Yuja Yang 1, Uwe Maaß 1, Leopold Georgi 2, Jörg Bauer 1, and K.- D. Lang 2 1 Fraunhofer

More information

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding.

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding. UNIT 4 DISPLACEMENT MEASURMENT Electrical comparator Working principle of Electrical comparators: These instruments are based on the theory of Wheatstone A.C. Bridge. When the bridge is electrically balanced,

More information

Active Integral Vibration Control of Elastic Bodies

Active Integral Vibration Control of Elastic Bodies Applied and Computational Mechanics 2 (2008) 379 388 Active Integral Vibration Control of Elastic Bodies M. Smrž a,m.valášek a, a Faculty of Mechanical Engineering, CTU in Prague, Karlovo nam. 13, 121

More information

Vibration modelling of machine tool structures

Vibration modelling of machine tool structures Vibration modelling of machine tool structures F. Haase, S. Lockwood & D.G. Ford The Precision Engineering Centre, University of Huddersfield (UK) Abstract Productivity in modem machine tools is acheved

More information

A COMPLETE STUDY OF ELECTROACTIVE POLYMERS FOR ENERGY SCAVENGING: MODELLING AND EXPERIMENTS

A COMPLETE STUDY OF ELECTROACTIVE POLYMERS FOR ENERGY SCAVENGING: MODELLING AND EXPERIMENTS Stresa, Italy, 5-7 pril 007 OMPLETE STUDY OF ELETROTIVE POLYMERS FOR ENERGY SVENGING: MODELLING ND EXPERIMENTS. Jean-Mistral 1, S. asrour, J.J. haillout 1 and. onvilain 1 E-LETI. 17 rue des Martyrs, 805

More information

An Energy Circulation Driving Surface Acoustic Wave Motor

An Energy Circulation Driving Surface Acoustic Wave Motor An Energy Circulation Driving Surface Acoustic Wave Motor Minoru K. Kurosawa Tokyo Institute of Technology Yokohama, Japan mkur@ae.titech.ac.jp Purevdagva Nayanbuu Tokyo Institute of Technology Yokohama,

More information

PIEZOELECTRIC TECHNOLOGY PRIMER

PIEZOELECTRIC TECHNOLOGY PRIMER PIEZOELECTRIC TECHNOLOGY PRIMER James R. Phillips Sr. Member of Technical Staff CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque, New Mexico 87113 Piezoelectricity The piezoelectric effect is

More information

DAMPING CONTROL OF A PZT MULTILAYER VIBRATION USING NEGATIVE IMPEDANCE CIRCUIT

DAMPING CONTROL OF A PZT MULTILAYER VIBRATION USING NEGATIVE IMPEDANCE CIRCUIT International Workshop SMART MATERIALS, STRUCTURES & NDT in AEROSPACE Conference NDT in Canada 2011 2-4 November 2011, Montreal, Quebec, Canada DAMPING CONTROL OF A PZT MULTILAYER VIBRATION USING NEGATIVE

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Molecular structures of functional materials involved in our SGOTFT devices. Supplementary Figure 2 Capacitance measurements of a SGOTFT device. (a) Capacitance

More information

Sensors and Transducers. mywbut.com

Sensors and Transducers. mywbut.com Sensors and Transducers 1 Objectives At the end of this chapter, the students should be able to: describe the principle of operation of various sensors and transducers; namely.. Resistive Position Transducers.

More information

Electrical Properties and Power Considerations of a Piezoelectric Actuator

Electrical Properties and Power Considerations of a Piezoelectric Actuator NASA/CR-2000-209861 ICASE Report No. 2000-8 Electrical Properties and Power Considerations of a Piezoelectric Actuator T. Jordan NASA Langley Research Center, Hampton, Virginia Z. Ounaies ICASE, Hampton,

More information

HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL

HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL HOMOGENEOUS ELECTRORHEOLOGICAL FLUIDS APPLIED TO VIBRATION CONTROL A.K. El Wahed Division of Mechanical Engineering & Mechatronics, Faculty of Engineering and Physical Sciences, University of Dundee, Dundee.

More information

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS

DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS DESIGN AND FABRICATION OF THE MICRO- ACCELEROMETER USING PIEZOELECTRIC THIN FILMS JYH-CHENG YU and FU-HSIN LAI Department of Mechanical Engineering National Taiwan University of Science and Technology

More information

PIEZOELECTRIC MATERIALS USED FOR PORTABLE

PIEZOELECTRIC MATERIALS USED FOR PORTABLE PIEZOELECTRIC MATERIALS USED FOR PORTABLE DEVICE SUPPLY G. Poulin, E. Sarraute, F. Costa, J.-C. Faugière SATIE ENS Cachan, Cachan, France Abstract: The focus of this paper is to study the feasibility of

More information

Piezoelectric Multilayer Beam Bending Actuators

Piezoelectric Multilayer Beam Bending Actuators R.G. Bailas Piezoelectric Multilayer Beam Bending Actuators Static and Dynamic Behavior and Aspects of Sensor Integration With 143 Figures and 17 Tables Sprin ger List of Symbols XV Part I Focus of the

More information

Transactions on the Built Environment vol 22, 1996 WIT Press, ISSN

Transactions on the Built Environment vol 22, 1996 WIT Press,   ISSN A shock damage potential approach to shock testing D.H. Trepess Mechanical Subject Group, School of Engineering, Coventry University, Coventry CVl 5FB, UK A shock damage (excitation capacity) approach

More information

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy

Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Institute for Electron Microscopy and Nanoanalysis Graz Centre for Electron Microscopy Micromechanics Ass.Prof. Priv.-Doz. DI Dr. Harald Plank a,b a Institute of Electron Microscopy and Nanoanalysis, Graz

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field. Lecture 6-5. Department of Mechanical Engineering

Transduction Based on Changes in the Energy Stored in an Electrical Field. Lecture 6-5. Department of Mechanical Engineering Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-5 Transducers with cylindrical Geometry For a cylinder of radius r centered inside a shell with with an inner radius

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric

More information

Selection of the geometric and materials parameters in piezoelectric sensors level

Selection of the geometric and materials parameters in piezoelectric sensors level Selection of the geometric and materials parameters in piezoelectric sensors level Andrzej Wróbel 1, Andrzej Buchacz 2, Marek Płaczek 3 Institute of Engineering Processes Automation and Integrated Manufacturing

More information

ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT

ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT ACTIVE VIBRATION CONTROL PROTOTYPING IN ANSYS: A VERIFICATION EXPERIMENT Ing. Gergely TAKÁCS, PhD.* * Institute of Automation, Measurement and Applied Informatics Faculty of Mechanical Engineering Slovak

More information

Energy balance in self-powered MR damper-based vibration reduction system

Energy balance in self-powered MR damper-based vibration reduction system BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 1, 2011 DOI: 10.2478/v10175-011-0011-4 Varia Energy balance in self-powered MR damper-based vibration reduction system J. SNAMINA

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6- Transduction Based on Changes in the Energy Stored in an Electrical Field Actuator Examples Microgrippers Normal force driving In-plane force driving» Comb-drive device F = εav d 1 ε oε F rwv

More information

7. CONCLUSIONS & SCOPE

7. CONCLUSIONS & SCOPE 7. CONCLUSIONS & SCOPE ENERGY harvesting is a critical technology for the expansion of self-governing, self-powered electronic devices. As the energy requirements of low-power electronics reduction, the

More information

Bridge Measurement 2.1 INTRODUCTION Advantages of Bridge Circuit

Bridge Measurement 2.1 INTRODUCTION Advantages of Bridge Circuit 2 Bridge Measurement 2.1 INTRODUCTION Bridges are often used for the precision measurement of component values, like resistance, inductance, capacitance, etc. The simplest form of a bridge circuit consists

More information

Special edition paper

Special edition paper Development of New Aseismatic Structure Using Escalators Kazunori Sasaki* Atsushi Hayashi* Hajime Yoshida** Toru Masuda* Aseismatic reinforcement work is often carried out in parallel with improvement

More information

Transactions on the Built Environment vol 12, 1995 WIT Press, ISSN

Transactions on the Built Environment vol 12, 1995 WIT Press,   ISSN Transactions on the Built Environment vol 12, 1995 WIT Press, www.witpress.com, ISSN 1743-359 Design and analysis of a resonant gyroscope suitable for fabrication using the LIGA process L. Yao, E. Chowanietz,

More information

Optimization of two-dimensional permanent magnet arrays for diamagnetic levitation

Optimization of two-dimensional permanent magnet arrays for diamagnetic levitation Optimization of two-dimensional permanent magnet arrays for diamagnetic levitation Roland Moser, François Barrot, Jan Sandtner, Hannes Bleuler Laboratory of Robotic Systems Swiss Federal Institute of Technology,

More information

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Vibration Control Prof. Dr. S. P. Harsha Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Vibration Isolation Lecture - 1 Vibration Isolation 1 This

More information

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications

Outline. 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Sensor devices Outline 4 Mechanical Sensors Introduction General Mechanical properties Piezoresistivity Piezoresistive Sensors Capacitive sensors Applications Introduction Two Major classes of mechanical

More information

Design of an Innovative Acoustic Metamaterial

Design of an Innovative Acoustic Metamaterial Design of an Innovative Acoustic Metamaterial PAVLOS MAVROMATIDIS a, ANDREAS KANARACHOS b Electrical Engineering Department a, Mechanical Engineering Department b Frederick University 7 Y. Frederickou

More information

FREQUENCY BEHAVIOR OF RYLEIGH HYPER-ELASTIC MICRO- BEAM

FREQUENCY BEHAVIOR OF RYLEIGH HYPER-ELASTIC MICRO- BEAM International Journal of Industrial Electronics and Electrical Engineering, ISSN(p: 7-698, ISSN(e: 9-X Volume-6, Issue-, Apr.-18, http://ijieee.org.in FREQUENCY BEHAVIOR OF RYLEIGH HYPER-ELASTIC MICRO-

More information

10 Measurement of Acceleration, Vibration and Shock Transducers

10 Measurement of Acceleration, Vibration and Shock Transducers Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti Al-Sharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts

More information

Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams

Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams A. Erturk 1 Center for Intelligent Material Systems and Structures, Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, VA 24061 e-mail: erturk@vt.edu P. A. Tarazaga J. R. Farmer

More information

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS Journal of Engineering Science and Technology Vol. 12, No. 12 (217) 3398-3411 School of Engineering, Taylor s University VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS DILEEP

More information

Dielectric Elastomers and Compliant Metal Electrode Technology

Dielectric Elastomers and Compliant Metal Electrode Technology Dielectric Elastomers and Compliant Metal Electrode Technology R.W. Jones 1*, Peng Wang 1, Benny Lassen 1, Rahimullah Sarban 2 1 Mads Clausen Institute, Southern Denmark University, SØnderborg, Denmark.

More information

Armin Rasch * Abstract

Armin Rasch * Abstract Optimization strategy for the identification of elastomer parameters of truck mountings for the improved adjustment of Multi-Body Simulation data with measured values on rough road conditions Armin Rasch

More information

Design of a MEMS Capacitive Comb-drive Accelerometer

Design of a MEMS Capacitive Comb-drive Accelerometer Design of a MEMS Capacitive Comb-drive Accelerometer Tolga Kaya* 1, Behrouz Shiari 2, Kevin Petsch 1 and David Yates 2 1 Central Michigan University, 2 University of Michigan * kaya2t@cmich.edu Abstract:

More information

MODELLING AND TESTING OF AN ERF VIBRATION DAMPER FOR LIGHT ROTORS WITH LARGE AMPLITUDES

MODELLING AND TESTING OF AN ERF VIBRATION DAMPER FOR LIGHT ROTORS WITH LARGE AMPLITUDES MODELLING AND TESTING OF AN ERF VIBRATION DAMPER FOR LIGHT ROTORS WITH LARGE AMPLITUDES Jens Bauer, bauer@sdy.tu-darmstadt.de Institute of Structural Dynamics, Technische Universität Darmstadt, Germany

More information

Piezo Theory: Chapter 1 - Physics & Design

Piezo Theory: Chapter 1 - Physics & Design Piezoelectric effect inverse piezoelectric effect The result of external forces to a piezoelectric material is positive and negative electrical charges at the surface of the material. If electrodes are

More information

A Modal Approach to Lightweight Partitions with Internal Resonators

A Modal Approach to Lightweight Partitions with Internal Resonators A Modal Approach to Lightweight Partitions with Internal Resonators Steffen Hettler, Philip Leistner Fraunhofer-Institute of Building Physics, D-7569 Stuttgart, Nobelstrasse, Germany e-mail: hettler@ibp.fraunhofer.de,

More information

Experimental Modal Analysis of a Flat Plate Subjected To Vibration

Experimental Modal Analysis of a Flat Plate Subjected To Vibration American Journal of Engineering Research (AJER) 2016 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-6, pp-30-37 www.ajer.org Research Paper Open Access

More information

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV

VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV VIBRATION ANALYSIS OF E-GLASS FIBRE RESIN MONO LEAF SPRING USED IN LMV Mohansing R. Pardeshi 1, Dr. (Prof.) P. K. Sharma 2, Prof. Amit Singh 1 M.tech Research Scholar, 2 Guide & Head, 3 Co-guide & Assistant

More information

Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter

Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter Journal of Physics: Conference Series PAPER OPEN ACCESS Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter To cite this article: Sonia Bradai et al 2015 J. Phys.:

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

Modellierung, Entwurf und automatisierte Herstellung von Multilayer-Polymeraktoren

Modellierung, Entwurf und automatisierte Herstellung von Multilayer-Polymeraktoren Modellierung, Entwurf und automatisierte Herstellung von Multilayer-Polymeraktoren Modeling, design and automated fabrication of polymer-based multilayer actuators Thorben Hoffstadt, Dominik Tepel und

More information

Sensors & Transducers 2016 by IFSA Publishing, S. L.

Sensors & Transducers 2016 by IFSA Publishing, S. L. Sensors & Transducers, Vol. 96, Issue, January 206, pp. 52-56 Sensors & Transducers 206 by IFSA Publishing, S. L. http://www.sensorsportal.com Collapse Mode Characteristics of Parallel Plate Ultrasonic

More information

Estimation of damping capacity of rubber vibration isolators under harmonic excitation

Estimation of damping capacity of rubber vibration isolators under harmonic excitation Estimation of damping capacity of rubber vibration isolators under harmonic excitation Svetlana Polukoshko Ventspils University College, Engineering Research Institute VSRC, Ventspils, Latvia E-mail: pol.svet@inbox.lv

More information

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour)

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour) Part 2 Sensor and Transducer Instrument Selection Criteria (3 Hour) At the end of this chapter, you should be able to: Describe the definition of sensor and transducer Determine the specification of control

More information

Foundations of Ultraprecision Mechanism Design

Foundations of Ultraprecision Mechanism Design Foundations of Ultraprecision Mechanism Design S.T. Smith University of North Carolina at Charlotte, USA and D.G. Chetwynd University of Warwick, UK GORDON AND BREACH SCIENCE PUBLISHERS Switzerland Australia

More information

Investigation of Cryogenic Cooling Systems Activated by Piezoelectric Elements

Investigation of Cryogenic Cooling Systems Activated by Piezoelectric Elements Investigation of Cryogenic Cooling Systems Activated by Piezoelectric Elements S. Sobol, G. Grossman Technion Israel Institute of Technology Haifa, Israel 3 ABSTRACT A compressor for a cryocooler based

More information

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization

Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Finite Element Modeling of Ultrasonic Transducers for Polymer Characterization Serena De Paolis *, Francesca Lionetto and Alfonso Maffezzoli

More information

Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving

Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving Journal of Physics: Conference Series PAPER OPEN ACCESS Study on Tire-attached Energy Harvester for Lowspeed Actual Vehicle Driving To cite this article: Y Zhang et al 15 J. Phys.: Conf. Ser. 66 116 Recent

More information

Characterization and modelling of 3D piezoelectric ceramic structures with. ATILA software.

Characterization and modelling of 3D piezoelectric ceramic structures with. ATILA software. Characterization and modelling of 3D piezoelectric ceramic structures with ATILA software. Esa Heinonen, Jari Juuti and Seppo Leppävuori University of Oulu, Microelectronics and Material Physics Laboratories,

More information

APPLICATIONS OF VIBRATION TRANSDUCERS

APPLICATIONS OF VIBRATION TRANSDUCERS APPLICATIONS OF VIBRATION TRANSDUCERS 1) Measurements on Structures or Machinery Casings: Accelerometers and Velocity Sensors Used in gas turbines, axial compressors, small and mid-size pumps. These sensors

More information

Dynamic stiffness compensation with active aerostatic thrust bearings

Dynamic stiffness compensation with active aerostatic thrust bearings Dynamic stiffness compensation with active aerostatic thrust bearings G. Aguirre, F. Al-Bender, H. Van Brussel K.U.Leuven, Department of Mechanical Engineering, Celestijnenlaan 300 B, B-3001, Heverlee,

More information

Development of a Fatigue Testing Setup for Dielectric Elastomer Membrane Actuators

Development of a Fatigue Testing Setup for Dielectric Elastomer Membrane Actuators 1 2 3 4 5 6 7 8 9 1 0 11 12 Development of a Fatigue Testing Setup for Dielectric Elastomer Membrane Actuators M. Hill* a,b, G. Rizzello a, S. Seelecke a a Department of Systems Engineering, Department

More information

On the force drop off phenomenon in shaker testing in experimental modal analysis

On the force drop off phenomenon in shaker testing in experimental modal analysis Shock and Vibration 9 (2002) 165 175 165 IOS Press On the force drop off phenomenon in shaker testing in experimental modal analysis Paulo Sergio Varoto and Leopoldo Pisanelli Rodrigues de Oliveira Dynamics

More information

HEALTH MONITORING OF PLATE STRUCTURE USING PIEZO ELECTRIC PATCHES AND CURVATURE MODE SHAPE

HEALTH MONITORING OF PLATE STRUCTURE USING PIEZO ELECTRIC PATCHES AND CURVATURE MODE SHAPE ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

High-performance machining of fiber-reinforced materials with hybrid ultrasonic-assisted cutting

High-performance machining of fiber-reinforced materials with hybrid ultrasonic-assisted cutting , pp. 79 88 Special issue: 3rd International MERGE Technologies Conference (IMTC), 21st 22nd September 2017, Chemnitz High-performance machining of fiber-reinforced materials with hybrid ultrasonic-assisted

More information

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE

TE 75R RESEARCH RUBBER FRICTION TEST MACHINE TE 75R RESEARCH RUBBER FRICTION TEST MACHINE Background: The Research Rubber Friction Test Machine offers the ability to investigate fully the frictional behaviour of rubbery materials both in dry and

More information

Adaptives Energy Harvesting für Condition Monitoring Anwendungen im maritimen Umfeld

Adaptives Energy Harvesting für Condition Monitoring Anwendungen im maritimen Umfeld Adaptives Energy Harvesting für Condition Monitoring Anwendungen im maritimen Umfeld Daniel Hoffmann 1, Alexander Willmann 1, Thorsten Hehn 1, Yiannos Manoli 1,2 1 Hahn-Schickard, Wilhelm-Schickard-Str.

More information

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES

DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES DYNAMIC ROTARY TORQUE MEASUREMENT USING SURFACE ACOUSTIC WAVES Abstract A. Lonsdale Technical Director Sensor Technology Ltd The subject of torque measurement has previously been addressed extensively.

More information

Development of the Screw-driven Motors by Stacked Piezoelectric Actuators

Development of the Screw-driven Motors by Stacked Piezoelectric Actuators Proceedings of the 4th IIAE International Conference on Industrial Application Engineering 2016 Development of the Screw-driven Motors by Stacked Piezoelectric Actuators Shine-Tzong Ho a,*, Hao-Wei Chen

More information

440. Simulation and implementation of a piezoelectric sensor for harmonic in-situ strain monitoring

440. Simulation and implementation of a piezoelectric sensor for harmonic in-situ strain monitoring 440. Simulation and implementation of a piezoelectric sensor for harmonic in-situ strain monitoring 0. Incandela a, L. Goujon b, C. Barthod c University of Savoie, BP 80439 Annecy-le-Vieux CEDEX, France

More information

Principles of Active Vibration Control: Piezoelectric materials

Principles of Active Vibration Control: Piezoelectric materials Principles of Active Vibration Control: Piezoelectric materials Introduction: Piezoelectric materials are materials that produce a voltage when stress is applied. Since, this effect also applies in the

More information

Passive Control of the Vibration of Flooring Systems using a Gravity Compensated Non-Linear Energy Sink

Passive Control of the Vibration of Flooring Systems using a Gravity Compensated Non-Linear Energy Sink The 3 th International Workshop on Advanced Smart Materials and Smart Structures Technology July -3, 7, The University of Tokyo, Japan Passive Control of the Vibration of Flooring Systems using a Gravity

More information

666. Controllable vibro-protective system for the driver seat of a multi-axis vehicle

666. Controllable vibro-protective system for the driver seat of a multi-axis vehicle 666. Controllable vibro-protective system for the driver seat of a multi-axis vehicle A. Bubulis 1, G. Reizina, E. Korobko 3, V. Bilyk 3, V. Efremov 4 1 Kaunas University of Technology, Kęstučio 7, LT-4431,

More information

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Intro to Sensors Overview Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Sensors? American National Standards Institute A device

More information

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory.

EE C245 / ME C218 INTRODUCTION TO MEMS DESIGN FALL 2009 PROBLEM SET #7. Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. Issued: Thursday, Nov. 24, 2009 PROBLEM SET #7 Due (at 7 p.m.): Thursday, Dec. 10, 2009, in the EE C245 HW box in 240 Cory. 1. Gyroscopes are inertial sensors that measure rotation rate, which is an extremely

More information

FEATURES AND APPLICATIONS OF POLYMER THIN FILM MULTI-LAYER CAPACITOR PML CAP

FEATURES AND APPLICATIONS OF POLYMER THIN FILM MULTI-LAYER CAPACITOR PML CAP FEATURES AND APPLICATIONS OF POLYMER THIN FILM MULTI-LAYER CAPACITOR PML CAP PML CAP Polymer Multi-Layer Capacitor (PML CAP) is a surface mounting capacitor with multiple metal-deposited polymer layers

More information

OPTI 521, Optomechanical Design, Technical Paper Reviews, Dr. Jim Burge, 2011

OPTI 521, Optomechanical Design, Technical Paper Reviews, Dr. Jim Burge, 2011 Synopsis of Predicting the vibration characteristics of elements incorporating Incompressible and Compressible Viscoelastic Materials Abstract Jacob Etter OPTI 521, University of Arizona, College of Optical

More information

Finite Element Analysis and Experiment on a Piezoelectric Harvester with Multiple Cantilevers

Finite Element Analysis and Experiment on a Piezoelectric Harvester with Multiple Cantilevers doi: 10.14355/ijep.2015.04.003 Finite Element Analysis and Experiment on a Piezoelectric Harvester with Multiple Cantilevers Hongbing WANG *1, Chunhua SUN 2, Zhirong LI 3, Yiping ZhANG 4 Department of

More information

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary

MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary MEMS Tuning-Fork Gyroscope Mid-Term Report Amanda Bristow Travis Barton Stephen Nary Abstract MEMS based gyroscopes have gained in popularity for use as rotation rate sensors in commercial products like

More information

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES

STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES STATIC AND DYNAMIC ANALYSIS OF A BISTABLE PLATE FOR APPLICATION IN MORPHING STRUCTURES A. Carrella 1, F. Mattioni 1, A.A. Diaz 1, M.I. Friswell 1, D.J. Wagg 1 and P.M. Weaver 1 1 Department of Aerospace

More information

A novel semi-active quasi-zero stiffness vibration isolation system using a constant-force magnetic spring and an electromagnetic linear motor

A novel semi-active quasi-zero stiffness vibration isolation system using a constant-force magnetic spring and an electromagnetic linear motor A novel semi-active quasi-zero stiffness vibration isolation system using a constant-force magnetic spring and an electromagnetic linear motor Orddom Y. LEAV ; Carolina ERIKSSON ; Benjamin S. CAZZOLATO

More information

MCE603: Interfacing and Control of Mechatronic Systems

MCE603: Interfacing and Control of Mechatronic Systems MCE603: Interfacing and Control of Mechatronic Systems Chapter 7: Actuators and Sensors Topic 7d: Piezoelectric Actuators. Reference: Various articles. Cleveland State University Mechanical Engineering

More information

Practical work: Active control of vibrations of a ski mock-up with a piezoelectric actuator

Practical work: Active control of vibrations of a ski mock-up with a piezoelectric actuator Jean Luc Dion Gaël Chevallier SUPMECA Paris (Mechanical Engineering School) Practical work: Active control of vibrations of a ski mock-up with a piezoelectric actuator THIS WORK HAS OBTAINED THE FIRST

More information

Material parameters for electrostriction

Material parameters for electrostriction Material parameters for electrostriction Yuri M. Shkel and Daniel J. Klingenberg a) Department of Chemical Engineering and Rheology Research Center, University of Wisconsin, Madison, Wisconsin 53706 Received

More information

Francisco Paulo Lépore Neto. Marcelo Braga dos Santos. Introduction 1. Nomenclature. Experimental Apparatus and Formulation

Francisco Paulo Lépore Neto. Marcelo Braga dos Santos. Introduction 1. Nomenclature. Experimental Apparatus and Formulation Francisco Paulo Lépore Neto and Marcelo Braga dos Santos Francisco Paulo Lépore Neto fplepore@mecanica.ufu.br Federal University of Uberlandia School of Mechanical Engineering 38408-902 Uberlandia, MG,

More information

Multi physical domain simulation of a NVH reduction system for a generator-electric vehicle

Multi physical domain simulation of a NVH reduction system for a generator-electric vehicle Multi physical domain simulation of a NVH reduction system for a generator-electric vehicle Christoph TAMM 1 ; Torsten BARTEL 2 ; Alexander DAUTFEST 3 ; Christian DEBES 4 ; Sven HEROLD 5 ; Chalid EL DSOKI

More information

Strain, Force, and Pressure

Strain, Force, and Pressure 10-1 10-1 Strain, Force, and Pressure Force is that which results in acceleration (when forces don t cancel). Strain is the change in shape of an object...... usually due to some force. (Force is usually

More information