Zakopane, Tatra Mountains, Poland, May Supernova Neutrinos. Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

Similar documents
Supernova Neutrinos Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Spontaneous Symmetry Breaking in Supernova Neutrinos

Neutrino Sources in the Universe

Supernova 1987A and the Birth of Neutrino Astronomy

Crab Nebula Neutrinos in Astrophysics and Cosmology

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS

Neutrino Astrophysics

Supernova Neutrino Detectors: Current and Future. Kate Scholberg, Duke University June 24, 2005

Fossil Records of Star Formation: John Beacom, The Ohio State University

Sovan Chakraborty. MPI for Physics, Munich

GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE. Alessandro MIRIZZI University of BARI & INFN BARI, Italy

Identifying the neutrino mass hierarchy with supernova neutrinos

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Astroparticle physics

Diffuse SN Neutrino Background (DSNB)

Neutrino Signatures from 3D Models of Core-Collapse Supernovae

Astrophysical and Cosmological Axion Limits

Galactic Supernova for neutrino mixing and SN astrophysics

Supernova Explosions and Neutrinos

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Neutrinos as a Cosmic Messenger

Neutrino observatories

Diffuse Supernova Neutrino Background

C02: Investigation of Supernova Mechanism via Neutrinos. Mark Vagins Kavli IPMU, UTokyo

Neutrino Probes of Galactic and Extragalactic Supernovae

Supernova Neutrinos Supernova Neutrino Detection!

Neutrinos and Supernovae

Cosmological neutrinos. The neutrino sector. Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen)

Mimicking Diffuse Supernova Antineutrinos with the Sun as a Source *

Wolfgang Hillebrandt. Garching. DEISA PRACE Symposium Barcelona May 10 12, 2010

Fast-time variations of supernova neutrino fluxes and detection perspectives

Detection of supernova Neutrinos

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

Neutrino Oscillations in Core-Collapse Supernovae

Physics Potential of Future Supernova Neutrino Observations

Neutrinos in Astrophysics and Cosmology

Neutrino emission features from 3D supernova simulations

GADZOOKS! project at Super-Kamiokande

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

Stellar Explosions (ch. 21)

Cecilia Lunardini Arizona State University RIKEN BNL Research Center SUPERNOVA NEUTRINOS AT FUTURE DETECTORS

Supernova neutrinos for neutrino mixing and SN astrophysics

Comparing a Supergiant to the Sun

arxiv: v1 [physics.ins-det] 14 Jan 2016

Gadolinium Doped Water Cherenkov Detectors

Progress of supernova simulations with the Shen equation of state

Neutrinos Probe Supernova Dynamics

Nuclear Astrophysics

Supernova Watches and HALO

New Results from 3-D supernova models with spectral neutrino diffusion

Supernovae, Neutron Stars, Pulsars, and Black Holes

Compschool, Copenhagen Core-Collapse Supernovae. Large cancellation effects in the total energy budget:

Spectrum of the Supernova Relic Neutrino Background

Stars with Mⵙ go through two Red Giant Stages

Neutrino Physics: an Introduction

Astrophysical Neutrino at HK

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

arxiv: v1 [astro-ph.im] 27 May 2012

Supernova neutrinos and their implications for supernova physics

Supernova Neutrino Physics with XENON1T and Beyond

Perspectives on Nuclear Astrophysics

Stellar Interior: Physical Processes

MeV Neutrino Astronomy

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Neutrino mass bound in the standard scenario for supernova electronic antineutrino emission

Lecture 16: Iron Core Collapse, Neutron Stars, and Nucleosynthesis * 235. Nuclear Binding Energy.

Obtaining supernova directional information using the neutrino matter oscillation pattern

Konstantin Yakunin Joint Institute for Computational Sciences Oak Ridge National Laboratory. 3/29/17 Particle Physics and Astro-Cosmology Seminar, UTK

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

Neutrinos and explosive nucleosynthesis

Cecilia Lunardini Arizona State University RIKEN BNL Research Center SUPERNOVA NEUTRINOS AT FUTURE DETECTORS

Recent results from Super-Kamiokande

Diffuse Supernova Neutrinos

Other Physics with Geo-Neutrino Detectors

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Physics HW Set 3 Spring 2015

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

The Evolution of High-mass Stars

Gravitational waves from proto-neutron star evolution

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Lecture 26. High Mass Post Main Sequence Stages

Supernovae and Neutrino Elastic Scattering. SN1998S, April 2, 1998 (8 SCT homemade CCD) Trento, June, 2003

Low-Energy Neutrino-Argon Interactions: A Window into Stellar Collapse. Christopher Grant

Neutrinos and the Universe

Neutrino Oscillations

80 2 Observational Cosmology L and the mean energy

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Life of a High-Mass Stars

Star Death ( ) High Mass Star. Red Supergiant. Supernova + Remnant. Neutron Star

AST 101 Introduction to Astronomy: Stars & Galaxies

Recent Searches for Dark Matter with the Fermi-LAT

Crab Nebula Neutrinos in Astrophysics and Cosmology

Metallicities in stars - what solar neutrinos can do

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Transcription:

52 nd Cracow School Crab Nebula on Theoretical Physics Zakopane, Tatra Mountains, Poland, 19 27 May 2012 Supernova Neutrinos Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

Sanduleak -69 202 Sanduleak 69 202 Tarantula Nebula Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Sanduleak 69 202 Sanduleak -69 202Supernova 1987A 23 February 1987 Tarantula Nebula Large Magellanic Cloud Distance 50 kpc (160.000 light years)

SN 1987A

Crab Nebula

The Crab Pulsar Chandra x-ray images

Baade and Zwicky Walter Baade (1893 1960) Fritz Zwicky (1898 1974) Baade and Zwicky were the first to speculate about a connection between supernova explosions and neutron-star formation [Phys. Rev. 45 (1934) 138]

Stellar Collapse and Supernova Explosion Main-sequence star Helium-burning star Hydrogen Burning Helium Burning Hydrogen Burning

Stellar Collapse and Supernova Explosion Main-sequence Onion structure star Collapse Helium-burning (implosion) star Degenerate iron core: ρ 10 9 g cm 3 T 10 10 K M Fe 1.5 M sun 8000 km Hydrogen Burning R Fe Helium Burning Hydrogen Burning

Stellar Collapse and Supernova Explosion Newborn Neutron Star Collapse Explosion (implosion)

Stellar Collapse and Supernova Explosion Newborn Neutron Star Neutrino cooling by diffusion

Neutrino Signal of Supernova 1987A Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ±1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ±50 ms Within clock uncertainties, all signals are contemporaneous

Interpreting SN 1987A Neutrinos Contours at CL 68.3%, 90% and 95.4% Jegerlehner, Neubig & Raffelt, PRD 54 (1996) 1194

Interpreting SN 1987A Neutrinos Contours at CL 68.3%, 90% and 95.4% Jegerlehner, Neubig & Raffelt, PRD 54 (1996) 1194

Interpreting SN 1987A Neutrinos Contours at CL 68.3%, 90% and 95.4% Recent long-term simulations (Basel, Garching) Theory Jegerlehner, Neubig & Raffelt, PRD 54 (1996) 1194

Predicting Neutrinos from Core Collapse Phys. Rev. 58:1117 (1940)

Neutrinos Rejuvenating Stalled Shock Neutrino heating increases pressure behind shock front Picture adapted from Janka, astro-ph/0008432

Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys. (1982) Bethe & Wilson, ApJ 295 (1985) 14

Exploding Models (8 10 Solar Masses) Kitaura, Janka & Hillebrandt: Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae, astro-ph/0512065

3D Simulation (Garching group)

Gravitational Waves from Core-Collapse Supernovae GWs from asymmetric neutrino emission GWs from convective mass flows Bounce Müller, Rampp, Buras, Janka, & Shoemaker, astro-ph/0309833 Towards gravitational wave signals from realistic core collapse supernova models

Three Phases of Neutrino Emission Prompt ν e burst Accretion Cooling Shock breakout De-leptonization of outer core layers Cooling on neutrino diffusion time scale Spherically symmetric model (10.8 M ) with Boltzmann neutrino transport Explosion manually triggered by enhanced CC interaction rate Fischer et al. (Basel group), A&A 517:A80, 2010 [arxiv:0908.1871]

Flavor Oscillations Neutrinos from Next Nearby SN

Operational Detectors for Supernova Neutrinos MiniBooNE (200) HALO (tens) LVD (400) Borexino (100) Baksan (100) Super-K (10 4 ) KamLAND (400) Daya Bay (100) IceCube (10 6 ) In brackets events for a fiducial SN at distance 10 kpc

Super-Kamiokande Neutrino Detector

Neutrino Cross Section in a Water Target Cross section per water molecule

Simulated Supernova Burst in Super-Kamiokande Movie by C. Little, including work by S. Farrell & B. Reed, (Kate Scholberg s group at Duke University) http://snews.bnl.gov/snmovie.html

IceCube Neutrino Telescope at the South Pole

IceCube as a Supernova Neutrino Detector Accretion Cooling SN signal at 10 kpc 10.8 M sun simulation of Basel group [arxiv:0908.1871] Pryor, Roos & Webster (ApJ 329:355, 1988), Halzen, Jacobsen & Zas (astro-ph/9512080)

Variability seen in Neutrinos Luminosity Detection rate in IceCube Smaller in realistic 3D models Lund, Marek, Lunardini, Janka & Raffelt, arxiv:1006.1889 Using 2-D model of Marek, Janka & Müller, arxiv:0808.4136

Quark-Matter Phase Transition Signature in IceCube Dasgupta, Fischer, Horiuchi, Liebendörfer, Mirizzi, Sagert & Schaffner-Bielich arxiv:0912.2568

Next Generation Large-Scale Detector Concepts DUSEL LBNE 5-100 kton liquid Argon Hyper-K 100 kton scale scintillator Memphys Megaton-scale water Cherenkov LENA HanoHano

SuperNova Early Warning System (SNEWS) Early light curve of SN 1987A http://snews.bnl.gov Super-K Neutrinos arrive several hours before photons Can alert astronomers several hours in advance IceCube LVD Borexino Coincidence Server @ BNL Alert

Flavor Oscillations Supernova Rate

Local Group of Galaxies With megatonne class (30 x SK) 60 events from Andromeda Current best neutrino detectors sensitive out to few 100 kpc

Core-Collapse SN Rate in the Milky Way SN statistics in external galaxies Gamma rays from 26 Al (Milky Way) van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Historical galactic SNe (all types) No galactic neutrino burst Strom (1994) Tammann et al. (1994) 90 % CL (30 years) Alekseev et al. (1993) 0 1 2 3 4 5 6 7 8 9 10 Core-collapse SNe per century References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro-ph/0012455. Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekseev et al., JETP 77 (1993) 339 and my update.

High and Low Supernova Rates in Nearby Galaxies M31 (Andromeda) D = 780 kpc NGC 6946 D = (5.5 ± 1) Mpc Last Observed Supernova: 1885A Observed Supernovae: 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et, 2008S

The Red Supergiant Betelgeuse (Alpha Orionis) First resolved image of a star other than Sun Distance (Hipparcos) 130 pc (425 lyr) If Betelgeuse goes Supernova: 6 10 7 neutrino events in Super-Kamiokande 2.4 10 3 neutrons /day from Si burning phase (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/0311012]

Flavor Oscillations Diffuse SN Neutrino Background

Diffuse Supernova Neutrino Background (DSNB) Beacom & Vagins, PRL 93:171101,2004

Redshift Dependence of Cosmic Supernova Rate Core-collapse rate depending on redshift Relative rate of type Ia Horiuchi, Beacom & Dwek, arxiv:0812.3157v3

Neutron Tagging in Super-K with Gadolinium Mark Vagins Neutrino 2010 Selective water & Gd filtration system 200 ton water tank Transparency measurement

Average spectral properties from DSNB 90% CL sensitivity to average SN spectrum from DSNB after 5 years of Gd enhanced Super-K Adapted from Yüksel, Ando & Beacom, astro-ph/0509297

Flavor Oscillations Particle-Physics Constraints

Do Neutrinos Gravitate? Early light curve of SN 1987A

Millisecond Bounce Time Reconstruction Super-Kamiokande Emission model adapted to measured SN 1987A data Pessimistic distance 20 kpc Determine bounce time to a few tens of milliseconds IceCube Onset of neutrino emission 10 kpc Pagliaroli, Vissani, Coccia & Fulgione arxiv:0903.1191 Halzen & Raffelt, arxiv:0908.2317

Neutrino Limits by Intrinsic Signal Dispersion Time of flight delay by neutrino mass Milli charged neutrinos G. Zatsepin, JETP Lett. 8:205, 1968 Path bent by galactic magnetic field, inducing a time delay SN 1987A signal duration implies SN 1987A signal duration implies Loredo & Lamb Ann N.Y. Acad. Sci. 571 (1989) 601 find 23 ev (95% CL limit) from detailed maximum-likelihood analysis Barbiellini & Cocconi, Nature 329 (1987) 21 Bahcall, Neutrino Astrophysics (1989) Assuming charge conservation in neutron decay yields a more restrictive limit of about 3 10 21 e

Supernova 1987A Energy-Loss Argument SN 1987A neutrino signal Neutrino sphere Neutrino diffusion Volume emission of new particles Emission of very weakly interacting particles would steal energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) Late-time signal most sensitive observable

Axion Bounds 10 3 10 6 10 9 10 12 [GeV] f a 10 15 m a kev ev mev μev nev Experiments Tele scope CAST Direct searches ADMX CARRACK Too much hot dark matter Too much cold dark matter (classic) Globular clusters (a-γ-coupling) Classic region Anthropic region Too many events Too much energy loss SN 1987A (a-n-coupling)

Degenerate Fermi Seas in a Supernova Core Trapped lepton number is stored in e and ν e n p e - ν e ν μ ν τ Particles Antiparticles In true thermal equilibrium with flavor mixing, only one chemical potential for charged leptons and one for neutrinos. No chemical potential for Majorana neutrinos (lepton number violation)

Degenerate Fermi Seas in a Supernova Core n p e - ν e ν μ ν τ Equilibration by flavor lepton number violation, but flavor oscillations ineffective (matter effect) Non-standard interactions could be effective, most sensitive environment Equilibration by lepton number violation, but Majorana masses too small R-parity violating SUSY interactions? TeV-scale bi-leptons? Consequences in core collapse should be studied numerically

Bi-Leptons and Core Collapse

Flavor Oscillations Neutrino Flavor Oscillations

Flavor Oscillations in Core-Collapse Supernovae Flavor eigenstates are propagation eigenstates Neutrino sphere Neutrino flux MSW region

Flavor Oscillations in Core-Collapse Supernovae Neutrino-neutrino refraction causes a flavor instability, flavor exchanged between different parts of spectrum Flavor eigenstates are propagation eigenstates Neutrino sphere Neutrino flux MSW region

Flavor Oscillations More tomorrow