Fast-time variations of supernova neutrino fluxes and detection perspectives

Size: px
Start display at page:

Download "Fast-time variations of supernova neutrino fluxes and detection perspectives"

Transcription

1 Fast-time variations of supernova neutrino fluxes and detection perspectives Irene Tamborra GRAPPA Institute, University of Amsterdam Xmas Workshop 2013 Bari, December 23, 2013

2 Outline Supernova explosion mechanism Neutrino signatures of the SN hydrodynamical instabilities Detection perspectives adopting first full-scale 3D SN simulations Conclusions This talk is based on: I. Tamborra, F. Hanke, B. Mueller, H.-T. Janka, and G. Raffelt, PRL 111 (2013) I. Tamborra, F. Hanke, B. Mueller, H.-T. Janka, and G. Raffelt, in preparation.

3 Neutrinos in Supernovae Core-collapse supernovae: Terminal phase of massive stars [ M 8M ]. Stars collapse ejecting the outer mantle by means of shock-wave driven explosions. Expected rate: 1-3 SN/century in our galaxy (~ 10 kpc). Implosion (Collapse) Neutrinos carry 99% of the released energy 53 (~ 10 erg). Explosion neutrino cooling by diffusion Neutrino typical energies: ~ 15 MeV. Neutrino emission time: ~ 10 s.

4 Neutrinos and SN Explosion Mechanism Shock wave forms within the iron core. It dissipates energy dissociating iron layer. Stalled shock wave receives energy from neutrinos to start reexpansion against ram pressure of in-falling stellar matter. (Delayed Neutrino-Driven Explosion.) Convective overturn and shock oscillations (standing accretion shock instability, SASI) enhance efficiency of neutrino heating and revive the shock. <8 Shock wave Neutron # star $ ('' * For more details see H.-T. Janka, arxiv: , H.-T. Janka et al., arxiv:

5 Directional Neutrino Signal First full-scale 3D SN simulations with detailed neutrino transport being performed* SASI and convective motions leave an imprint on the neutrino signal. )*+, %" *-./012 ( ' & % $ # (optimistic * observer direction) - - Close to the SASI plane 3 " large amplitude # " # modulations $ % & "#$%& )*+, %" *-./012 ( ' & % $ # Perpendicularly to the SASI plane (pessimistic observer direction) *+), -.( " small amplitude modulations # " # $ % & "#$%& Large amplitude modulations close to the plane where spiral SASI mode develops. Are such modulations detectable? * For details see also: F. Hanke et al., arxiv:

6 Detection Perspectives In IceCube and Hyper-Kamiokande, neutrinos are primarily detected by inverse beta decay ν e + p n + e + IceCube Hyper-Kamiokande 1 km antarctic ice with 5160 PMT R = 1480 ms -1 bkgd Fiducial mass: 740 kton Background free signal + event-by-event energy information * For details see: Abbasi et al., arxiv: (IceCube), K. Abe et al., arxiv: (Hyper-K).

7 SASI Detection Perspectives (27 M ) sun Our 3D 27 M sun SN progenitor shows pronounced SASI. SASI sinusoidal modulation of the neutrino signal will be detectable by IceCube and Hyper-K. Strong signal modulation (optimistic observer direction) Weak signal modulation (pessimistic observer direction) 456)+78-9 : 012) ("" 01)2.3) '"" ) &"" %"" * $"" #"" "" ("" +,)-./) '"" &"" ) %"" * $"" #"" "" '+, -./ Expected rate above IceCube background Hyper-K rate = 1/3 IceCube rate SASI still detectable 3/ :;<6=>3; % 9*&307& "'()* $ & # " & #'()* +,*(-./012 "#./,)01 " "*+,- ( ) ' % ) #*+,- # " # $ % & 234)*5467

8 SASI Detection Perspectives (27 Msun ) Time evolution of the IceCube observer 8 detection rate on a sky-plot oftamborra et directions. al. "#$%&'( "# )*% high detection rate & "$% )*)+ ) )*)+ "#$$%&',-''.-/01.-/ "$ )*% ()* "% low detection rate "% "$ "$% ()(% "# "# ( & "$% ()(% "#$%&'( ()* &)* &)&+ '())*(+,-*(+ "$ "% "% "$ & "$% &)&+ "# &$ &)* ' Figure 7. 4π maps of the relative variation of the luminosity of ν e with respect to the one computed averaging over all directions the 27 M SN progenitor at 10 kpc for t = 217, 225, 230 ms. availableforat: &#" Nγ (Ee ) = 178 Ee /MeV is the energy-dependent number of Cherenkov photons, and σ (Ee, Eν ) = dσ(ee, Eν )/dee is the IBD cross section, differential with regard to the positron energy. &" ))0/1230/1 Animated visualization &# #'( )*+

9 hardly shows any modulation at all. In a given direction we define the relative time-dependent rate and consider SASI Detection Perspectives (27 M ) its root mean square deviation for the first SASI episode ([t 1,t 2 ] = [120, 250] ms), σ ( t2 t 1 dt Despite the spiral mass motions during this SASI episode and the corresponding, considerable time variability of the emission asymmetry, the time integrated analysis still 1 high reveals a dominant sloshing direction, which produces two signal hot spots in two opposite directions, surrounded by directions with much smaller modulations. 0.8 In the bottom probability signal for of Hyperyieldsof roughly the 900 Other progenitors. Figure 3 shows the IceCube rate 0.6 detection for the other progenitors (11.2 and20m ) in optimal signal fluctuation modulation is alm observing directions. For the heavier case, a strong SASI low 1 Hanke2013 movie/index.html. modulations are r trino time sequen thesun IceCube ν e si shot noise realiza near maximum, p [ ] ) 2 1/2 roughly R R. [t 1,t 2 (1) ] = [120, dom 250] fluctuation ms R background is su signal in the abse tuations alone. F the expected gala the signal is still bin-to-bin fluctua distance reduces dark current, the this distance Hyp A serious strat from the noise in l On average, the fraction of sky where good observation chances apply is significant (> 50%).

10 SASI Detection Perspectives (20 M ) sun For the 27 M For the 20 M sun sun SN progenitor, two SASI episodes occur with a convective phase in between. SN progenitor, only one SASI episode occurs. /*+,- #. # $*0-12 ( ' 5 = & 89:5;< $ " # #" $ )*+,-. $" % we study SNe prog cuss how types of The tw nature, o SASI ph overturns signal in ously exp tic SN by The SA with opp sides of t age signa the conve observed metry be

11 overturns only. SASI Detection Perspectives (20 M ) The SASI modulati signal in 3D SN simulations appears s sun ously expected and it will be easily de tic SN by detectors as IceCube or Hy The SASI modulation of the neutri On average, the fraction of sky where good observation chances with apply opposite is significant phases for (> observer 50%). loc The SASI plane of the 20 M sides of the emitting sphere, in such a sun SN progenitor is not the same as the 27 M sun one. age signal looses all the angle depende the convective phase of the 11 and 27 observed a clear asymmetry that sho metry between neutrinos and antine develops in 3D under the form of spi ( high plane randomly chosen according to t As discussed in (Tamborra2013), Ic "#' Kamiokande will offer us complem since IceCube will be more suitabl distances where probability the shot of noise is s "#& Kamiokande detection will be more of the useful at lar basically background signal modulation free and where i flux would be dominated by noise flu "#% Figure π map as in Fig. 10, but for our 20 M progenitor ([150, 330] ms). pears in the power-spectrum at f 80 Hz, corresponding to the typical frequency of the SASI. This frequency is the same describing large-amplitude fluctuations of the low spherical harmonics SASI amplitude vector in Fig. 2 (right panel on the top) of (Hanke et al. 2013). Such frequency is also well understood analytically, since it is "#$ We thank Ewald Müller for usef low Nicole Schwarz for visualizing the ne for the three supernova progenitors i search was partly supported by the De gemeinschaft through the Transregi Research Center SFB/TR 7 Gravi tronomy and the Cluster of Excellenc and Structure of the Universe (htt cluster.de). It was also supported by t under grant PITN-GA

12 SASI detection perspectives (11.2 M ) sun SASI does not occur for any progenitor. Large scale convection is the dominant hydrodynamic instability in the 11.2 M sun progenitor. SASI spiral mode ( "#' "#& "#% "#$ on (see he first 123,-.#4+/0 # ( ' & $ 9:,;6<, 8, $-5 /67 ##-5 /67 " # #" $ $" % )*+,-.+/0 FIG. 3: IceCube rate for optimal observing directions for the 11.2 and 20 M models at 10 kpc, as in the top panel convective of Fig. motions 1.

13 Power spectrum of the event rate Power spectrum of the IceCube event rate in [100,300] ms Power spectrum M sun 20 M sun 27 M sun IceCube Frequency [Hz] A peak appears at the SASI frequency of ~ 80 Hz for the 20 and 27 M sun SN progenitors.

14 Conclusions World-wide first 3D SN simulations with detailed neutrino transport available. Neutrinos carry imprints of the explosion dynamics. The SN neutrino signal can diagnose the nature of the hydrodynamical instability. SASI modulations of the neutrino signal will be clearly detectable in IceCube and Hyper-K. Detection chances depend on progenitor properties, distance and observer location relative to the main sloshing direction.

15 Buone Feste

Neutrino emission features from 3D supernova simulations

Neutrino emission features from 3D supernova simulations Neutrino emission features from 3D supernova simulations Irene Tamborra GRAPPA Institute, University of Amsterdam GDR Neutrino 2014 Laboratoire de l Accelérateur Linéaire, Orsay, June 17, 2014 Outline

More information

Neutrinos Probe Supernova Dynamics

Neutrinos Probe Supernova Dynamics Neutrinos Probe Supernova Dynamics Irene Tamborra GRAPPA Institute, University of Amsterdam Rencontres de Moriond, EW Interactions and Unified Theories La Thuile, March 18, 2014 Outline Supernova explosion

More information

Neutrino Signatures from 3D Models of Core-Collapse Supernovae

Neutrino Signatures from 3D Models of Core-Collapse Supernovae Neutrino Signatures from 3D Models of Core-Collapse Supernovae Irene Tamborra Niels Bohr Institute, University of Copenhagen nueclipse Knoxville, August 20, 2017 Outline Supernova explosion mechanism Hydrodynamical

More information

Spontaneous Symmetry Breaking in Supernova Neutrinos

Spontaneous Symmetry Breaking in Supernova Neutrinos NOW 2014, 7 14 September Crab Nebula 2014, Otranto, Lecce, Italy Spontaneous Symmetry Breaking in Supernova Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München Some Developments since NOW

More information

Sovan Chakraborty. MPI for Physics, Munich

Sovan Chakraborty. MPI for Physics, Munich Neutrino Mass Hierarchy from Supernova Neutrinos Sovan Chakraborty MPI for Physics, Munich Outline Supernova (SN) as Neutrino Source Oscillation of SN Neutrinos Signatures of Neutrino Mass Hierarchy Conclusions

More information

Tomoya Takiwaki (RIKEN)

Tomoya Takiwaki (RIKEN) 2014/8/25 GRB-SN Workshop@RIKEN Explosion Mechanism of Core-collapse Supernovae Tomoya Takiwaki (RIKEN) Multi-scale & Multi-physics Hydrodynamics Bar-mode Gravitational Strong General relativity Gravitational

More information

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS Invisible13 Workshop Lumley Castle, 15-19 July 2013 PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS Alessandro MIRIZZI (Hamburg University) OUTLINE Supernova neutrino flavor oscillations Observables

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010 Supernova neutrinos Ane Anema November 12, 2010 Outline 1 Introduction 2 Core-collapse 3 SN1987A 4 Prospects 5 Conclusions Types of supernovae Figure: Classification (figure 15.1, Giunti) Supernova rates

More information

3D Simulations of Core-collapse Supernovae. Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators

3D Simulations of Core-collapse Supernovae. Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators 2013/12/3 MMCOCOS@Fukuoka University 3D Simulations of Core-collapse Supernovae Tomoya Takiwaki(NAOJ) Kei Kotake(Fukuoka U) Yudai Suwa(YITP) Tomohide Wada(vis) And many collaborators Plan 1. Brief summary

More information

Detection of Gravitational Waves and Neutrinos from Astronomical Events

Detection of Gravitational Waves and Neutrinos from Astronomical Events Detection of Gravitational Waves and Neutrinos from Astronomical Events Jia-Shu Lu IHEP,CAS April 18, 216 JUNO Neutrino Astronomy and Astrophysics Seminar 1 / 24 Outline Sources of both GW and neutrinos.

More information

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3 Core collapse triggered by Collapse (only core inner ~1.5 MO) Free-fall K-captures, photodissociation 1000 km 1010 g cm-3 30 km nuclear dens. ~ 1014 g cm-3 Bounce Shock wave Nuclear repulsion Collapse

More information

GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE. Alessandro MIRIZZI University of BARI & INFN BARI, Italy

GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE. Alessandro MIRIZZI University of BARI & INFN BARI, Italy GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE Alessandro MIRIZZI University of BARI & INFN BARI, Italy OUTLINE Introduction to SN & ALPs ALPs bound from SN 1987A [Payez, Evoli, Fischer, Giannotti,

More information

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Supernova Neutrinos in Future Liquid-Scintillator Detectors Supernova Neutrinos in Future Liquid-Scintillator Detectors Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 9, China E-mail: liyufeng@ihep.ac.cn A high-statistics measurement of

More information

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn

Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn Core Collapse Supernovae An Emerging Picture Stephen W. Bruenn 19th Rencontres de Blois Matter and Energy in the Universe: from nucleosynthesis to cosmology Collaborators Anthony Mezzacappa John M. Blondin

More information

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with spiral arms in spiral galaxies Supernova in M75 Type

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Is strong SASI activity the key to successful neutrino-driven supernova explosions?

Is strong SASI activity the key to successful neutrino-driven supernova explosions? Is strong SASI activity the key to successful neutrino-driven supernova explosions? Florian Hanke Max-Planck-Institut für Astrophysik INT-12-2a program Core-Collapse Supernovae: Models and observable Signals,

More information

Asymmetric explosion of core-collapse supernovae

Asymmetric explosion of core-collapse supernovae Asymmetric explosion of core-collapse supernovae Rémi Kazeroni (CEA) Thierry Foglizzo (CEA), Jérôme Guilet (MPA Garching) Journées des doctorants - IRFU 01/07/2015 About me Rémi Kazeroni (IRFU/SAp) Advisor:

More information

Neutrino Oscillations in Core-Collapse Supernovae

Neutrino Oscillations in Core-Collapse Supernovae Neutrino Oscillations in Core-Collapse Supernovae Meng-Ru Wu, Technische Universität Darmstadt Supernovae and Gamma-Ray Bursts 2013 10/14/2013-11/15/2013 Neutrino Oscillations in Core-Collapse Supernovae

More information

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA)

How supernova simulations are affected by input physics. Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 2015/08/18 MICRA2015 How supernova simulations are affected by input physics Tomoya Takiwaki (RIKEN) Kei Kotake(Fukuoka) Yudai Suwa(Kyoto/MPA) 1 Supernovae: the death of the star? Q:How does the explosion

More information

Supernova Explosions and Observable Consequences

Supernova Explosions and Observable Consequences SFB-TR7 Supernova Explosions and Observable Consequences Hans-Thomas Janka Max Planck Institute for Astrophysics, Garching Outline Introduction: The neutrino-driven mechanism Status of self-consistent

More information

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris) Recent advances in neutrino astrophysics Cristina VOLPE (AstroParticule et Cosmologie APC, Paris) Flux (cm -2 s -1 MeV -1 ) 10 24 10 20 10 16 10 12 10 8 10 4 10 0 10-4 10-8 Neutrinos in Nature Cosmological

More information

User s Guide for Supernova Neutrino Database

User s Guide for Supernova Neutrino Database User s Guide for Supernova Neutrino Database Ken ichiro Nakazato (Tokyo Univ. of Sci.) August 27, 2013 Abstract This is a guide for users of Supernova Neutrino Database for neutrino astronomy. 1 Introduction

More information

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Outline Harald Dimmelmeier harrydee@mpa-garching.mpg.de Gravitational Waves from Supernova Core Collapse: What could the Signal tell us? Work done at the MPA in Garching Dimmelmeier, Font, Müller, Astron.

More information

Friday, April 29, 2011

Friday, April 29, 2011 Lecture 29: The End Stages of Massive Stellar Evolution & Supernova Review: Elemental Abundances in the Solar System Review: Elemental Abundances in the Solar System Synthesized by S and R-processes Review:

More information

Astroparticle physics

Astroparticle physics Timo Enqvist University of Oulu Oulu Southern institute lecture cource on Astroparticle physics 15.09.2009 15.12.2009 Supernovae and supernova neutrinos 4.1 4 Supernovae and supernova neutrinos 4.1 Supernova

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics II. Core-collapse supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008

More information

!"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.:

!#$%&%'()*%+),#-./(0)+1,-.%'#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56,$%+)-+7-.$,$(-859.: !"#$%&%'()*%+),#-."/(0)+1,-.%'"#,$%+)* 2%$3-,-4+)4()$0,$%+)-+) 56",$%+)-+7-.$,$(-859.: Kei Kotake!National Astronomical Observatory of Japan" NuSYM11 @ Smith college, Northampton 18 th June 2011 The supernova

More information

Fossil Records of Star Formation: John Beacom, The Ohio State University

Fossil Records of Star Formation: John Beacom, The Ohio State University Fossil Records of Star Formation: Supernova Neutrinos and Gamma Rays Basic Pitch Supernovae are of broad and fundamental interest Neutrinos and gamma rays are direct messengers Recent results show that

More information

Core-collapse supernovae are thermonuclear explosions

Core-collapse supernovae are thermonuclear explosions Core-collapse supernovae are thermonuclear explosions Doron Kushnir Collaborators: Boaz Katz (WIS), Kfir Blum (WIS), Roni Waldman (HUJI) 17.9.2017 The progenitors are massive stars SN2008bk - Red Super

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

Identifying the neutrino mass hierarchy with supernova neutrinos

Identifying the neutrino mass hierarchy with supernova neutrinos Identifying the neutrino mass hierarchy with supernova neutrinos Ricard Tomàs AHEP Group - Institut de Física Corpuscular (CSIC - Universitat de València) IPM School & Conference on Lepton & Hadron Physics

More information

Astrophysical Neutrino at HK

Astrophysical Neutrino at HK 1 2 2 Astrophysical Neutrino at HK Solar neutrino Burning processes, modeling of the Sun Property of neutrino Supernova ν NASA, Chandra & Hubble 2007 5μpc kpc Mpc SN explosion mechanism SN monitor Nucleosynthe

More information

Neutrino Sources in the Universe

Neutrino Sources in the Universe Crab Nebula Neutrino Sources in the Universe Georg G. Raffelt Max-Planck-Institut für Physik, München Where do Neutrinos Appear in Nature? Nuclear Reactors Sun Particle Accelerators Supernovae (Stellar

More information

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012 January 25, 2012 Overview Supernovae Supernovae Supernova types Core collapse model Neutrino properties Detection of neutrinos Data and analysis Experiment results Comparison with results Possible neutrino

More information

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller

Supernovae. Tomek Plewa. ASC Flash Center, University of Chicago. Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller Supernovae Tomek Plewa ASC Flash Center, University of Chicago Konstantinos Kifonidis, Leonhard Scheck, H.-Thomas Janka, Ewald Müller MPA für Astrophysik, Garching FLASH, Nov. 2005 1 Outline Non-exotic

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

The Deaths of Stars 1

The Deaths of Stars 1 The Deaths of Stars 1 Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Core-collapse supernova simulations in three dimensions

Core-collapse supernova simulations in three dimensions Core-collapse supernova simulations in three dimensions Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R. Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU),

More information

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two

Stellar Evolution: The Deaths of Stars. Guiding Questions. Pathways of Stellar Evolution. Chapter Twenty-Two Stellar Evolution: The Deaths of Stars Chapter Twenty-Two Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come

More information

Gravitational waves from proto-neutron star evolution

Gravitational waves from proto-neutron star evolution Gravitational waves from proto-neutron star evolution Giovanni Camelio in collaboration with: Leonardo Gualtieri, Alessandro Lovato, Jose A. Pons, Omar Benhar, Morgane Fortin & Valeria Ferrari PhD student

More information

Distinguishing supernova-ν flavour equalisation from a pure MSW effect

Distinguishing supernova-ν flavour equalisation from a pure MSW effect Distinguishing supernova-ν flavour equalisation from a pure MSW effect based on arxiv:1807.00840 (accepted on PRD), with B. Dasgupta and A. Mirizzi FRANCESCO CAPOZZI Outer layer Accretion phase (t < 0.5

More information

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages

Guiding Questions. The Deaths of Stars. Pathways of Stellar Evolution GOOD TO KNOW. Low-mass stars go through two distinct red-giant stages The Deaths of Stars Guiding Questions 1. What kinds of nuclear reactions occur within a star like the Sun as it ages? 2. Where did the carbon atoms in our bodies come from? 3. What is a planetary nebula,

More information

Evolution, Death and Nucleosynthesis of the First Stars

Evolution, Death and Nucleosynthesis of the First Stars First Stars IV, Kyoto, Japan, May 24, 2012 Alexander Heger Stan Woosley Ken Chen Pamela Vo Bernhad Müller Thomas Janka Candace Joggerst http://cosmicexplosions.org Evolution, Death and Nucleosynthesis

More information

Progress of supernova simulations with the Shen equation of state

Progress of supernova simulations with the Shen equation of state Progress of supernova simulations with the Shen equation of state Nuclei K. Sumi yoshi Supernovae Numazu College of Technology & Theory Center, KEK, Japan Crab nebula hubblesite.org Applications of nuclear

More information

Physics Potential of Future Supernova Neutrino Observations

Physics Potential of Future Supernova Neutrino Observations Physics Potential of Future Supernova Neutrino Observations Amol Dighe Tata Institute of Fundamental Research Mumbai, India Neutrino 2008 May 25-31, 2008, Christchurch, New Zealand Supernova for neutrino

More information

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (LANL) 1D simulations

More information

Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University)

Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University) Multi-messenger predictions from 3D-GR Core-Collapse Supernova Models : Correlation beyond Kei Kotake (Fukuoka University) with Takami Kuroda (TU. Darmstadt), Ko Nakamura (Fukuoka Univ.), Tomoya Takiwaki

More information

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University Neutrinos and Nucleosynthesis from Black Hole Accretion Disks Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What do neutrinos do in astrophysical environments? What do neutrinos

More information

Supernova Explosions and Neutrinos

Supernova Explosions and Neutrinos Supernova Explosions and Neutrinos Irene Tamborra Niels Bohr Institute, University of Copenhagen Folkeuniversitet i Kobenhavn Copenhagen, November 14-15, 2016 The nitrogen in our DNA, the calcium in our

More information

This is a repository copy of Astroparticle Physics in Hyper-Kamiokande.

This is a repository copy of Astroparticle Physics in Hyper-Kamiokande. This is a repository copy of Astroparticle Physics in Hyper-Kamiokande. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/1304/ Version: Submitted Version Article: Migenda,

More information

A nu look at gravitational waves: The black hole birth rate from neutrinos combined with the merger rate from LIGO

A nu look at gravitational waves: The black hole birth rate from neutrinos combined with the merger rate from LIGO A nu look at gravitational waves: The black hole birth rate from neutrinos combined with the merger rate from LIGO Based on JCAP 07 (2017) 052 (arxiv:1704.05073) by J. H. Davis and M. Fairbairn JONATHAN

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: Sound Waves Sound Waves: 1 Sound Waves Sound Waves Linear Waves compression rarefaction 2 H H L L L Gravity Waves 3 Gravity Waves Gravity Waves 4 Gravity Waves Kayak Surfing on ocean gravity waves Oregon

More information

Unravelling the Explosion Mechanisms

Unravelling the Explosion Mechanisms SFB-TR7 Lectures, INAF-Osservatorio Astronomico di Brera 19. & 20. November 2013 The Violent Deaths of Massive Stars Unravelling the Explosion Mechanisms Connecting Theory to Observations Hans-Thomas Janka

More information

Neutrino-Driven Convection and Neutrino-Driven Explosions

Neutrino-Driven Convection and Neutrino-Driven Explosions Neutrino-Driven Convection and Neutrino-Driven Explosions by Jeremiah W. Murphy (Princeton U.) Collaborators: Adam Burrows (Princeton U.), Josh Dolence (Princeton U.) & Casey Meakin (U. Arizona) 1D simulations

More information

Explosion Models of CoreCollapse Supernovae

Explosion Models of CoreCollapse Supernovae SFB-TR7 Hirschegg 2013: Astrophysics and Nuclear Structure Hirschegg, Austria, January 26 February 1, 2013 Explosion Models of CoreCollapse Supernovae Status of Modeling at Garching Hans-Thomas Janka Max

More information

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models

Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven Explosion Models SFB-TR7 Workshop on "Probing the Supernova Mechanism by Observations" Seattle, July 16 20, 2012 Theoretical Supernova Modeling: Exploring the Progenitor-Explosion-Remnant Connection by Neutrino-Driven

More information

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo Neutrino Workshop@ICRR June 29 th 2005 Neutrino Probes of Extragalactic Supernovae Shin ichiro Ando University of Tokyo 1. Introduction Core-Collapse Supernova and Neutrino Burst Gravitational binding

More information

Detection of supernova Neutrinos

Detection of supernova Neutrinos Supernovae Conference, Kyoto, October 3, 3 Detection of supernova Neutrinos M.Nakahata Kamioka observatory ICRR/IPMU, Univ. of Tokyo SN87A Contents Supernova burst neutrinos SN87A Current detectors in

More information

Supernova Explosion Mechanisms

Supernova Explosion Mechanisms SFB-TR7 SFB-TR27 International Conference Physics of Neutron Stars 2011 St. Petersburg, Russia, July 11-15, 2011 Supernova Explosion Mechanisms Advancing to the 3rd Dimension: Supernova Models Confronting

More information

Neutrinos and Supernovae

Neutrinos and Supernovae Neutrinos and Supernovae Introduction, basic characteristics of a SN. Detection of SN neutrinos: How to determine, for all three flavors, the flux and temperatures. Other issues: Oscillations, neutronization

More information

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO)

Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO) Supernova Explosions and Neutron Stars Bruno Leibundgut (ESO) What do we want to learn about supernovae? What explodes? progenitors, evolution towards explosion How does it explode? explosion mechanisms

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

Ref. PRL 107, (2011)

Ref. PRL 107, (2011) Kenta Kiuchi, Y. Sekiguchi, K. Kyutoku, M. Shibata Ref. PRL 107, 051102 (2011) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS Introduction Coalescence of binary neutron stars Promising source of GWs Verification

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Numerical simulations of core-collapse supernovae

Numerical simulations of core-collapse supernovae Numerical simulations of core-collapse supernovae Jérôme Novak (Jerome.Novak@obspm.fr) Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot 10 th Rencontres du

More information

Neutrinos from Black Hole Accretion Disks

Neutrinos from Black Hole Accretion Disks Neutrinos from Black Hole Accretion Disks Gail McLaughlin North Carolina State University General remarks about black hole accretion disks Neutrinos and nucleosynthesis - winds Neutrino flavor transformation

More information

Core-collapse Supernove through Cosmic Time...

Core-collapse Supernove through Cosmic Time... Core-collapse Supernove through Cosmic Time... Eric J Lentz University of Tennessee, Knoxville S. Bruenn (FAU), W. R.Hix (ORNL/UTK), O. E. B. Messer (ORNL), A. Mezzacappa (UTK), J. Blondin (NCSU), E. Endeve

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 14 Supernovae (short overview) introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The core-collapse of a supernova The core of a pre-supernova is made of nuclei in the iron-mass range A ~

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 3: Neutrinos in astrophysics and cosmology Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER

More information

Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka

Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka Core-Collapse Supernovae: A Day after the Explosion Annop Wongwathanarat Ewald Müller Hans-Thomas Janka Max-Planck-Institut für Astrophysik Introduction Figure from Janka et al. (2012) CCSNe = death of

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

Supernova theory: simulation and neutrino fluxes

Supernova theory: simulation and neutrino fluxes Supernova theory: simulation and neutrino fluxes K G Budge 1, C L Fryer and A L Hungerford CCS-2, Los Alamos National Laboratory 2 M.S. D409, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545,

More information

Diffuse Supernova Neutrino Background

Diffuse Supernova Neutrino Background Diffuse Supernova Neutrino Background John Beacom The Ohio State University Impossible Dream of Neutrino Astronomy If [there are no new forces] -- one can conclude that there is no practically possible

More information

Supernova Neutrinos Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Supernova Neutrinos Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011 Supernova Neutrinos Supernova Neutrinos Physics Opportunities with Supernova Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München Sanduleak -69 202 Sanduleak -69 202 Tarantula Nebula Large

More information

The structure and evolution of stars. Learning Outcomes

The structure and evolution of stars. Learning Outcomes The structure and evolution of stars Lecture14: Type Ia Supernovae The Extravagant Universe By R. Kirshner 1 Learning Outcomes In these final two lectures the student will learn about the following issues:

More information

Lecture 14. Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes

Lecture 14. Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes Lecture 14 Neutrino-Powered Explosions Mixing, Rotation, and Making Black Holes Baade and Zwicky, Proceedings of the National Academy of Sciences, (1934) With all reserve we advance the view that a supernova

More information

Stellar Yields of Rotating First Stars:

Stellar Yields of Rotating First Stars: Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS NIC XIII@Debrecen 2014.07.10 Stellar Yields of Rotating First Stars: Yields of Weak Supernovae and Abundances of Carbon-enhanced Hyper Metal Poor Stars KT

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Neutrino Signature from Multi-D Supernova Models

Neutrino Signature from Multi-D Supernova Models Neutrino Signature from Multi-D Supernova Models David Radice 1,2 A. Burrows, J. C. Dolence, S. Seadrow, M. A. Skinner, D. Vartanyan, J. Wallace 1 Research Associate, Princeton University 2 Schmidt Fellow,

More information

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY Fifty-One Ergs Oregon State June 2017 Ebinger In collaboration with: Sanjana Sinha Carla Fröhlich Albino Perego Matthias Hempel Outline

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses I. Preliminaries The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries

Lecture 1. Overview Time Scales, Temperature-density Scalings, Critical Masses. I. Preliminaries I. Preliminaries Lecture 1 Overview Time Scales, Temperature-density Scalings, Critical Masses The life of any star is a continual struggle between the force of gravity, seeking to reduce the star to a

More information

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table: Compton Lecture #4: Massive Stars and Welcome! On the back table: Supernovae Lecture notes for today s s lecture Extra copies of last week s s are on the back table Sign-up sheets please fill one out only

More information

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011 Searching for Supernova Relic Neutrinos Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011 Outline Introduction: A Brief History of Neutrinos Theory Supernova Neutrino Emission Supernova

More information

Nuclear physics input for the r-process

Nuclear physics input for the r-process Nuclear physics input for the r-process Gabriel Martínez Pinedo INT Workshop The r-process: status and challenges July 28 - August 1, 2014 Nuclear Astrophysics Virtual Institute Outline 1 Introduction

More information

A Simple Approach to the Supernova Progenitor-Explosion Connection

A Simple Approach to the Supernova Progenitor-Explosion Connection A Simple Approach to the Supernova Progenitor-Explosion Connection Bernhard Müller Queen's University Belfast Monash Alexander Heger, David Liptai, Joshua Cameron (Monash University) Many potential/indirect

More information

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars Lecture 11 Stellar Evolution Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars A Spiral Galaxy (Milky Way Type) 120,000 ly A few hundred billion stars

More information

UNO: Underground Nucleon Decay and Neutrino Observatory

UNO: Underground Nucleon Decay and Neutrino Observatory UNO: Underground Nucleon Decay and Neutrino Observatory Clark McGrew NESS, Jan 2002 NESS 2002 McGrew p. 1 The UNO Concept Build on well-established techniques Explore broad range of physics Provide a general

More information

High-Energy Neutrinos from Gamma-Ray Burst Fireballs

High-Energy Neutrinos from Gamma-Ray Burst Fireballs High-Energy Neutrinos from Gamma-Ray Burst Fireballs Irene Tamborra GRAPPA Center of Excellence, University of Amsterdam TAUP 2015 Turin, September 9, 2015 Outline IceCube detection of high-energy neutrinos

More information

Zakopane, Tatra Mountains, Poland, May Supernova Neutrinos. Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

Zakopane, Tatra Mountains, Poland, May Supernova Neutrinos. Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany 52 nd Cracow School Crab Nebula on Theoretical Physics Zakopane, Tatra Mountains, Poland, 19 27 May 2012 Supernova Neutrinos Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany Sanduleak

More information

Chapter 15. Supernovae Classification of Supernovae

Chapter 15. Supernovae Classification of Supernovae Chapter 15 Supernovae Supernovae represent the catastrophic death of certain stars. They are among the most violent events in the Universe, typically producing about 10 53 erg, with a large fraction of

More information

Feedback in Galaxy Clusters

Feedback in Galaxy Clusters Feedback in Galaxy Clusters Brian Morsony University of Maryland 1 Not talking about Galaxy-scale feedback Local accretion disk feedback 2 Outline Galaxy cluster properties Cooling flows the need for feedback

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information

Diffuse SN Neutrino Background (DSNB)

Diffuse SN Neutrino Background (DSNB) Diffuse SN Neutrino Background (DSNB) What can we learn? Ideas under construction Cecilia Lunardini Arizona State University RIKEN BNL Research Center O introduction: motivation and facts O detection potential

More information

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H; In the Beginning Obviously, before we can have any geochemistry we need some elements to react with one another. The most commonly held scientific view for the origin of the universe is the "Big Bang"

More information