Cosmological and astrophysical probes of dark matter annihilation

Similar documents
Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Constraints on dark matter annihilation and decay from ν e cascades

Dark Matter in the Universe

Cosmic Positron Signature from Dark Matter Annihilation and Big-Bang Nucleosynthesis

Neutrinos and DM (Galactic)

Neutrino Signals from Dark Matter Decay

Testing a DM explanation of the positron excess with the Inverse Compton scattering

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

Indirect Dark Matter Detection

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Probing Dark Matter in Galaxy Clusters using Neutrinos

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Fundamental Physics with GeV Gamma Rays

DeepCore and Galactic Center Dark Matter

Preliminary lecture programme:

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

Indirect detection of decaying dark matter

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Indirect Dark Matter constraints with radio observations

arxiv: v1 [astro-ph.he] 29 Jan 2015

Dark Matter Electron Anisotropy: A universal upper limit

Indirect Searches for Gravitino Dark Matter

Update on Dark Matter and Dark Forces

Prospects for indirect dark matter detection with Fermi and IACTs

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Cosmological dark matter annihilation

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Detecting or Limiting Dark Matter through Gamma-Ray Telescopes

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Quest for New Physics

arxiv: v1 [astro-ph.he] 28 Jun 2016

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

Dark Matter in the Galactic Center

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Indirect dark matter detection and the Galactic Center GeV Excess

White dwarf pulsar as Possible Cosmic Ray Electron-Positron Factories

Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory Paper Review

arxiv: v2 [hep-ph] 1 Nov 2012

MACRO Atmospheric Neutrinos

Dark Matter Decay and Cosmic Rays

Cosmic ray electrons from here and there (the Galactic scale)

Dark Matter searches with astrophysics

Structure of Dark Matter Halos

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration

Spectra of Cosmic Rays

Subir Sarkar

Dark matter annihilations and decays after the AMS-02 positron measurements

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

High Energy Neutrino Astronomy

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Cosmic Ray Excess From Multi-Component Dark Matter

Searches for annihilating dark matter in the Milky Way halo with IceCube

Fundamental Physics from the Sky

Lessons from Neutrinos in the IceCube Deep Core Array

IceCube Results & PINGU Perspectives

CMB constraints on dark matter annihilation

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

Conservative Constraints on Dark Matter Self Annihilation Rate

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration

Cosmic Ray Anomalies from the MSSM?

Cosmological Constraints on high energy neutrino injection. KEKPH07 March 1-3, 2007

Indirect dark matter searches with the Cherenkov Telescope Array

Wino dark matter breaks the siege

SUPPLEMENTARY INFORMATION

Enhancement of Antimatter Signals from Dark Matter Annihilation

Detectors for astroparticle physics

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

The electron spectrum from annihilation of Kaluza-Klein dark matter in the Galactic halo

LATE DECAYING TWO-COMPONENT DARK MATTER (LD2DM) CAN EXPLAIN THE AMS-02 POSITRON EXCESS

Antimatter from Supernova Remnants

Dynamical Dark Matter and the Positron Excess in Light of AMS

Dark Matter - II. Workshop Freudenstadt shedding (Cherenkov) light on dark matter. September 30, 2015

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

neutrino astronomy francis halzen university of wisconsin

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

UHE NEUTRINOS AND THE GLASHOW RESONANCE

DM subhalos: The obser vational challenge

Dark Matter searches with radio observations

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Indirect searches for dark matter particles with the Super-Kamiokande detector

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

Sep. 13, JPS meeting

Observability of gamma-ray spectral feature from Kaluza-Klein dark matter

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Current Status on Dark Matter Motivation for Heavy Photons

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Neutrino Astronomy fast-forward

arxiv: v1 [hep-ph] 10 Sep 2014

Antiproton Limits on Decaying Gravitino Dark Matter

THE WMAP HAZE: PARTICLE PHYSICS ASTROPHYSICS VERSUS. Greg Dobler. Harvard/CfA July 14 th, TeV09

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches

Transcription:

Cosmological and astrophysical probes of dark matter annihilation Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, Phys.Rev.D79,063514(2009)[0810.1892] J.Hisano, M.Kawasaki, K.Kohri and KN, Phys.Rev.D79,043516(2009)[0812.0219] M.Kawasaki, K.Kohri and KN, to appear in Phys.Rev.D [0904.3626] J.Hisano, KN, and M.J.S.Yang, Phys.Lett.B678,101(2009)[0905.1552] ACP Seminar@ IPMU (2009/07/02)

Contents First part PAMELA/Fermi results & constraints on DM annihilation scenario Second part Neutrino signals from GC Diffuse gamma-ray background

First Part : Quick Summary

Energy content of the Universe after WMAP What is the dark matter? Can it be detected? Collider Direct detection Indirect detection DM-nucleon Scattering DM annihilation Cosmic Ray Signals

Detecting dark matter signal DM + DM e ±, γ, p, ν,... e ± γ ν We are here

PAMELA observation )) - )+!(e + ) / (!(e + 0.4 0.3 0.2!(e Positron fraction 0.1 0.02 Muller & Tang 1987 MASS 1989 TS93 HEAT94+95 CAPRICE94 AMS98 HEAT00 Clem & Evenson 2007 excess in cosmic-ray positron flux PAMELA 0.01 0.1 1 10 100 Energy (GeV) Adriani et al.,arxiv:0810.4995

ATIC/PPB-BETS observations 1,000 excess in electron+positron flux E e 3.0 dn/dee (m 2 s 1 sr 1 GeV 2 ) 100 10 ATIC BETS, PPB-BETS HEAT AMS 10 100 1,000 Energy (GeV) J.Chang et al. Nature (2008)

Fermi LAT collaboration, 0905.0025 Fermi observation Inconsistent with ATIC results. Still there may be excess.

HESS observation sr -1 ) 2 m -2 s -1 dn/de (GeV 3 E 10 2! E ± 15% ATIC PPB-BETS Kobayashi H.E.S.S. H.E.S.S. - low-energy analysis Systematic error Systematic error - low-energy analysis Broken power-law fit Consistent with Fermi results. 2 10 3 10 Energy (GeV) HESS collaboration, 0905.0105

Dark Matter : Decay or Annihilate Decaying DM DM need not be completely stable. DM lifetime with can explain PAMELA. Annihilating DM τ 10 26 sec Flux n DM τ 10 29 cm 3 s 1 DM may have weak scale annihilation cross section. Cross section with σv 10 24 10 23 cm 3 s 1 can explain PAMELA. Flux n 2 DM σv 10 29 cm 3 s 1

Positron fraction Total flux [GeV 2 m 2 s 1 sr 1 ] χχ µ + µ : m χ = 1.2TeV, σv = 1.2 10 23 cm 3 s 1

Positron fraction Total flux [GeV 2 m 2 s 1 sr 1 ] χχ τ + τ : m χ = 1.5TeV, σv = 3.5 10 23 cm 3 s 1

It is important to investigate Relation to other signals Gamma-rays from Galactic center Diffuse extragalactic gamma-rays Anti-protons Synchrotron radiation Neutrinos from Galactic center γ ν e ±

Σv in cm 3 sec 10 20 10 22 10 24 10 26 Σv in cm 3 sec Μ Μ 10 2 10 3 10 4 10 20 10 22 10 24 10 26 GC VLT GC radio GC radio PAMELA DM mass in GeV Μ Μ Sgr dsph Γ 10 2 10 3 10 4 GC Γ GR Γ Σv in cm 3 sec ρ DM (r) 1/r PAMELA DM mass in GeV GR Γ Sgr dsph Γ Σv in cm 3 sec ρ DM (r) 1/(1 + r 2 ) 10 20 10 22 10 24 10 26 10 20 10 22 10 24 10 26 GC VLT GC radio Τ Τ PAMELA 10 2 10 3 10 4 DM mass in GeV GC radio Sgr dsph Γ 10 2 10 3 10 4 DM mass in GeV GC Γ GR Γ DM DM Τ Τ, isothermal profile PAMELA GC Γ GR Γ Sgr dsph Γ Constraints on DM ann models. Sensitively depends on DM halo profile. G.Bertone et al., 0811.3744

What we have done : Neutrino-induced muon flux from Galactic center Diffuse extragalactic gamma-rays from dark matter annihilation Both give useful constraints on DM models, rather insensitive to DM halo profile J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0812.0219 M.Kawasaki, K.Kohri and KN, arxiv:0904.3626 J.Hisano, KN, and M.J.S.Yang, arxiv:0905.1552

Μ Μ Τ Τ 10 20 GC VLT 10 20 GC VLT Σv in cm 3 sec 10 22 10 24 PAMELA Sgr dsph Γ GC Γ GR Γ Σv in cm 3 sec 10 22 10 24 PAMELA Sgr dsph Γ GC Γ GR Γ 10 26 Σv in cm 3 sec GC radio 10 2 10 3 10 4 DM mass in GeV GC radio Μ Μ GR Γ 10 20 10 22 10 24 PAMELA Sgr dsph Γ Σv in cm 3 sec 10 26 10 20 10 22 10 24 GC radio 10 2 10 3 10 4 DM mass in GeV GC radio DM DM Τ Τ, isothermal profile PAMELA GC Γ GR Γ Sgr dsph Γ 10 26 10 2 10 3 10 4 DM mass in GeV 10 26 10 2 10 3 10 4 DM mass in GeV G.Bertone et al., 0811.3744

Μ Μ Τ Τ Σv in cm 3 sec 10 20 10 22 10 24 GC VLT PAMELA Sgr dsph Γ GC Γ GR Γ ν Σv in cm 3 sec 10 20 10 22 10 24 GC VLT PAMELA Sgr dsph Γ GC Γ GR Γ 10 26 Σv in cm 3 sec GC radio 10 2 10 3 10 4 DM mass in GeV GC radio Μ Μ GR Γ 10 20 10 22 10 24 PAMELA Sgr dsph Γ Σv in cm 3 sec 10 26 10 20 10 22 10 24 GC radio 10 2 10 3 10 4 DM mass in GeV GC radio DM DM Τ Τ, isothermal profile PAMELA GC Γ GR Γ Sgr dsph Γ 10 26 10 2 10 3 10 4 DM mass in GeV 10 26 10 2 10 3 10 4 DM mass in GeV G.Bertone et al., 0811.3744

Σv in cm 3 sec 10 20 10 22 10 24 GC VLT Μ Μ PAMELA Sgr dsph Γ GC Γ GR Γ ν Σv in cm 3 sec 10 20 10 22 10 24 GC VLT Τ Τ PAMELA Sgr dsph Γ GC Γ GR Γ diffuse γ 10 26 Σv in cm 3 sec GC radio 10 2 10 3 10 4 DM mass in GeV GC radio Μ Μ GR Γ 10 20 10 22 10 24 PAMELA Sgr dsph Γ Σv in cm 3 sec 10 26 10 20 10 22 10 24 GC radio 10 2 10 3 10 4 DM mass in GeV GC radio DM DM Τ Τ, isothermal profile PAMELA GC Γ GR Γ Sgr dsph Γ 10 26 10 2 10 3 10 4 DM mass in GeV 10 26 10 2 10 3 10 4 DM mass in GeV G.Bertone et al., 0811.3744

Second part : Neutrino Flux J.Hisano, M.Kawasaki, K.Kohri and KN, Phys.Rev.D79,043516(2009)[0812.0219] J.Hisano, KN, and M.J.S.Yang, Phys.Lett.B678,101(2009)[0905.1552]

Neutrino Signal from DM Annihilation χχ W + W, b b, l + l,... e ±, γ, p, ν,... Ritz, Seckel (88),Kamionkowski (90),... Bertone,Nezri,Orloff,Silk (04), Yuksel,Horiuchi,Beacom,Ando(07) Interaction inside the Earth ν detector µ from GC Earth Search for up-going muons Limits from Super-K

SK limit on upward muon flux from GC direction x 10-12 Flux Limit (cm -2 sec -1 ) 0.12 0.1 0.08 0.06 0.04 Baksan Limit IMB Limit Kamiokande Limit MACRO Limits Super-K Limits 0.02 0 0-5 0-10 0-15 0-20 0-25 0-30 Cone Half Angle From Galactic Center (Degrees) S.Desai et al., Phys.Rev.D70,083523 (2004)

Muon flux from DM N µ = de νµ df νµ de νµ f(e νµ ) (a) Neutrino flux from DM: µ df νµ de νµ SK detector (b) Probability of ν µ µ f(e νµ ) : ν Rock

(a) Neutrino flux from GC df νµ de νµ = R ρ 2 8πm 2 ( F dn (ν µ) F σv F de νµ ) J Ω Neutrino spectra : dn (ν µ) F de νµ = i ( dn (ν i) F P νi ν µ de νi ) E νi =E ν µ DM halo profile dependent part : J Ω = dω Ω l.o.s. Neutrino oscillation ( ) 2 dl(ψ) ρ(l) R ρ Typical value of J Ω J 2 Ω Ω 5 10 15 20 25 NFW 6.0 10 14 17 20 isothermal 1.3 4.3 8.0 11 15

(b) Probability of ν µ µ f(e νµ ) de µ dσ νµ p µx de µ n (rock) p R(E µ ) Cross section : Number density of proton in the rock : n (rock) p G2 F s π E ν µ = 1.3N A cm 3 ν µ µ W N N Muon range : R(E µ )

Energy loss of muon in matter Dutta, Reno, Sarcevic, Seckel, Phys.Rev.D63,094020 (2001) de µ dx = α(e µ) β(e µ )E µ Ionization loss : α(e µ ) 2 MeVcm 2 g 1 Radiative loss : (Brems, pair creation,...) β(e µ ) 10 6 cm 2 g 1 Typical propagation distance : R µ E µ α(e µ )ρ rock 1 km(e µ /1TeV)

Muon range in the rock Propagation distance [km] 10 1 all loss ionization loss E 0.1 10 100 1000 10000 Muon energy [GeV] E µ 1 TeV E µ 1 TeV R µ 1 km(e µ /1TeV) deviation from linearity

Probability of ν µ µ f(e νµ ) f(e νµ ) E 2 ν µ de µ dσ νµ p µx de µ n (rock) p R(E µ ) G2 F s π E ν µ E µ Higher energy neutrinos are more likely converted into muon Monochromatic neutrino : χχ ν ν is constrained more severely than secondary neutrino : χχ µ + µ, µ ν µ ν e e

Limits from SK : Annihilation into left-handed leptons is not favored. Annihilate into left handed leptons Annihilate into right handed leptons (ν ν + l L l+ R ) (l R l+ L ) J.Hisano, M.Kawasaki, K.Kohri, KN (2008)

ν µ ν µ Contour : Muon flux ( 10 15 cm 2 s 1 ) σv J Ω [cm 3 s 1 ] Gray : current SK bound (for θ = 5 ) µ + µ Total muon flux N µ = de νµ df νµ de νµ f(e νµ ) σv J Ω [cm 3 s 1 ] m 2 χ N µ const.

ν µ ν µ Contour : Muon flux ( 10 15 cm 2 s 1 ) σv J Ω [cm 3 s 1 ] PAMELA & Fermi Gray : current SK bound (for θ = 5 ) σv J Ω [cm 3 s 1 ] µ + µ PAMELA & Fermi Total muon flux N µ = de νµ df νµ de νµ f(e νµ ) m 2 χ N µ const.

Lesson from neutrino Construct a DM model which fits PAMELA/Fermi data (either ann or decay) Check if your model produce monochromatic neutrinos with similar rate or not If yes, your model may conflict with SK bound irrespective of DM density profile Check carefully the SK bound!

Τ Τ Σv in cm 3 sec 10 20 10 22 10 24 PAMELA GR Γ Sgr dsph Γ 10 26 10 2 10 3 10 4 DM mass in GeV G.Bertone et al., 0811.3744

Τ Τ Σv in cm 3 sec 10 20 10 22 10 24 PAMELA GR Γ Sgr dsph Γ 10 26 10 2 10 3 10 4 DM mass in GeV G.Bertone et al., 0811.3744 P.Maede et al., 0905.0480

Τ Τ Σv in cm 3 sec 10 20 10 22 10 24 PAMELA GR Γ Sgr dsph Γ 10 26 10 2 10 3 10 4 DM mass in GeV G.Bertone et al., 0811.3744 P.Maede et al., 0905.0480 Neutrino constraint becomes standard.

Τ Τ Σv in cm 3 sec 10 20 10 22 10 24 10 26 PAMELA GR Γ Sgr dsph Γ Caution : This figure considers only secondary neutrino from tau decay. If DM annihilates into line neutrino, constraint becomes DM mass more in GeVstringent. 10 2 10 3 10 4 G.Bertone et al., 0811.3744 P.Maede et al., 0905.0480 Neutrino constraint becomes standard.

Possible improvement at SK High-energy neutrino-induced muons are detected through Cherenkov light Energy of each muon is not measured However, SK can distinguish muon events by event shape : shower and non-shower Higher energy muons more likely observed as showering muon DM-originated neutrinos more likely produce shower events than atmospheric neutrinos

Simulation 3 kind of muon events : 10000 Showering Through-going shower mu dn/d(loge) 5000 Non-showering Stopping Through-going nonshower mu Stopping mu Probability for shower 0 1 10 10 2 10 3 10 4 10 5 E! (GeV) S.Desai et al., Astropart.Phys.29,42 (2008)

Flux [GeV -1 cm -2 s -1 sr -1 ] 10-7 10-8 10-9 10-10 10-11 atmos : Honda et al.,2005 DM atmos BG 10-12 10 1 10 2 10 3 10 4 E ν [GeV]

atmos : Honda et al.,2005 Flux [GeV -1 cm -2 s -1 sr -1 ] 10-7 10-8 10-9 10-10 10-11 Non-shower muon DM atmos BG Shower muon 10-12 10 1 10 2 10 3 10 4 E ν [GeV]

atmos : Honda et al.,2005 Flux [GeV -1 cm -2 s -1 sr -1 ] 10-7 10-8 10-9 10-10 10-11 Non-shower muon DM atmos BG Shower muon 10-12 10 1 10 2 10 3 10 4 E ν [GeV] Shower muon events contain relatively large contribution from DM-produced neutrino

Ratio between Shower muon and Total muon atmospheric : N shower µ /N total µ 0.12

ν µ ν µ Contour : Muon flux ( 10 15 cm 2 s 1 ) σv J Ω [cm 3 s 1 ] Gray : current SK bound (for θ = 5 ) µ + µ A factor improvement is expected on the annihilation cross section σv J Ω [cm 3 s 1 ] May soon reach to PAMELA/Fermi region? Hisano, KN, Yang 0905.2075

ν µ ν µ Contour : Muon flux ( 10 15 cm 2 s 1 ) σv J Ω [cm 3 s 1 ] PAMELA & Fermi Gray : current SK bound (for θ = 5 ) σv J Ω [cm 3 s 1 ] µ + µ PAMELA & Fermi A factor improvement is expected on the annihilation cross section May soon reach to PAMELA/Fermi region? Hisano, KN, Yang 0905.2075

Comments on IceCube Huge detector High statistics Located at South Pole cannot see Galactic center through upward muons Use downward muons? Atmospheric muon BG is 10^6 larger than DM signal

A planned extension : DeepCore Primary purpose : better sensitivity on low-energy neutrino Inner detector with denser instrumentation Use original detector as muon veto Remove atmospheric muon BG S.Seo, Talk at Dark2009

Expected sensitivity of DeepCore (5yr) 5000 Μ Μ Boost 1000 500 100 50 2 Σ Limit PAMELA 10 500 1000 1500 2000 2500 3000 3500 M Χ GeV Spolyar, Buckley, Freese, Hooper, Murayama, 0905.4764

Summary DM interpretation of PAMELA/Fermi Confirm/constrain by other signals Neutrino-induced muon Flux Useful constraints on annihilating/decaying DM. Shower/non-shower separation may be a useful way to extract DM information. SK III, DeepCore, KM3NeT

Second Part II : Diffuse gamma-rays M.Kawasaki, K.Kohri and KN, to appear in Phys.Rev.D [0904.3626]

Gamma-Ray Flux

Gamma-Ray Flux Galactic center

Gamma-Ray Flux Galactic center Extra Galactic diffuse

Continuum Gamma-Rays from DM ann. Internal Brems. Final state charged particle always emit photon. χχ l + l χχ l + l γ χ χ e + e γ Cascade decay χχ τ + τ, W + W hadrons(π ±, π 0, ρ,... ) 2γ

Extra-Galactic component Ullio, Bergstrom, Edsjo, Lacey (2002) Dominant contribution is summation over the DM ann. in external clustering objects γ We are here

. [ dφγ de ] ext = σv 8π ρ 2 m m 2 χ dz(1 + z) 3 H(z) dn γ de 2 (z) 2 (z) : Enhancement factor ( 2 (z) = 1 : homogeneous DM) 2 (z) dmm dn(z) dm drρ 2 M (r) Number of clustering objects : Press-Schechter theory Press, Schechter (1974) Sheth, Mo, Tormen (2001) Universal DM halo profile (Moore, NFW,...)

Enhancement factor 2 (z) Moore! 2 (z) 10 7 10 6 10 5 10 4 Moore NFW Burkert ρ(r) 1 r 1.5 (1 + r 1.5 ) NFW ρ(r) 1 r(1 + r) 2 10 3 0 1 2 3 4 5 6 7 8 9 10 z ρ(r) Burkert 1 (1 + r)(1 + r 2 ) About 10^5-10^6 enhancement for DM annihilation rate

Gamma-rays from 10 < b < 90 Extragalactic component is comparable to Galactic component

e ± µ ± M.Kawasaki, K.Kohri, KN, 0904.3626 τ ± W ±

Constraints on annihilation cross section Cuspy profile : extragalactic is weaker than GC bound Cored profile : extragalactic is stronger than GC bound Fermi will soon make the bound stronger

Effects of Inverse Compton scattering CMB photon e ± + γ CMB e ± + γ Profumo, Jeltema,0906.0001 Belikov, Hooper, 0906.2251 τ + τ Second peak around E (IC) γ γ 2 ee CMB 0.1 GeV ( mdm 1 TeV ) 2 More stringent constraint

Summary DM interpretation of PAMELA/Fermi Confirm/constrain by other signals, as Neutrino-induced muon Flux Useful constraints on annihilating/decaying DM. SK III, DeepCore, KM3NeT Gamma-ray Flux Both Galactic and extra-galactic gamma-rays may be significant in DM ann scenario. Fermi

Back-up Slides

Astrophysical source Pulsar (single or sum) Gamma-ray burst Sum of all pulsars Hooper, Blasi, Serpico, arxiv:0810.1527 Profumo, arxiv:0812.4457 K.Ioka, arxiv:0812.4851 Geminga pulsar Hooper, Blasi, Serpico, arxiv:0810.1527

DM or Astrophysics? Anisotropy in CR flux I min I max Point source δ = I max I min I max + I min K(E) Rc 0.01% ( 1 kpc R ) ( E ) 0.6 1 GeV

Anisotropy from nearby Pulsar Fermi 5yr Hooper, Blasi, Serpico, arxiv:0810.1527

!=2, MED diffusion setup, ST model B0355+54 Vela Monogem (B0656+14) Loop I Positron Fraction 0.1 Geminga Cygnus L. 0.01 10 100 1000 10000 Energy [GeV] S.Profumo, arxiv:0812.4457

Press-Schechter theory dn dm = 2 π ρ m δ c M [ 1 dσ(m) σ(m) 2 dm ] exp [ ] δ2 c 2σ 2. (M) 1 10-1 fraction of mass in halos heavier than M fraction of mass in each mass interval M : halo mass σ(m) : dispersion of density field δ c 1.686 : critical overdensity σ 2 (M) = 1 2π 2 W 2 (k M )P (k)k 2 dk 10-2 z = 0 z = 2 z = 4 2 4 6 8 10 12 14 Ullio et al. (2002) log 10 (M / M!! ) Predict number of collapsed objects with mass M