Equations P Se va nota cu y fractia din debitul masic care intra in turbina care e extrasa din turbina pentru preincalzitorul inchis

Similar documents
Equations P $UnitSystem K kpa. F luid$ = Air (1) Input data for fluid. $If Fluid$= Air. C P = [kj/kg K] ; k = 1.

$IfNot ParametricTable= P_ratio_gas. P ratio,gas = 14; Raport comprimare compresor aer - Pressure ratio for gas compressor (2) $EndIf

Equations. P v2

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 26. Use of Regeneration in Vapor Power Cycles

I. (20%) Answer the following True (T) or False (F). If false, explain why for full credit.

MAE 11. Homework 8: Solutions 11/30/2018

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. hl = IOkPa = 191.

Unit Workbook 2 - Level 5 ENG U64 Thermofluids 2018 UniCourse Ltd. All Rights Reserved. Sample

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

ME Thermodynamics I. Lecture Notes and Example Problems

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Lecture 35: Vapor power systems, Rankine cycle

Availability and Irreversibility

+ m B1 = 1. u A1. u B1. - m B1 = V A. /v A = , u B1 + V B. = 5.5 kg => = V tot. Table B.1.

The exergy of asystemis the maximum useful work possible during a process that brings the system into equilibrium with aheat reservoir. (4.

2b m 1b: Sat liq C, h = kj/kg tot 3a: 1 MPa, s = s 3 -> h 3a = kj/kg, T 3b

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

1 st Law Analysis of Control Volume (open system) Chapter 6

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

c Dr. Md. Zahurul Haq (BUET) Thermodynamic Processes & Efficiency ME 6101 (2017) 2 / 25 T145 = Q + W cv + i h 2 = h (V2 1 V 2 2)

Lecture 38: Vapor-compression refrigeration systems

III. Evaluating Properties. III. Evaluating Properties

FUNDAMENTALS OF THERMODYNAMICS

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

THERMODYNAMICS (Date of document: 8 th March 2016)

ME Thermodynamics I

LAKEHEAD UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICAL ENGINEERING LABORATORY ENGI-3555 WD LAB MANUAL LAB COORDINATOR: Dr.

Chapter 5. Mass and Energy Analysis of Control Volumes

Basic Thermodynamics Cycle analysis

ME 300 Thermodynamics II Spring 2015 Exam 3. Son Jain Lucht 8:30AM 11:30AM 2:30PM

Fundamentals of Thermodynamics. Chapter 8. Exergy

Readings for this homework assignment and upcoming lectures

(1)5. Which of the following equations is always valid for a fixed mass system undergoing an irreversible or reversible process:

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

ME 201 Thermodynamics

Thermodynamic Cycles

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 13 June 2007

Lecture 44: Review Thermodynamics I

10 minutes reading time is allowed for this paper.

Previous lecture. Today lecture

Consequences of Second Law of Thermodynamics. Entropy. Clausius Inequity

CHAPTER 7 ENTROPY. Copyright Hany A. Al-Ansary and S. I. Abdel-Khalik (2014) 1

ME 201 Thermodynamics

Excercise: Steam superheating

c Dr. Md. Zahurul Haq (BUET) Entropy ME 203 (2017) 2 / 27 T037

Chapter 7. Entropy: A Measure of Disorder

Chapter 3 PROPERTIES OF PURE SUBSTANCES

first law of ThermodyNamics

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec

Brown Hills College of Engineering & Technology

T222 T194. c Dr. Md. Zahurul Haq (BUET) Gas Power Cycles ME 6101 (2017) 2 / 20 T225 T226

STEADY STATE SIMULATION AND EXERGY ANALYSIS OF SUPERCRITICAL COAL-FIRED POWER PLANT (SCPP) WITH CO 2 CAPTURE

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

Chemical Engineering Thermodynamics Spring 2002

ME Thermodynamics I

Dishwasher. Heater. Homework Solutions ME Thermodynamics I Spring HW-1 (25 points)

T098. c Dr. Md. Zahurul Haq (BUET) First Law of Thermodynamics ME 201 (2012) 2 / 26

To receive full credit all work must be clearly provided. Please use units in all answers.

Thermodynamics Lecture Series

Teaching schedule *15 18


Outline. Example. Solution. Property evaluation examples Specific heat Internal energy, enthalpy, and specific heats of solids and liquids Examples

Where F1 is the force and dl1 is the infinitesimal displacement, but F1 = p1a1

Scheme G. Sample Test Paper-I

Fundamentals of Thermodynamics Applied to Thermal Power Plants

CHAPTER 8 THERMODYNAMICS. Common Data For Q. 3 and Q.4. Steam enters an adiabatic turbine operating at steady state with an enthalpy of 3251.

Chapter 1 Introduction and Basic Concepts

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

T Turbine 8. Boiler fwh fwh I Condenser 4 3 P II P I P III. (a) From the steam tables (Tables A-4, A-5, and A-6), = = 10 MPa. = 0.

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 20 June 2005

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

ME 201 Thermodynamics

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011.

Theoretical & Derivation based Questions and Answer. Unit Derive the condition for exact differentials. Solution:

Thermodynamics Lecture Series

ES 202 Fluid and Thermal Systems

ENGR Thermodynamics

Zittau/Goerlitz University of Applied Sciences Department of Technical Thermodynamics Germany. K. Knobloch, H.-J. Kretzschmar, K. Miyagawa, W.

20 m neon m propane. g 20. Problems with solutions:

5/6/ :41 PM. Chapter 6. Using Entropy. Dr. Mohammad Abuhaiba, PE

Hours / 100 Marks Seat No.

Chapter 3 PROPERTIES OF PURE SUBSTANCES

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

v v = = Mixing chamber: = 30 or, = s6 Then, and = 52.4% Turbine Boiler process heater Condenser 7 MPa Q in 0.6 MPa Q proces 10 kpa Q out

ME 022: Thermodynamics

Boundary. Surroundings

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m.

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2014/2015 ME258. Thermodynamics

Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, Chapter 7 ENTROPY

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006

THE FIRST LAW APPLIED TO STEADY FLOW PROCESSES

ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles.

Applied Thermodynamics. Gas Power Cycles

BME-A PREVIOUS YEAR QUESTIONS

Transcription:

P10-110 Equations Thermodynamics - An Engineering Approach (5th Ed) - Cengel, Boles - Mcgraw-Hill (2006) - pg. 602 Ciclul Rankine cu regenerare cu preincalzitoare deschise multiple - Regeneration using Multiple Open Feedwater Heaters Sa se studieze influenta numarului de trepte de regenerare asupra performantei unui ciclu Rankine ideal cu regenerare. Aburul intra in turbina cu15 MPa si 600 C, si in condensator cu 5 kpa. In fiecare caz se va mentine aceeasi diferenta de temperatura intre oricare doua trepte de regenerare. Sa se determine randamentul termic al ciclului si sa se traseze grafic in functie de nr de trepte de regenerare. Se va nota cu y fractia din debitul masic care intra in turbina care e extrasa din turbina pentru preincalzitorul inchis $UnitSystem C kpa procedure Reheat(NoF wh, T 5, P 5, P cond, η turb, η pump : q in, w net ) (1) T cond = T (steam, P = P cond, x = 0) [C] ; (2) T boiler = T (steam, P = P 5, x = 0) [C] ; (3) P 7 = P cond [kpa] ; s 5 = s (steam, T = T 5, P = P 5 ) ; (4) 1

h 5 = h (steam, T = T 5, P = P 5 ) ; h 1 = h (steam, P = P 7, x = 0) ; (5) P 4 1 = P 5 NOTICE THIS IS P4[i] WITH i= 1 (6) T cond,boiler = T boiler T cond [C] (7) If NoF W H = 0 then (8) the following are h7, h2, w net, and q in for zero feedwater heaters, NoFWH= 0 h7 = h (steam, s = s 5, P = P 7 ) (9) h2 = h 1 + v (steam, P = P 7, x = 0) P5 P 7 η pump (10) w net = η turb (h 5 h7) (h2 h 1 ) (11) q in = h 5 h2 else i = 0 i = i + 1 (12) (13) (14) (15) (16) The following maintains the same temperature difference between any two regeneration stages. T F W H,i = (NoF W H + 1 i) T cond,boiler NoF W H + 1 + T cond [C] (17) P extract,i = P (steam, T = T F W H,i, x = 0) [kpa] (18) P 3 i = P extract,i ; P 6 i = P extract,i (19) If i > 1 then P 4 i = P 6 i 1 until i = NoF W H P 4 NoF W H+1 = P 6 NoF W H (20) (21) (22) h4 NoF W H+1 = h 1 + v (steam, P = P 7, x = 0) P 4 NoF W H+1 P 7 η pump (23) i = 0 (24) (25) 2

i = i + 1 (26) Boiler condensate pump or the Pumps 2 between feedwater heaters analysis h3 i = h (steam, P = P 3 i, x = 0) ; v3 i = v (ST EAM, P = P 3 i, x = 0) (27) w pump2,s = v3 i (P 4 i P 3 i ) SSSF isentropic pump work assuming constant specific volume (28) w pump2,i = w pump2,s /η pump Randamentul pompei - Definition of pump efficiency (29) h4 i = w pump2,i + h3 i Steady-flow conservation of energy (30) s4 i = s (ST EAM, P = P 4 i, h = h4 i ) ; T 4 i = T (ST EAM, P = P 4 i, h = h4 i ) ; (31) until i = NoF W H i = 0 i = i + 1 (32) (33) (34) (35) Preincalzitor deschis - Open Feedwater Heater analysis: s5 i = s 5 ; ss6 i = s5 i (36) hs6 i = h (ST EAM, s = ss6 i, P = P 6 i ) ; T s6 i = T (ST EAM, s = ss6 i, P = P 6 i ) ; (37) h6 i = h 5 η turb (h 5 hs6 i ) Randamentul turbinei - Definition of turbine efficiency for high pressure sta If i = 1 then y 1 = h3 1 h4 2 h6 1 h4 2 Steady-flow conservation of energy for the FWH (39) If i > 1 then js = i 1 j = 0 sumyj = 0 j = j + 1 sumyj = sumyj + y j ; until j = js (40) (41) (42) (43) (44) (45) (46) (47) y i = (1 sumyj) h3 i h4 i+1 h6 i h4 i+1 (48) 3

endif (49) T 3 i = T (steam, P = P 3 i, x = 0) Condensate leaves heater as sat. liquid at P[3] (50) s3 i = s (ST EAM, P = P 3 i, x = 0) (51) Turbine analysis T 6 i = T (ST EAM, P = P 6 i, h = h6 i ) ; s6 i = s (ST EAM, P = P 6 i, h = h6 i ) (52) yh6 i = y i h6 i until i = NoF W H ss 7 = s6 i (53) (54) (55) hs 7 = h (ST EAM, s = ss 7, P = P 7 ) ; T s 7 = T (ST EAM, s = ss 7, P = P 7 ) (56) h 7 = h6 i η turb (h6 i hs 7 ) Definition of turbine efficiency for low pressure stages (57) T 7 = T (ST EAM, P = P 7, h = h 7 ) ; s 7 = s (ST EAM, P = P 7, h = h 7 ) (58) sumyi = 0; sumyh6i = 0; wp2i = W pump2,1 (59) i = 0 i = i + 1 sumyi = sumyi + y i sumyh6i = sumyh6i + yh6 i (60) (61) (62) (63) (64) If NoF W H > 1 then wp2i = wp2i + (1 sumyi) W pump2,i (65) until i = NoF W H (66) Pompa condensator - Condenser Pump Pump 1 Anslysis: P 2 = P 6 NoF W H P 1 = P cond ; X 1 = 0; h 1 = h (ST EAM, P = P 1, x = 0) v1 = v (ST EAM, P = P 1, x = 0) s 1 = s (ST EAM, P = P 1, x = 0) T 1 = T (ST EAM, P = P 1, x = 0) (67) (68) (69) (70) (71) (72) 4

w pump1,s = v1 (P 2 P 1 ) SSSF isentropic pump work assuming constant specific volume (73) w pump1 = w pump1,s /η pump Definition of pump efficiency (74) h 2 = w pump1 + h 1 Steady-flow conservation of energy (75) s 2 = s (ST EAM, P = P 2, h = h 2 ) ; T 2 = T (ST EAM, P = P 2, h = h 2 ) (76) Generator de abur - Boiler analysis q in = h 5 h4 1 SSSF conservation of energy for the Boiler (77) w turb = h 5 sumyh6i (1 sumyi) h 7 SSSF conservation of energy for turbine (78) Condensator - Condenser analysis q out = (1 sumyi) (h 7 h 1 ) SSSF First Law for the Condenser (79) Ciclu - Cycle Statistics w net = w turb ((1 sumyi) w pump1 + wp2i) (80) endif (81) end (82) Marimi de intrare - Input Data: $IfNot ParametricTable= NoFWH NoF W H = 2; $EndIf P 5 = 15000 [kpa] ; T 5 = 600 [C] ; P cond = 5 [kpa] ; (83) (84) (85) (86) η turb = 1.0 Randament turbina - Turbine isentropic efficiency (87) η pump = 1.0 Randament pompa - Pump isentropic efficiency (88) P 1 = P cond [kpa] (89) Rezolvare: P 4 = P 5 ; (90) Condenser exit pump or Pump 1 analysis call Reheat(NoF wh, T 5, P 5, P cond, η turb, η pump : q in, w net ); (91) η th = w net /q in ; (92) Data$ = Date$; (93) Solution Variables in Main program 5

Data$ = 2014-05-22 η pump = 1 η th = 0.4902 η turb = 1 NoF W H = 2 P cond = 5 [kpa] q in = 2534 [kj/kg] w net = 1242 [kj/kg] Variables in Procedure Reheat NoF wh = 2 T [5] = 600 [C] P [5] = 15000 [kpa] P cond = 5 [kpa] η turb = 1 η pump = 1 q in = 2534 [kj/kg] w net = 1242 [kj/kg] T cond = 32.88 [C] T boiler = 342.2 [C] P [7] = 5 [kpa] s[5] = 6.677 [kj/kg-c] h[5] = 3581 [kj/kg] h[1] = 137.7 [kj/kg] P 4[1] = 15000 [kpa] T cond,boiler = 309.3 [C] h7 = notdefined [kj/kg] h2 = notdefined [kj/kg] i = 2 w pump2,s = 3.194 [kj/kg] y[1] = 0.1814 h3[1] = 1033 [kj/kg] h4[2] = 575.1 [kj/kg] h6[1] = 3099 [kj/kg] js = 1 j = 1 sumyj = 0.1814 ss[7] = 6.677 [kj/kg-c] hs[7] = 2035 [kj/kg] T s[7] = 32.88 [C] h[7] = 2035 [kj/kg] T [7] = 32.88 [C] s[7] = 6.677 [kj/kg-c] sumyi = 0.3251 sumyh6i = 937.1 [kj/kg] wp2i = 28.29 [kj/kg] W pump2,1 = 14.37 [kj/kg] P [2] = 322 [kpa] P [1] = 5 [kpa] X[1] = 0 v1 = 0.001005 [m 3 /kg] s[1] = 0.4761 [kj/kg-c] T [1] = 32.88 [C] w pump1,s = 0.3187 [kj/kg] w pump1 = 0.3187 [kj/kg] h[2] = 138 [kj/kg] s[2] = 0.4761 [kj/kg-c] T [2] = 32.89 [C] h4[1] = 1047 [kj/kg] w turb = 1271 [kj/kg] q out = 1281 [kj/kg] T F W H,1 = 239.1 [C] P EXT RACT,1 = 3292 [kpa] P 3[1] = 3292 [kpa] P 6[1] = 3292 [kpa] T F W H,2 = 136 [C] P EXT RACT,2 = 322 [kpa] P 3[2] = 322 [kpa] P 6[2] = 322 [kpa] P 4[2] = 3292 [kpa] P 4[3] = 322 [kpa] H4[3] = 138 [kj/kg] V 3[1] = 0.001227 [m3/kg] S4[1] = 2.693 [kj/kg-c] T 4[1] = 241.8 [C] H3[2] = 571.9 [kj/kg] V 3[2] = 0.001076 [m 3 /kg] W P UMP 2,2 = 3.194 [kj/kg] S4[2] = 1.697 [kj/kg-c] T 4[2] = 136.3 [C] S5[1] = 6.677 [kj/kg-c] SS6[1] = 6.677 [kj/kg-c] HS6[1] = 3099 [kj/kg] T S6[1] = 346.3 [C] T 3[1] = 239.1 [C] S3[1] = 2.693 [kj/kg-c] T 6[1] = 346.3 [C] S6[1] = 6.677 [kj/kg-c] Y H6[1] = 562 [kj/kg] S5[2] = 6.677 [kj/kg-c] SS6[2] = 6.677 [kj/kg-c] HS6[2] = 2609 [kj/kg] T S6[2] = 136 [C] H6[2] = 2609 [kj/kg] Y [2] = 0.1437 T 3[2] = 136 [C] S3[2] = 1.697 [kj/kg-c] T 6[2] = 136 [C] S6[2] = 6.677 [kj/kg-c] Y H6[2] = 375 [kj/kg] Arrays Row P i T i [kpa] [C] 1 5 2 3 4 15000 5 15000 600 6

NoFWH Run NoF W H q in w net η th [kj/kg] [kj/kg] 1 0 3429 1531 0.4466 2 1 2769 1331 0.4806 3 2 2534 1242 0.4902 4 3 2410 1201 0.4983 5 4 2332 1174 0.5036 6 5 2279 1156 0.5073 7 6 2239 1142 0.5101 8 7 2209 1132 0.5123 9 8 2185 1123 0.5141 10 9 2166 1116 0.5155 11 10 2149 1111 0.5167 T-s: Steam 7

NoFWH 8