Gadolinium Doped Water Cherenkov Detectors

Similar documents
Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

GADZOOKS! project at Super-Kamiokande

Neutrino oscillation physics potential of Hyper-Kamiokande

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Super-K Gd. M.Ikeda(ICRR) for Super-K collaboration Workshop for Neutrino Programs with facilities in Japan

The Hyper-Kamiokande Experiment

The Hyper-Kamiodande Project A New Adventure in n Physics

Status of the Gadolinium project for. Super-Kamiokande. Lluís Martí Magro. Conca Specchiulla, Italy. 5 th of September, 2010.

Camillo Mariani Center for Neutrino Physics, Virginia Tech

The Hyper-Kamiokande project

arxiv: v1 [physics.ins-det] 14 Jan 2016

Recent results from Super-Kamiokande

The Accelerator Neutrino-Nucleus Interaction Experiment

Introduction to Super-K and Hyper-K. Roger Wendell Kyoto U. High-Energy Group Meeting

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

UNO: Underground Nucleon Decay and Neutrino Observatory

BNL Very Long Baseline Neutrino Oscillation Expt.

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Neutrino Experiments with Reactors

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

Neutrino Oscillations and the Matter Effect

Neutrino Oscillation and CP violation

Recent Results from T2K and Future Prospects

This is a repository copy of Astroparticle Physics in Hyper-Kamiokande.

arxiv: v1 [hep-ex] 30 Nov 2009

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

DAEδALUS. Janet Conrad LNS Seminar March 16, 2010

The T2K Neutrino Experiment

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

The Long-Baseline Neutrino Experiment Kate Scholberg, Duke University NOW 2012

PoS(NEUTEL2015)009. Recent Results from Super-Kamiokande. Masayuki Nakahata for the Super-Kamiokande collaboration

N u P J-PARC Seminar August 20, 2015

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Analyzing Data. PHY310: Lecture 16. Road Map

Recent T2K results on CP violation in the lepton sector

The ICARUS Project FRONTIERS IN CONTEMPORARY PHYSICS II. Vanderbilt University, March 5-10, Sergio Navas (ETH Zürich) " Atmospheric neutrinos

Outline. (1) Physics motivations. (2) Project status

Atmospheric neutrinos with Super-Kamiokande S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

C02: Investigation of Supernova Mechanism via Neutrinos. Mark Vagins Kavli IPMU, UTokyo

Particle Physics: Neutrinos part I

Recent results on neutrino oscillations and CP violation measurement in Neutrinos

Andrey Formozov The University of Milan INFN Milan

Longbase Neutrino Physics. Neil McCauley University of Liverpool Birmingham February 2013

Tsuyoshi Nakaya (Kyoto Univ.)

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

PoS(FPCP2017)023. Latest results from T2K. Jennifer Teresa Haigh, for the T2K Collaboration

K2K and T2K experiments

Hyper-K physics potentials and R&D

Neutrinos From The Sky and Through the Earth

The Daya Bay Reactor Neutrino Oscillation Experiment

Long baseline experiments

Results from T2K. Alex Finch Lancaster University ND280 T2K

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

arxiv: v1 [hep-ex] 11 May 2017

A method for detecting ν τ appearance in the spectra of quasielastic CC events

The Hyper-Kamiokande Experiment. Francesca Di Lodovico Queen Mary University of London

The future of neutrino physics (at accelerators)

Simulation Studies Toward the Search for Neutron Antineutron Oscillation

ω γ Neutral Current Single Photon Production (NCγ) Outline 1. Oscillation physics 2. NOMAD 3. T2K/MINERvA 4. MicroBooNE 5. MiniBooNE+ 6.

New Results for ν µ ν e oscillations in MINOS

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Daya Bay and joint reactor neutrino analysis

Application of GLoBES: GLACIER on conventional neutrino beams

Super/Hyper-Kamiokande

Neutrino Cross Section Measurements for Long-Baseline Acceleratorbased Neutrino Oscillation Experiments

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

Next-Generation Water Cherenkov Detectors (1) Hyper-Kamiokande

arxiv: v1 [hep-ex] 25 Aug 2015

M.Nakahata. Kamioka observatory ICRR/IPMU, Univ. of Tokyo. 2016/11/8 M. Nakahata: Neutrino experiments - 30 years at Kamioka 1

Neutrino interaction systematic errors in MINOS and NOvA

Long Baseline Neutrinos

A study on different configurations of Long Baseline Neutrino Experiment

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Sterile Neutrino Experiments at Accelerator

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

The DAEδALUS at Hyper-K Experiment: Searching for CP Violation. Mike Shaevitz - Columbia University for the DAEδALUS ALUS Collaboration

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Sinergie fra ricerche con neutrini da acceleratore e atmosferici

Hyper-Kamiokande R&D. Francesca Di Lodovico (QMUL) on behalf of the Hyper-Kamiokande working groups

Single π production in MiniBooNE and K2K

Detecting ν τ appearance in the spectra of quasielastic CC events

New Results from the MINOS Experiment

Diffuse SN Neutrino Background (DSNB)

The Double Chooz Project

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Neutrinos and the Universe

MiniBooNE, LSND, and Future Very-Short Baseline Experiments

Why understanding neutrino interactions is important for oscillation physics

Transcription:

Gadolinium Doped Water Cherenkov Detectors David Hadley University of Warwick NuInt-UK Workshop 20th July 2015

Water Cherenkov Detector Super-Kamiokande 22.5 kt fiducial mass 2

Physics with Large Scale WC Proton Decay Neutrinos Solar Supernova Accelerator Atmospheric Broad physics topics, wide energy range 3

Water Cherenkov Technique Muon 4

Water Cherenkov Technique Muon Electron 5

Water Cherenkov Technique Muon Electron Neutral Pion 6

Water Cherenkov Technique Muon Electron π 0 Count 100 90 80 70 60 50 40 30 e μ 20 10 0-1000 -800-600 -400-200 0 200 400 600 800 1000 Likelihood 7 Excellent PID performance Accelerator νe background is dominated by irreducible intrinsic νe.

Why Water Cherenkov? Scalability Water is cheap, non-toxic, liquid at room temperature long attenuation length achievable in pure water (SK > 100m at 400nm) Proven technology many years of experience (eg Super-K 1996 to date) low risk Excellent performance for charged particles above Cherenkov threshold 8

Why Water Cherenkov? Scalability Water is cheap, non-toxic, liquid at room temperature long attenuation length achievable in pure water (SK > 100m at 400nm) Proven technology many years of experience (eg Super-K 1996 to date) low risk Excellent performance for charged particles above Cherenkov threshold Why not Water Cherenkov? Blind to particles below Cherenkov threshold for protons > 1.1 GeV/c. 9

Neutron Capture on Hydrogen νe + p e + + n νē p n + p d + γ n Number of events / 10 µs 900 arxiv:1311.3738 [hep-ex] 800 700 600 500 400 e + p γ 300 200 100 Initial charged lepton signal Delayed γ signal 200 μs capture time Eγ = 2.2 MeV Low light yield Close to or below trigger threshold Low detection efficiency (~18%) 10 ) -1 MeV s -1-2 flux upper limit (cm ν e 2 10 10 1-1 10-2 10 100 200 300 400 500 600 700 800 T (µs) SK with n-tag SK w/o n-tag 14 16 18 20 22 24 26 28 30 Neutrino energy (MeV)

Neutron Capture on Gadolinium νe + p e + + n νē p n Number of Events arxiv:0811.0735 [hep-ex] 35 30 25 20 15 (a) E = 4.3 ± 0.1 MeV Bar: Data Hatched: MC e + Gd Initial charged lepton signal Delayed γ signal 20 μs capture time Eγ ~ 8 MeV cascade (~4 MeV visible) γ Number of Delayed Signals 10 5 0 10 2 10 0 1 2 3 4 5 6 7 8 9 10 Energy [MeV] (c) Data τ = 21.2 ± 6.1 µs Fast capture time (small ΔT window) Higher energy γ signal 1 0 100 200 300 400 500 T [µs] 11

Neutron Capture on Gadolinium Cross section for neutron capture: Gd (49,700 b), H (0.3 b) Fraction of captures on Gd 0.001% 0.01% 0.1% 1% Percentage of Gd by mass in Water 0.1% Gd fraction gives 90% neutrons captured on Gd. 12

Applications: Supernova Relic Neutrinos A low energy example Directly observable local supernova are all too rare Alternative is to measure diffuse supernova background DSNB/SRN Very low rate Large backgrounds Events/2MeV/0.56Mton/10years 900 800 700 600 500 400 300 200 100 spallation B.G. SRN+B.G. inv.mu B.G. total B.G. 0 10 15 20 25 30 35 40 45 50 arxiv:1109.3262 [hep-ex] No neutron tagging atmsph.! e Energy (MeV) 13

Applications: Supernova Relic Neutrinos A low energy example Directly observable local supernova are all too rare Alternative is to measure diffuse supernova background DSNB/SRN Very low rate Large backgrounds Removed by requiring coincidence with neutron 200 180 SRN+B.G.(inv.mu 1/5) 160 140 120 100 80 60 with neutron 40 tagging 20 0 10 15 20 25 30 35 40 45 50 arxiv:1109.3262 [hep-ex] Events/2MeV/0.56Mton/10years A few clean events per year in SK 14 total B.G. inv.mu(1/5) atmsph.! e Energy (MeV) ~100s per year in HK

Applications: Accelerator based long baseline neutrino oscillations A high energy example T2K / T2HK neutrino beam energy ~ 0.6 GeV Signal: ν CCQE: ν + n l - + p ν CCQE: ν + p l + + n events 60000 50000 40000 30000 ν µ ν µ ν µ ν µ p-ccqe p-mec n-ccqe n-mec Multi-nucleon: ν + (nn) l - + p + n ν + (p p/n) l + + n + p/n 15 20000 10000 0 0 1 2 3 4 5 6 7 8 9 10 num. of nucleon Neutron multiplicity gives an additional observable with which to isolate interaction modes. Complimentary to LAr proton measurements

Applications: Accelerator based long baseline neutrino oscillations Tagging neutron reduces wrong-sign background in anti-neutrino mode N events [arbitrary units] 60000 50000 40000 30000 20000 ν µ ν e ν µ ν e NC No neutron selection N events [arbitrary units] 50000 40000 30000 20000 ν µ ν e ν µ ν e NC With neutron selection 10000 10000 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 QE E ν [GeV] 16 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Impact on sensitivity being evaluated by Hyper-K Gd-doped Near Detector (TITUS) working group QE E ν [GeV]

EGADs (Evaluating Gadolinium s Action on Detector Systems) 200 t instrumented Water Cherenkov detector to test introduction of a water soluble Gadolinium in a Gd(SO4)3 ;. arxiv:1201.1017 [physics.ins-det] 17

EGADs (Evaluating Gadolinium s Action on Detector Systems) Need a water filtration system that removes impurities but not water plus Gd 2 (SO 4 ) 3 from tank Gd 2 (SO 4 ) 3 plus smaller impurities (UF Product) Gd(SO4)3 Ultrafilter Nanofilter #1 Gd 2 (SO 4 ) 3 (NF#1 Reject) Scaled up design for SK sized tank Impurities larger than Gd 2 (SO 4 ) 3 trapped in UF (UF Reject flushed to drain periodically ) Impurities smaller than Gd 2 (SO 4 ) 3 (NF#2 Product) arxiv:1201.1017 [physics.ins-det] Nanofilter #2 RO RO Reject to tank (temporary for splitting test) 18 Pure water (RO product) plus Gd 2 (SO 4 ) 3 back to SK

EGADs (Evaluating Gadolinium s Action on Detector Systems) M. Vagins (6th Open HK Meeting) 19

Super Kamiokande + Gd(SO4)3 In June 2015 the Super-K collaboration approved Gd-loading. Gd is also an option for Hyper-K. 20

3556.00 [140.000 in] 2438.40 [96.000 in] ANNIE (Accelerator Neutrino Neutron Interaction Experiment) CC events at ANNIE hall, BNB Events/1E20POT/ton/50MeV 2 10 10 1 10-1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 E ν (GeV) ν µ ν µ ν e ν e Muon Range Detector Gd loaded Water Cherenkov Detector B 101.60 [4.000 in] 787.40 [31.000 in] 3771.90 [148.500 in] 4660.90 [183.500 in] arxiv:1504.01480 [physics.ins-det] Aim to measure neutron multiplicities for neutrino interactions on Oxygen in the few GeV range 21

TITUS Proposed Intermediate Water Cherenkov Detector for T2HK TITUS Detector Maximise cancellation of uncertainties between near and far detector Identical target nucleus and detector technologies ~2 km from beam source match the flux at the far detector Magnetised Muon Range Detector Measure momentum of escaping muons. In-situ cross-check of sign selection with neutron tagging method. 22

Gadolinium Doped Water Cherenkov Detectors Neutron tagging with Gd-doped WC significantly extends the physics reach of large scale Water Cherenkov detectors. Technical implementation has been successfully demonstrated (EGADs etc). Gd-doping is the future for Super-K (and Hyper-K?). To fully exploit this new technology, we need to make measurements of neutron multiplicity for ν-oxygen interactions and build models that reproduce them. 23

Thank you for listening References sk.icrr.u-tokyo.ac.jp hyperk.org t2k-experiment.org David Hadley University of Warwick 29th May 2015 arxiv:hep-ph/0309300 arxiv:1311.3738 arxiv:0811.0735 arxiv:1109.3262 arxiv:1201.1017 arxiv:1504.01480

Backup 25

Proton Decay Limits with 2.75 2.50 Neutron Tagging p eπ 0 2.25 Hyper-K Log(τ/10 33 ) years 2 1.75 1.50 1.25 1 0.75 Super-K LBNE-LAr 100 kt water 0.50 0.25 2015 2020 2025 2030 2035 2040 2045 year 26

Super-K Measurements of Neutron Multiplicity 27

ANNIE Events CC events at ANNIE hall, BNB Events/1E20POT/ton/50MeV 2 10 10 ν µ ν µ ν e ν e 1 10-1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 (GeV) E ν 28

ANNIE Neutron Transit 500 net neutron transit distances (inclusive) 400 300 200 transverse to the beam direction 100 beam direction 0-3000 -2000-1000 0 1000 2000 3000 mm 29

Neutron Capture on Gd 30

Kamiokande Detectors Kamiokande 680 tonne fiducial mass (1983) Super-Kamiokande 22.5kt fiducial mass (33x Kamiokande) Megaton scale Water Cherenkov detector x25 larger fiducial volume than Super-K. 31 (202X)

Physics with Large Scale WC Proton Decay p e + + π 0 >1.3x10 35 years 90% CL p ν + K + >3.2x10 34 years 90% CL Neutrinos Solar Supernova SN ~200,000 @ 10kPC SN ~30-50 @ M31 200 solar ν per day Indirect dark matter search Hyper-K Physics Accelerator Atmospheric Goals Leptonic CP violation Mass Hierarchy determination >3σ θ23 octant determination 3σ for sin 2 θ23 >0.56 or sin 2 θ23 < 0.46 Broad physics programme. 32

Near Detector Development TITUS Detector New Intermediate Water Cherenkov Detectors Maximise cancellation of uncertainties between near and far detector Identical target nucleus and detector technologies ~2 km from beam source match the flux at the far detector Neutron Capture on Gd ~20µs capture time 8MeV γ cascade N events [arbitrary units] 60000 50000 40000 30000 20000 10000 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 33 ν µ ν e ν µ ν e NC No neutron selection QE E ν [GeV] N events [arbitrary units] 50000 40000 30000 20000 10000 ν µ ν e ν µ ν e NC With neutron selection 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 QE E ν [GeV]

DSNB at GADZOOKS 10 3 Phys.Rev.Lett. 93 (2004) GADZOOKS! dn/de e [(22.5 kton) yr MeV] -1 10 2 10 1 10 0 Reactor ν e Supernova ν e (DSNB) Atmospheric ν µ ν e 10-1 10-2 0 5 10 15 20 25 30 35 40 Measured E e [MeV] 34