The University of Sydney MATH 2009

Similar documents
Weighted Graphs. Weighted graphs may be either directed or undirected.

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

Lecture 20: Minimum Spanning Trees (CLRS 23)

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

(Minimum) Spanning Trees

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

2 Trees and Their Applications

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

In which direction do compass needles always align? Why?

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Closed Monochromatic Bishops Tours

Minimum Spanning Trees (CLRS 23)

(4, 2)-choosability of planar graphs with forbidden structures

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Minimum Spanning Trees (CLRS 23)

d e c b a d c b a d e c b a a c a d c c e b

Applications of trees

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

Planar Upward Drawings

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

CSE 332. Data Structures and Parallelism

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Strongly connected components. Finding strongly-connected components

1 Introduction to Modulo 7 Arithmetic

Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010

Single Source Shortest Paths (with Positive Weights)

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

Graphs Depth First Search

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

An Introduction to Clique Minimal Separator Decomposition

Planar convex hulls (I)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

CS 103 BFS Alorithm. Mark Redekopp

Dental PBRN Study: Reasons for replacement or repair of dental restorations

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

17 Basic Graph Properties

Lecture II: Minimium Spanning Tree Algorithms

Tangram Fractions Overview: Students will analyze standard and nonstandard

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

DOCUMENT STATUS: RELEASE

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

Graph Search (6A) Young Won Lim 5/18/18

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

23 Minimum Spanning Trees

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

One-Dimensional Computational Topology

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

Computer Graphics. Viewing & Projections

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.


Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

EE1000 Project 4 Digital Volt Meter

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP


Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Graphs Breadth First Search

(4, 2)-choosability of planar graphs with forbidden structures

,. *â â > V>V. â ND * 828.

An action with positive kinetic energy term for general relativity. T. Mei

A Simple Method for Identifying Compelled Edges in DAGs

COMP108 Algorithmic Foundations

Solutions to Homework 5

QUESTIONS BEGIN HERE!

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

Priority Search Trees - Part I

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t


Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

18 Basic Graph Properties

12. Traffic engineering

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

Transcription:

T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n w tr xsts pt twn ny pr o vrts. Lt sonnt plnr rp, n onsr ts ul. In, tr s lrly pt twn ny two vrts w orrspon to s wtn on o t omponnts o. Lt v t vrtx n orrsponn to t nnt o. Tn v s nt to t lst on vrtx (orrsponn to ) n omponnt o. So u n w r two vrts o w orrspon to s n rnt omponnts o, tn tr s pt rom u to w, v v. Hn s onnt. Sn s onnt, ts ul ( ) s lso onnt. ut s sonnt, n so ( ) s not somorp to. 2. A rtn polyron s s w r trnls n pntons, wt trnl surroun y pntons n pnton surroun y trnls. I vry vrtx s t sm r, p sy, sow tt 1 = 1 p 7. Du tt p = 4, n tt tr r 20 trnls n 12 pntons. Cn you onstrut su polyron? Stt t ul rsult. Lt T t numr o trnls, n P t numr o pntons. Tn t numr o s, = T + P. Sn trnl s oun y 3 s, n pnton y 5, w v 3T + 5P = 2. ut ons xtly on trnl n xtly on pnton,

2 so 3T = 5P. Hn, T = 2 6 = 3, P = 2 10 = 5, = P + T = 3 + 5 = 8 15. Also, ssumn vry vrtx s r p, w v pv = 2, or v = 2/p. Now susttut nto Eulr s ormul: Dv y 2 n smply: 2 p + 8 15 = 2. 1 = 1 p 7 Clrly, 1 must postv numr, so w must v 1 p 7 0, or p /7. ut p must n ntr 3. So t only possl vlus or p r 3 or 4. I p = 3, = 10, ut tn v = 2/p = 20/3, w s not n ntr. (Atully, t s sy nou to s tt t s not possl to put totr trnls n pntons n t wy sp, su tt t r o vrtx s tr. Try rwn t n s!) I p = 4, = 60 n T = 20 n P = 12, s rqur. Su polyron my onstrut n two lvs: W tn stt totr lon t s w orrspon n t lln. It s rtnly possl to rw t ull rp, wt lttl mor ort: Not tt t outs ron s on o t pntons. T ul rsult s otn y rpln vrts y s n s y vrts: A rtn polyron s vrts w v rs 3 n 5, wt vrtx o r 3 nt to 3 vrts o r 5, n vrtx o r

3 5 nt to 5 vrts o r 3. I vry s oun y t sm numr o s, tn tt numr s 4, n tr r 20 vrts o r 3 n 12 vrts o r 5. (E vrtx n t ul rp orrspons to ron n t ornl rp, n n nnt to two nt rons n t ornl s n n t ul onn t orrsponn vrts o t ul.) 3. Dtrmn t romt numr o o t ollown rps: k k l () (v) A rp s k-olourl ts vrts n olour usn k olours n su wy tt no two nt vrts v t sm olour. T romt numr o smpl rp, wrttn χ(), s n to t smllst ntr k or w s k-olourl. Usul ts: I ontns ( surp somorp to) K n, tn χ() n. I ontns n o rut, tn χ() 3. I s t lst two vrts n no o ruts, tn χ() = 2. Ts rp ontns svrl trnls, so χ() 3. On t otr n w n sly n 3-olourn (.,,, r;,, wt; lu), so χ() = 3. T rp s no o yls, so χ() = 2. (A 2-olourn s sly oun (.,,,,, wt,,,,,, k lk). () Sn tr r trnls, χ() 3. W n n 3-olourn (.,,,, k r;,,, l wt;,,, lu), so χ() = 3. (v) Sn tr r trnls, (., {,, }), χ() 3, ut s 3-olourl? I so, wtout loss o nrlty lt,, r, wt, lu rsptvly. Tn, nt to ot n, must wt. Also, nt to ot n, must lu. Also, nt to ot n, must r. Tn, owvr, ourt olour s n or, w s nt to, n. Hn χ() = 4. 4. For o t ollown rps, wt os rooks Torm tll you out t romt numr o t rp? Fn t romt numr o rp. T omplt rp K 20. T prtt rp K 10,20. () A yl wt 20 s. (v) A yl wt 29 s.

(v) T u rp Q 3. (v) T ul o Q 3. 4 Lt () t mxmum o t rs o t vrts o rp. rooks Torm stts tt, or ll rps otr tn omplt rps or o yls, t romt numr o rp, χ() (). For omplt rps, n or o yls, χ() = 1 + (). (K 20 ) = 19, χ(k 20 ) = 1 + 19 = 20. (Clrly, o t 20 vrts must olour rntly or propr olourn.) (K 10,20 ) = 20, so rooks Torm sys tt χ(k 10,20 ) 20. O ours, t romt numr o ny prtt rp s 2, so χ(k 10,20 ) = 2. () In yl, ll vrts v r 2. y rooks Torm, t romt numr o yl wt n vn numr o s s t most 2, n lrly 2 olours r rqur, so t romt numr s qul to 2. (v) y rooks Torm, t romt numr o yl wt n o numr o s s 3. (v) Q 3 s rulr o r 3, n so y rooks Torm χ(q 3 ) 3. In t, Q 3 s prtt rp wt romt numr 2. (v) T ul o Q 3 s t otron, n w vry vrtx s r 4, so y rooks Torm ts romt numr s t most 4. Not tt t rp ontns trnls, so ts romt numr s t lst 3. It s sy to n 3-olourn, n so χ(t otron) = 3. 5. Dtrmn t mnmum numr o olours rqur to olour t s o Q 3 n su wy tt onn s v rnt olour. pt prt or t ul o Q 3. T rp Q 3 s t polyrl rp orrsponn to u. It s lr tt t lst 3 olours r n to olour t s o u so tt no two onn s v t sm olour. T rm low nts on wy n w to olour t s o t u usn tr olours (wr =r, =lu, =rn). T otron s t ul o t u. For n otron only two olours r nssry. T rm sows 2-olourn o t s o n otron. Not tt t mnmum numr o olours rqur to olour t s o t u s qul to t romt numr o t otron, n v vrs.

5 6. Sow tt smpl onnt plnr rp wt 17 s n 10 vrts nnot proprly olour wt two olours. (Hnt: Sow tt su rp must ontn trnl.) Suppos su rp no trnls. Tn, sn t s not tr, must oun y t lst 4 s, n so 4 2, or 2. Howvr, y Eulr s ormul, = 2 v + = 2 10 + 17 = 9, so 2 = 2 9 > 17 = ontrton. Hn t rp s t lst on trnl n so s not 2-olourl. 7. Lt T tr wt t lst 2 vrts. Prov tt χ(t )=2. Not tt w n t lst two olours to proprly olour T, so w prov tt T s 2-olourl tn χ(t )=2. Us nuton on t numr o vrts. I tr r 2 vrts, tn t tr s lrly 2-olourl. Suppos tt tr wt k vrts s 2-olourl. Lt T tr wt k + 1 vrts, n rmov rom T on o ts vrts wt r 1. (Evry tr s t lst two vrts wt r 1.) Ts lvs tr wt k vrts, w s 2-olourl y t nuton ypotss. Colour t smllr tr wt 2 olours, rstor t rmov vrtx n olour t wt t olour not us on t (on) vrtx to w t s nt. Hn T s 2-olourl, n t rsult ollows.