Consistent interactions for high-spin fermion

Similar documents
arxiv: v1 [nucl-th] 29 Nov 2012

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

The incompleteness of complete pseudoscalar-meson photoproduction

arxiv: v1 [hep-ph] 31 Jan 2018

Symmetry of massive Rarita-Schwinger fields

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

Nuclear effects in neutrino scattering

University of Athens, Institute of Accelerating Systems and Applications, Athens, Greece

arxiv:nucl-th/ v1 24 Dec 2004

Virtuality Distributions and γγ π 0 Transition at Handbag Level

arxiv: v1 [hep-ex] 22 Jun 2009

Photoproduction of K 0 Σ + with CLAS

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary

Production and Searches for Cascade Baryons with CLAS

Hunting for the Nucleon Resonances by Using Kaon Photoproduction

Wave functions of the Nucleon

Propagation of a massive spin-3/2 particle

Covariant quark-diquark model for the N N electromagnetic transitions

Homework 3: Group Theory and the Quark Model Due February 16

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

Currents and scattering

11 Spinor solutions and CPT

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Feynman Rules of Non-Abelian Gauge Theory

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term

Compton Scattering from Low to High Energies

ORGANIZING THE SPIN-FLAVOR STRUCTURE OF BARYONS. Jose L Goity Hampton University and Jefferson Lab

Introduction to Elementary Particle Physics I

HIGHER SPIN PROBLEM IN FIELD THEORY

Lecture 9: RR-sector and D-branes

Analyticity and crossing symmetry in the K-matrix formalism.

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

Electroweak Theory & Neutrino Scattering

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain

arxiv:nucl-th/ v1 12 Aug 2004

The Lambda parameter and strange quark mass in two-flavor QCD

Properties of the Λ(1405) Measured at CLAS

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Search for New and Unusual Strangeonia States Using γp pφη with GlueX at Thomas Jefferson National Accelerator Facility

Coupled-channel Bethe-Salpeter

Meson-baryon interaction in the meson exchange picture

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Lepton universality test in the photoproduction of e - e + versus " - " + pairs on a proton target

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab

PARTICLE PHYSICS Major Option

Introduction to particle physics Lecture 6

Dynamical coupled channel calculation of pion and omega meson production

Imaging Hadrons using Lattice QCD

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

Contact interactions in string theory and a reformulation of QED

What do g 1 (x) and g 2 (x) tell us about the spin and angular momentum content in the nucleon?

DEEP INELASTIC SCATTERING

Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei

Coulomb effects in pionless effective field theory

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Chiral Fermions on the Lattice:

Triangle singularity in light meson spectroscopy

Extension of Chern- Simons Forms

Scale dependence of Twist-3 correlation functions

Physics 582, Problem Set 1 Solutions

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

The Beam-Helicity Asymmetry for γp pk + K and

1 Canonical quantization conformal gauge

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University

Introduction to Quantum Chromodynamics (QCD)

Parity P : x x, t t, (1.116a) Time reversal T : x x, t t. (1.116b)

QCD and Rescattering in Nuclear Targets Lecture 2

arxiv: v1 [nucl-th] 14 Aug 2012

Thermodynamical String Fragmentation

Higher-Spin Fermionic Gauge Fields & Their Electromagnetic Coupling

1 The muon decay in the Fermi theory

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

Suppression of Θ + (J P = 3/2 ± )-photoproduction from the proton

Phenomenological aspects of kaon photoproduction on the nucleon

Overview of low energy NN interaction and few nucleon systems

Fundamental Interactions (Forces) of Nature

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

6.1 Quadratic Casimir Invariants

Pion Electromagnetic Form Factor in Virtuality Distribution Formalism

Theory of CP Violation

P.V.Buividovich, M.N.Chernodub,T.K. Kalaydzhyan, D.E. Kharzeev, E.V.Luschevskaya, O.V. Teryaev, M.I. Polikarpov

Inelastic scattering

Strangeness photoproduction at the BGO-OD experiment

Hadron Spectroscopy at COMPASS

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

Solution set #7 Physics 571 Tuesday 3/17/2014. p 1. p 2. Figure 1: Muon production (e + e µ + µ ) γ ν /p 2

Spinning strings and QED

Gluonic Spin Orbit Correlations

Finding the Higgs boson

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Heavy Sterile Neutrinos at CEPC

Structure of Generalized Parton Distributions

Introduction to Quantum Chromodynamics (QCD)

July 19, SISSA Entrance Examination. Elementary Particle Theory Sector. olve two out of the four problems below

O problemach z opisem produkcji pionów w oddziaªywaniach neutrin

Reggeon Non Factorizability and the J = 0 Fixed Pole in DVCS

Measurements of the Proton and Kaon Form Factors via ISR at BABAR

Transcription:

Consistent interactions for high-spin fermion fields The 8th International Workshop on the Physics of Excited Nucleons Thomas Jefferson National Accelerator Facility Newport News, VA Tom Vrancx Ghent University, Belgium arxiv:1105.2688 May 19, 2011 Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 1 / 25

Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 2 / 25

The Rarita-Schwinger formalism The Rarita-Schwinger formalism Interacting Rarita-Schwinger fields Rarita-Schwinger equations (i / m)ψ µ1...µ n = 0 γ µ 1 ψ µ1 µ 2...µ n = 0 ψ µ1...µ n : spin-(n + 1 2 ) Rarita-Schwinger (R-S) field Unphysical components are eliminated through R-S constraints Massless theory requires invariance under R-S gauge ψ µ1...µ n ψ µ1...µ n + γ µ 1 ξ µ1 µ 2...µ n 1 = 0 i µ1 ξ µ2...µ n(n 1)! n P (µ) Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 3 / 25

The Rarita-Schwinger formalism Interacting Rarita-Schwinger fields Interacting Rarita-Schwinger fields On-shell case On-shell R-S field is described by R-S spinor Unphysical components of R-S spinor decouple from the interaction Off-shell case Off-shell R-S field is described by R-S propagator Unphysical components of R-S propagator do not decouple a priori Consistent interaction should be invariant under certain local gauge Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 4 / 25

The Rarita-Schwinger formalism Interacting Rarita-Schwinger fields Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 5 / 25

Consistency and locality of the interaction The gauge-invariant Rarita-Schwinger field Consistent interaction theories Consistency and locality of the interaction Consistent interaction for ψ µ 1...µ n Γ i P m < n k, l Γ f = Γ i p/ + m p 2 m 2 Pn+ 1 2 Γ i A m+ 1 2 kl P m+ 1 2 kl Γ f = 0 Γ f Interpretation Interaction is mediated purely by physical component of R-S field Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 6 / 25

Consistency and locality of the interaction The gauge-invariant Rarita-Schwinger field Consistent interaction theories Consistency and locality of the interaction Preservation of locality P n+ 1 2 µ 1...µ n;ν 1...ν n (p) contains p 2k singularities (k {1,..., n}) Transversality conditions of interaction vertices p µk Γ µ 1...µ n I = 0 k {1,..., n} Equivalent to invariance of interaction under unconstrained R-S gauge ψ µ1...µ n ψ µ1...µ n + i µ1 χ µ2...µ n(n 1)! n P (µ) Unconstrained R-S gauge concurrently guarantees consistent interaction Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 7 / 25

Consistency and locality of the interaction The gauge-invariant Rarita-Schwinger field Consistent interaction theories The gauge-invariant Rarita-Schwinger field Gauge-invariant Rarita-Schwinger field G µ1...µ n,ν 1...ν n = O n+ 1 2 (µ 1...µ n,ν 1...ν n)λ 1...λ n ( )ψ λ 1...λ n Spin-(n + 1 2 ) interaction operator O n+ 1 2 (µ 1...µ n,ν 1...ν n)λ 1...λ n ( ) = 1 (n!) 2 O 3 2 (µ1,ν 1 )λ 1 ( ) O 3 2 (µn,νn)λ n ( ) P (ν) P (λ) Pascalutsa s spin- 3 2 interaction operator O 3 2 (µ,ν)λ ( ) = i ( µ g νλ ν g µλ ) Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 8 / 25

Consistency and locality of the interaction The gauge-invariant Rarita-Schwinger field Consistent interaction theories The gauge-invariant Rarita-Schwinger field Properties G µ1...µ n,ν 1...ν n totally symmetric in µ and ν indices, and G µ1...µ n,ν 1...ν n = ( 1) n G ν1...ν n,µ 1...µ n Invariance under unconstrained R-S gauge assured by λ k O n+ 1 2 (µ 1...µ n,ν 1...ν n)λ 1...λ n ( ) = 0 Construction of consistent interaction theory L I = G µ1...µ n,ν 1...ν n T µ 1...µ nν 1...ν n + T µ1...µ nν 1...ν n G µ 1...µ n,ν 1...ν n Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 9 / 25

Consistent interaction theories Consistency and locality of the interaction The gauge-invariant Rarita-Schwinger field Consistent interaction theories Reduced gauge-invariant Rarita-Schwinger field Ψ µ1...µ n = γ ν1 γ νn G µ1...µ n,ν 1...ν n Properties Ψ µ1...µ n obeys R-S constraints µ 1 Ψ µ1...µ n 0 and γ µ 1 Ψ µ1...µ n 0 Intuitive interaction structure O n+ 1 2 P O n+ 1 2 = p 2n p/ + m p 2 m 2 Pn+ 1 2 Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 10 / 25

Consistency and locality of the interaction The gauge-invariant Rarita-Schwinger field Consistent interaction theories 3. Consistent interactions in hadron physics Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 11 / 25

Practical use of consistent interactions: an example Isobar modeling of s channel of K + Λ photoproduction High-spin nucleon resonances are created from the proton γ K + N p Λ Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 12 / 25

σ (µb) 3 10 10 1 10 + 5/2 + 3/2 + 1/2 Toy N m R = 1700 MeV Γ R = 50 MeV J P R = 1 2 +, 3 + 2, 5 + 2 3 10 1500 2000 2500 3000 W (MeV) Hadronic form factor required to suppress high-energy behavior Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 13 / 25

Standard hadronic form factors Dipole form F d (s; m R, Λ R ) = Λ 4 R (s m 2 R )2 + Λ 4 R Gaussian form F G (s; m R, Λ R ) = exp ( (s ) m2 R )2 Λ 4 R Specific s channel contribution to p(γ, K + )Λ: m R = 1685 MeV N = N(1680) F 15 Γ R = 130 MeV JR P = 5 + 2 Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 14 / 25

γp N(1680) F 15 K + Λ, F = F G σ G (µb) 0.12 0.10 0.08 0.06 0.04 0.02 (a) 1500 MeV σ G (µb) 2 10 4 10 6 10 8 10 10 10 (b) 1500 MeV 0.00 1500 2000 2500 3000 W (MeV) 12 10 1600 1650 1700 1750 1800 W (MeV) Remarks Artificial bump arises when σ is cut off by F G No resonance peak is observed at W m R Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 15 / 25

σ G (µb) 0.12 0.10 0.08 0.06 0.04 0.02 (a) 1250 MeV 1000 MeV 750 MeV 500 MeV 0.00 1500 2000 2500 W (MeV) σ G (µb) 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 (b) 1250 MeV 1000 MeV 750 MeV 500 MeV 0.00 1500 2000 2500 W (MeV) Remarks Lowering Λ R results in shift of artificial bump towards W 0 Lowering Λ R only effective when Γ R is small practically all N s listed by PDG have large Γ R Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 16 / 25

Cause of unphysical behavior Rise of σ with W and fall of F G with W combines to form artificial bump Fast increase of σ with W causes resonance peak with large Γ R to vanish Remedy High-energy behavior of σ needs to be regulated σ(s) (s 2 ) J R 1 2 Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 17 / 25

F mg (s; m R, Λ R, Γ R, J R ) = ( m 2 R Γ 2 R (J R) Multidipole-Gauss form factor (s m 2 R )2 + m 2 R Γ 2 R (J R) ) JR 1 2 exp ( (s ) m2 R )2 Λ 4 R Dipole part of F mg raises multiplicity of propagator pole Modified decay width Γ R (J R ) = Γ R 2 1 2J R 1 Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 18 / 25

σ mg (µb) 0.12 0.10 0.08 0.06 0.04 (a) 1250 MeV 1000 MeV 750 MeV 500 MeV σ mg (µb) 0.12 0.10 0.08 0.06 0.04 (b) 1250 MeV 1000 MeV 750 MeV 500 MeV 0.02 0.02 0.00 1600 1700 1800 1900 2000 2100 W (MeV) 0.00 1600 1650 1700 1750 1800 W (MeV) Remarks Artificial bump is removed and resonance peak is restored Threshold effects for m R Γ R 2 W 0 Peak position not at W = m R Peak position and width are function of Λ R Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 19 / 25

Conclusions Summary Invariance under unconstrained Rarita-Schwinger gauge guarantees consistency of the interaction Standard hadronic form factors give rise to unphysical behavior in energy dependence of cross section Multidipole-Gauss hadronic form factor leads to physically acceptable energy dependence of cross section Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 20 / 25

Backup slides Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 21 / 25

Backup slide I(a) P n+ 1 2 Spin-(n + 1 2 ) projection operator µ 1...µ n;ν 1...ν n (p) = ( kmax,1 A n k P µ 1 µ 2 P ν1 ν 2 P µ2k 1 µ 2k P ν2k 1 ν 2k P (µ) P (ν) k=0 k max,2 + P/ µ1 P/ ν1 k=0 B n k P µ 2 µ 3 P ν2 ν 3 P µ2k µ 2k+1 P ν2k ν 2k+1 n i=2k+1 n i=2k+2 P µi ν i P µi ν i ) P µν = g µν 1 p 2 p µp ν }{{} singularity and P/ µ = γ ν P µν = γ µ p/ p 2 p µ }{{} singularity Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 22 / 25

Backup slide I(b) P µ1...µ n;ν 1...ν n (p) = Spin-(n + 1 2 ) propagator p/ + m p 2 m 1 n+ 2 P 2 µ 1...µ n;ν 1...ν n (p) P µν = g µν 1 p 2 p µp ν g µν 1 m 2 p µp ν P/ µ P/ ν = γ µ γ ν + p/ p 2 (γ µp ν γ ν p µ ) 1 p 2 p µp ν γ µ γ ν + 1 m (γ µp ν γ ν p µ ) 1 m 2 p µp ν Substitutions have no effect since p µk Γ µ 1...µ n I = 0 Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 23 / 25

Backup slide II(a) Inconsistent spin- 3 2 interaction theories L φψψ µ = ig 0 m φ ψ µ Θ µν (z 0 )Γψ ν φ L (1) A µψψ µ = ig 1 2m ψ ψ µ Θ µν (z 1 )Γγ λ ψf λν L (2) A = g 2 µψψµ 4m 2 ψ µ Θ µν (z 2 )Γ λ ψf λν ψ L (3) A = g 3 µψψµ 4m 2 ψ µ Θ µν (z 3 )Γψ λ F λν ψ Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 24 / 25

Backup slide II(b) Consistent spin-(n + 1 2 ) interaction theories L φψψ = in g 0 µ1 Ψ µ1...µ...µn n Γψ µ1 µn φ m 2n φ L (1) A µψψ µ 1...µn L (2) A µψψ µ 1...µn L (3) A µψψ µ 1...µn = in g 1 (2m ψ ) 2n Ψ µ 1...µ n 1 µ n Γγ ν µ1 µ n 1 ψf νµn = in+1 g 2 (2m ψ ) 2n+1 Ψ µ 1...µ n 1 µ n Γ ν µ1 µ n 1 ψf νµn = in+1 g 3 (2m ψ ) 2n+1 Ψ µ 1...µ n 1 µ n Γ µ1 µ n 1 ψ ν F νµn Tom Vrancx Consistent interactions for high-spin fermion fields NSTAR 2011, Jefferson Lab, Newport News, VA 25 / 25