Quantum-size effects in sub-10 nm fin width InGaAs finfets

Similar documents
InGaAs Double-Gate Fin-Sidewall MOSFET

Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

High aspect-ratio InGaAs FinFETs with sub-20 nm fin width

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Ultra-Scaled InAs HEMTs

The Prospects for III-Vs

Electric-Field Induced F - Migration in Self-Aligned InGaAs MOSFETs and Mitigation

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

30 nm In 0.7 Ga 0.3 As Inverted-type HEMT with Reduced Gate Leakage Current for Logic Applications

Negative-Bias Temperature Instability (NBTI) of GaN MOSFETs

The Pennsylvania State University. Kurt J. Lesker Company. North Carolina State University. Taiwan Semiconductor Manufacturing Company 1

Performance Analysis of Ultra-Scaled InAs HEMTs

Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

EECS130 Integrated Circuit Devices

Lecture 6: 2D FET Electrostatics

Technology Development for InGaAs/InP-channel MOSFETs

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

EE 560 MOS TRANSISTOR THEORY

A Multi-Gate CMOS Compact Model BSIMMG

Simple Theory of the Ballistic Nanotransistor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Technology Development & Design for 22 nm InGaAs/InP-channel MOSFETs

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and Ultra-Thin-Body Surface-Channel MOSFETs

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Reliability and Instability of GaN MIS-HEMTs for Power Electronics

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

ECE 305: Fall MOSFET Energy Bands

Long-channel MOSFET IV Corrections

Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Gate current degradation in W-band InAlN/AlN/GaN HEMTs under Gate Stress

III-V Nanowire TFETs

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

ECE-305: Fall 2017 MOS Capacitors and Transistors

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Modeling and Analysis of Total Leakage Currents in Nanoscale Double Gate Devices and Circuits

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

OFF-state TDDB in High-Voltage GaN MIS-HEMTs

Lecture 9. Strained-Si Technology I: Device Physics

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Components Research, TMG Intel Corporation *QinetiQ. Contact:

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

Lecture 23 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 4, 2007

Lecture 3: Transistor as an thermonic switch

Lecture 11: MOSFET Modeling

JFET/MESFET. JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

FIELD-EFFECT TRANSISTORS

Electrical Characteristics of MOS Devices

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Recent Development of FinFET Technology for CMOS Logic and Memory

Time Dependent Dielectric Breakdown in High Voltage GaN MIS HEMTs: The Role of Temperature

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Lecture 12: MOS Capacitors, transistors. Context

Electrical Degradation of InAlAs/InGaAs Metamorphic High-Electron Mobility Transistors

Chapter 5 MOSFET Theory for Submicron Technology

Journal of Electron Devices, Vol. 18, 2013, pp JED [ISSN: ]

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Lecture #23. Warning for HW Assignments and Exams: Make sure your writing is legible!! OUTLINE. Circuit models for the MOSFET

Lecture 22 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 2, 2007

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

Anomalous Source-side Degradation of InAlN/GaN HEMTs under ON-state Stress

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Section 12: Intro to Devices

Lecture #27. The Short Channel Effect (SCE)

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Enhanced Mobility CMOS

The Devices: MOS Transistors

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

Recent Progress in Understanding the DC and RF Reliability of GaN High Electron Mobility Transistors

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

EE105 - Fall 2006 Microelectronic Devices and Circuits

Nanoscale CMOS Design Issues

Low Frequency Noise in MoS 2 Negative Capacitance Field-effect Transistor

Available online at ScienceDirect. Procedia Materials Science 11 (2015 )

ECE-305: Spring 2016 MOSFET IV

Quantum Mechanical Simulation for Ultra-thin High-k Gate Dielectrics Metal Oxide Semiconductor Field Effect Transistors

Simple and accurate modeling of the 3D structural variations in FinFETs

How a single defect can affect silicon nano-devices. Ted Thorbeck

Introduction to compact modeling. Sivakumar Mudanai Intel Corp.

Steep Slope Transistors beyond the Tunnel FET concept. David Esseni, University of Udine

Decemb er 20, Final Exam

Transcription:

Quantum-size effects in sub-10 nm fin width InGaAs finfets Alon Vardi, Xin Zhao, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 9, 2015 Sponsors: DTRA NSF (E3S STC) Northrop Grumman

Outline Motivation Process Technology Electrical characteristics Modeling Conclusions 2

InGaAs planar Quantum-Well MOSFETs MIT MOSFETs InGaAs channel High-K oxide del Alamo, CSICS 2015 InGaAs planar MOSFET performance matches that of High Electron Mobility Transistors (HEMT) 3

InGaAs planar Quantum-Well MOSFETs - short-channel effects S min (mv/dec) 400 350 300 250 200 150 100 3 nm t c =12 nm t c V ds =0.5 V 0.01 0.1 1 10 L g (µm) DIBL (mv/v) 800 600 400 200 3 nm t c =12 nm t c 0 0.01 0.1 1 10 L g (µm) Lin, IEDM 2014 Short-channel effects limit scaling to L g ~40 nm 3D transistors required for further scaling 4

InGaAs finfets W F ~30 nm W F ~50 nm Thathachary, VLSI 2015 Waldron, VLSI 2014 W F ~50 nm Radosavljevic,IEDM 2011 Kim, IEDM 2013 Kim, TED 2014 III-V finfets improve short-channel effects Most InGaAs finfets demonstrations feature =30-50 nm 5

V T variation with Si InGaAs Increased sensitivity of V T to W F in InGaAs Si In 0.53 Ga 0.47 As x [nm] W F x [nm] W F Nidhi, DRC 2012 m* e (Si)/m* e (InGaAs) >7 Quantum effects ΔV T (InGaAs) Goal of this work: experimental verification Need InGaAs finfet with <10 nm 6

Key technologies nanostructure definition Dry etch BCl 3 /SiCl 4 /Ar RIE of InGaAs nanostructures with smooth, vertical sidewalls and high aspect ratio (>10) As etched 40 nm 7

Key technologies nanostructure definition Digital etch (DE) Digital etch (DE): self-limiting O 2 plasma oxidation + H 2 SO 4 oxide removal As etched 5 cycles DE 40 nm 30 nm Shrinks fin width by 2 nm per cycle Unchanged shape Reduced roughness Lin, EDL 2014 8

Key technologies nanostructure definition Dry etch + Digital etch 20 nm 15 nm 240 nm Zhao, EDL 2014 Stand alone nano structures down to 15 nm 9

Key technologies nanostructure definition sidewall slope Etching time 90 nm ~80 0 220 nm 20 nm 20 nm 30nm Etching depth impacts sidewall slope at top 50 nm For H f > 150 nm, upper 50 nm sidewalls become vertical 10

Sidewall finfet G D Thick Top Gate Oxide S G Vardi, DRC 2014 = InGaAs Typical device consists of 100 fins, L g =3 µm 11

Sidewall finfet - process flow 50 nm thick, n-ingaas N D =10 18 cm -3 HSQ Gate dielectric + Mo InAlAs buffer on SI-InP Fin Patterning + Digital etch Gate stack G D S G Gate Patterning Contacts + Pads 12

Sub-10 nm fin-width InGaAs finfets =7 nm, L g =3 μm MOSFET 50 nm thick InGaAs channel N D =10 18 cm -3 L g =3 μm Oxide: Al 2 O 3 /HfO 2 (EOT~3 nm) SW ~ 90 o 5 nm SW ~ 80 o 7 nm 50 nm 50 nm I D [na/fin] I D [A/fin] 120 100 80 60 40 20 10-6 10-7 10-8 10-9 =7 nm (SW ~ 90 o ) V GS =0.6 V 0 0 0.1 0.2 0.3 0.4 V DS 10-10 10-11 10-12 =7 nm 0.1 V DS =500 mv 50 0.5 0.4 0.3 0.2 10-13 -0.25 0 0.25 0.5 0.75 V GS 13

I D [A/fin] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 -1-0.5 0 0.5 1 V GS 0.4 Impact of on subthreshold characteristics =35 5 SW90 V DS =50 mv I D [A/fin] 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 =35 nm 10-13 -1-0.5 0 0.5 1 V GS 0.4 5 SW80 V DS =50 mv 0.0 0.0 V T -0.4 V T -0.4-0.8 SW90 0 5 10 15 20 25 30 35 W F [nm] -0.8 SW80 0 5 10 15 20 25 30 35 W F [nm] V T defined at 5 na/fin Strong sensitivity of V T to <10 nm for SW90 14

Low-temperature measurements V T I D [A/fin] 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 =7 nm 10-15 -0.25 0 0.25 0.5 0.75 V GS 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8 RT RT SW90 90K 90K V DS =50 mv -1.0 0 5 10 15 20 25 30 35 W F [nm] V T as T D it impact Rigid ΔV T >0 Strong sensitivity of V T to for SW90 maintained 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8 RT SW80 90K -1.0 0 5 10 15 20 25 30 35 W F [nm] 15

Subthreshold carrier concentration at 90K C g /C ox I D [A/fin] 0.8 0.6 0.4 0.2 0.0 10-6 10-7 10-8 10-9 10-10 10-11 10-12 T=90K =13 nm -0.5 0.0 0.5 1.0 V GS =13 nm 7 µ [cm 2 /Vsec] -0.5 0.0 0.5 1.0 V GS 7 n fin [cm -1 ] 1500 1000 500 0 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 =13 nm 11 nm 9 nm 7 nm -0.5 0.0 0.5 1.0 V GS =13 nm -0.5 0.0 0.5 1.0 V GS CV+IV μ(v GS ) Use μ max to transfer subthreshold characteristics to n fin 7 V Tn definition 16

0.4 Impact of on V T V Tn at constant n fin =5 10 5 cm -1 0.2 T=90K V Tn 0.0 SW80 SW90 Strong sensitivity of V T to for SW~90 o MOSFETs -0.2-0.4 0 5 10 15 20 25 30 35 W F [nm] V Tn sensitivity to persists 17

Classic V T dependence 0-0.1 V T 2 V 0 1 Wf ε ox Vfb = + 1 1 2 2 tox ε s W W Threshold: V T -V fb -0.2-0.3-0.4 V qεεn 0 s 0 2 Cox D N D =10 18 cm -3-0.5 0 10 20 30 40 [nm] V tw <V tn V tn w >n n V T V fb 18

Quantum V T dependence Classic Quantum subband V tc V tq n n Quantum confinement creates subbands CB Min For constant N D E F Positive shift to V T as 19

Impact of on V T Poisson-Schrodinger simulations (Nextnano): SW=90 o 0.4 0.2 SW90 SW80 Quantum T=90 K SW=80 o V Tn 0-0.2-0.4 Classic = 4nm -0.6 0 10 20 30 40 [nm] ΔV T >0 due to quantum confinement for <10 nm Larger ΔV T in SW90 due to greater quantum confinement 20

Impact of on V T Comparison of simulation and experiments: 0.4 0.2 SW90 T=90K V Tn 0.0-0.2 SW80 P-S simulation -0.4 0 5 10 15 20 25 30 35 [nm] Good agreement after rigid V T shift 21

Impact of sidewall slope = 4 nm 0.4 0.2 T= 90 K = + 4 nm V Tn 0.0-0.2 SW90 SW80-0.4 0 5 10 15 20 25 30 35 [nm] V T vs. match for both sidewall slopes 22

Impact of on V T : effect of doping 0.4 0.2 Quantum V Tn 0-0.2 10 16 10 17-0.4 Classic N D =10 18 cm -3 0 10 20 30 40 [nm] Reduced doping (inv. mode) reduced V T variation Strong quantum ΔV T for <10 nm regime 23

Self-consistent P-S simulations: V Tn Impact of on V T : comparison with Si 0.35 0.30 0.25 0.20 0.15 0.10 0.05 Si InGaAs * me 0.00 0 5 10 15 20 25 30 35 [nm] V T of InGaAs finfets with <10 nm: ~4x more sensitive to than Si! due to quantum effects N D =10 16 cm -3

Conclusions InGaAs finfets with <10 nm demonstrated experimentally Observation of quantum size effects in sub- 10 nm fins Implication for manufacturing control in future nm-scale InGaAs finfets 25

Thank you! 26

n f [cm -1 ] 10 8 10 6 10 4 10 2 10 0 10-2 10-4 10-6 Al 2 O 3, 4 cyc DE, FGA =70 nm Mid gap branch =10 nm -2.0-1.5-1.0-0.5 0.0 0.5 1.0 V GS Sidewall D it profile 60 mv/dec Ideal Measured n f [cm -1 ] Fitting with μ max extracted via CV+IV E-E v [ev] U-shape D it profile provides excellent agreement with measurements for the entire range. At the flat minima D it level of 3x10 12 cm -2 ev -1 D it [10 12 cm -2 ev -1 ] 10 1 CB branch Mid gap branch 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 0.5 Ec 1.0 CB branch =37 nm =12 nm Measurement Simulation: U-shape D it -1.0-0.5 0.0 0.5 1.0 V GS Vardi, DRC 2014 27

Low-temperature measurements V T I D [A/fin] 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 =7 nm 10-15 -0.25 0 0.25 0.5 0.75 V GS 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8 RT SW90 90K V DS =50 mv -1.0 0 5 10 15 20 25 30 35 W F [nm] V T as T D it impact Rigid ΔV T >0 Strong sensitivity of V T to W F for SW90 maintained 0.6 0.4 0.2 0.0-0.2-0.4-0.6-0.8 SW80-1.0 0 5 10 15 20 25 30 35 W F [nm] 28

Subthreshold carrier concentration at 90K C g /C ox I D [A/fin] 0.8 0.6 0.4 0.2 0.0 10-6 10-7 10-8 10-9 10-10 10-11 10-12 T=90K =13 nm 7 nm µ [cm 2 /Vsec] -0.5 0.0 0.5 1.0 V GS 13 nm -0.5 0.0 0.5 1.0 V GS 7 nm n fin [cm -1 ] 1500 1000 500 0 10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1 =13 nm 11 nm 9 nm 7 nm -0.5 0.0 0.5 1.0 V GS 13 nm 7 nm -0.5 0.0 0.5 1.0 V GS V Tn definition CV+IV μ(v GS ) Use μ max to transfer subthreshold characteristics to n fin 29

Effect of D it on V T -W F dependence 0.4 10 V Tn 0.2 0.0-0.2 T=90K No D it D it =3 [10 12 cm -2 ev -1 ] D it [10 12 cm -2 ev -1 ] 1 T 0.5 Ec 1.0-0.4 0 5 10 15 20 25 30 35 E-E v [ev] [nm] 30

SW80 - different W F 7 nm 19 nm 31

SW90 - different W F 12 nm 7 nm 5 nm 32

Sub T carrier concentration ( ) W kt qvgs VT qvds ID = De CT exp 1 exp L q nkt nkt I 2 ( ) W kt qvgs VT qvds = µ C exp 1 exp L q nkt nkt D e T W kt I = µ QV V L q (, ) D e GS DS (, V ) QV I L D GS DS = W µ e kt For long channel at small V DS, the channel charge (source side) is: ( ) D QV GS e q I L q = W µ kt 33

Sub-bands spectrum 1.4 1.2 SW90, WF=8 (1D) 1 Subband energy [ev] 0.8 0.6 0.4 0.2 0-0.2 SW80, WF=4 (2D) Subband energy [ev] 0-0.05-0.1-0.15-0.2-0.25 Subband energy [ev] -0.26-0.27-0.28-0.29-0.3-0.31-0.4-2 -1.5-1 -0.5 0 0.5 1 V GS -0.3-0.35-0.32-0.33 SW80 eigs are lower with smaller dispassion (larger density of states) 34