Projekts Materiālu mehānisko mikro nano- mēroga īpašības un to ietekme uz cilvēka drošību. Izbraukuma seminārs

Similar documents
Biocompatibility learning from Nature 6/30/2015 NATO ASI,

Nanomechanics Measurements and Standards at NIST

In Situ Ultrasonic NDT of Fracture and Fatigue in Composites

Identification of interface properties using Fibre Bragg Grating sensors in a fibre pull-out test Gabriel Dunkel, Laurent Humbert and John Botsis

Computational Analysis for Composites

Enhancing Composite Materials with Functionalized Graphene & CNTs Haydale Technologies Thailand (HTT) November 9, 2016

Direction sensitive deformation measurement with epoxy/cnt nanocomposites

Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software

Atomic Force Microscopy imaging and beyond

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France

APPLICATION OF ACOUSTIC EMISSION METHOD DURING CYCLIC LOADING OF CONCRETE BEAM

Experimental study of mechanical and thermal damage in crystalline hard rock

TENSILE FATIGUE BEHAVIOR OF SINGLE FIBRES AND FIBRE BUNDLES

ASPECTS CONCERNING TO THE MECHANICAL PROPERTIES OF THE GLASS / FLAX / EPOXY COMPOSITE MATERIAL

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Functionalized Carbon Nanotubes a key to nanotechnology?

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

FINITE ELEMENT AND EXPERIMENTAL STUDY OF NOVEL CONCEPT OF 3D FIBRE CELL STRUCTURE

A STUDY ON MULTI-AXIS FORCE MEASUREMENT OF POLYMER SKINS USING FBG SENSOR

DEVELOPMENT OF THERMOELASTIC STRESS ANALYSIS AS A NON-DESTRUCTIVE EVALUATION TOOL

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

CHEM-C2410: Materials Science from Microstructures to Properties Composites: basic principles

Large scale growth and characterization of atomic hexagonal boron. nitride layers

Mechanical Properties of Materials

MECHANICAL PROPERTIES OF LIGHTWEIGHT COMPOSITES REINFORCED WITH MICRO GLASS BALLOONS

How materials work. Compression Tension Bending Torsion

Flexural properties of polymers

Composite Materials. Fibre-Matrix Interfaces. There is nothing there really except the two of you (or the fiber and matrix).

SCALING EFFECTS IN THE LOW VELOCITY IMPACT RESPONSE OF FIBRE METAL

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

Interaction of charged hydroxyapatite and living cells. I. Hydroxyapatite polarization properties

OPTIMIZATION OF DIELECTRICS SURFACE PREPARATION FOR VACUUM COATING

Mechanical Interactions at the Interfaces of Atomically Thin Materials (Graphene)

A fatigue design methodology for GRP composites in offshore underwater applications

Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure

Faculty of Mechanical Engineering, Technical University of Liberec Ph.D. Thesis Topics for academic year 2018/2019. Study programme: Applied Mechanics

Frontiers of Fracture Mechanics. Adhesion and Interfacial Fracture Contact Damage

Introduction to Engineering Materials ENGR2000. Dr. Coates

FATIGUE DAMAGE PROGRESSION IN PLASTICS DURING CYCLIC BALL INDENTATION

A RESEARCH ON NONLINEAR STABILITY AND FAILURE OF THIN- WALLED COMPOSITE COLUMNS WITH OPEN CROSS-SECTION

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Supporting Information. Interfacial Shear Strength of Multilayer Graphene Oxide Films

Linear Elastic Fracture Mechanics

SCME KIT OVERVIEW. Rainbow Wafer Kit

Theory at a Glance (for IES, GATE, PSU)

Strength of GRP-laminates with multiple fragment damages

COMPARISON OF NUMERICAL SIMULATION AND EXPERIMENT OF A FLEXIBLE COMPOSITE CONNECTING ROD

Effects of Resin and Fabric Structure

Strain Measurement. Prof. Yu Qiao. Department of Structural Engineering, UCSD. Strain Measurement

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

height trace of a 2L BN mechanically exfoliated on SiO 2 /Si with pre-fabricated micro-wells. Scale bar 2 µm.

Acoustic emission analysis for failure identification in composite materials

Usually, when performing standard tensile tests, the

The numerical simulation research of an Ultra-Light Photovoltaic Cell multilayer composite structure

Strain, Stress and Cracks Klaus Attenkofer PV Reliability Workshop (Orlando) April 7-8, 2015

Introduction to Aerospace Engineering

Interlaminar fracture characterization in composite materials by using acoustic emission

Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration

Analysis Of Naca 2412 For Automobile Rear Spoiler Using Composite Material *

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS

Microelectromechanical systems (MEMS) have become an increasingly important area of

Chapter 7. Highlights:

Strain Gauges and Accessories

EXPERIMENTAL AND NUMERICAL STUDY OF OBLIQUE IMPACT ON HELICOPTER BLADES INFLUENCE OF THE CURVATURE

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS

MECHANICAL ENGINEERING (ME)

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

! Importance of Particle Adhesion! History of Particle Adhesion! Method of measurement of Adhesion! Adhesion Induced Deformation

Chapter 6: Mechanical Properties of Metals. Dr. Feras Fraige

A Constitutive Model for DYNEEMA UD composites

Structure and properties of polyurethane nanocomposites modified by dibutyl phosphate boehmite

A Study on the Tube of Integral Propeller Shaft for the Rear-wheel Drive Automobile Using Carbon Composite Fiber

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design

Railroad Concrete Tie Failure Analysis

Low Voltage Field Emission SEM (LV FE-SEM): A Promising Imaging Approach for Graphene Samples

Structural Health Monitoring of fibre composite structures by Acoustic Emission Analysis

A STUDY ON FATIGUE CRACK GROWTH IN CONCRETE IN THE PRE-PARIS REGION

Accelerated Testing Methodology for Long Term Durability of CFRP

New Die Attach Adhesives Enable Low-Stress MEMS Packaging

Agnieszka Bondyra, Pawe Gotowicki

MICROMECHANICAL DEFORMATIONS IN PARTICULATE FILLED POLYMERS: THE EFFECT OF ADHESION

Initiation de fissure dans les milieux fragiles - Prise en compte des contraintes résiduelles

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents

Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT

Coupling of plasticity and damage in glass fibre reinforced polymer composites

OPTIMIZATION OF THE COMPOSITE MATERIALS OF TANKS USING FINITE ELEMENT METHOD AND STRAIN GAUGES

Instrumented Impact Testing

Principles of Finite Element for Design Engineers and Analysts. Ayman Shama, Ph.D., P.E., F.ASCE

3.032 Problem Set 2 Solutions Fall 2007 Due: Start of Lecture,

Proceedings of the 28th Risø international symposium on materials science, 3-6 Sept 2007.

Advanced characterization: the key factor for standardization at nm-scale. Olha Sereda

Transcription:

Valsts pētījumu programma Inovatīvi materiāli un viedās tehnoloģijas vides drošumam Projekts Materiālu mehānisko mikro nano- mēroga īpašības un to ietekme uz cilvēka drošību Izbraukuma seminārs 2016. 03.03. Rīga, AVIATEST LNK SIA, Rezeknes ielā, 1 9:00-9:05 Ievadvārdi. J. Dehtjars, A. Sorokins 9:05-9:15 Programmas un Projekta prezentācija. J. Dehtjars 9:15-9:30 Ar nanocauruļu pildīto kompozītmateriāla agrīnas sabrukšanas diagnostika, izmantojot in situ elektronu emisiju. J. Dehtjars 9:30-9:45 Polimēru kompozītu materiālu virsmu agrīnas sabrukšanass diagnostikas metode, izmantojot ar sabrukšanu inducēto nokrāsošanu. A. Aniskevičs 9:45-10:00 Polimateriālu cauruļu ietekme uz baktēriju vairošanu ūdensapgādes tīklā. K. Gruskeviča. 10:00-10:30 Diskusija. Vada J. Dehtjars, A. Sorokins

Valsts pētījumu programma Projekts Materiālu mehānisko mikro nano- mēroga īpašības un to ietekme uz cilvēka drošību (atbildīgais J.Dehtjars) INOVATĪVI MATERIĀLI UN VIEDĀS TEHNOLOĢIJAS VIDES DROŠUMAM, IMATEH imateh.rtu.lv Izpētīt polimēru kompozītu materiālu virsmu agrīno sabrukšanu, izstrādāt diagnostikas metodes un analizēt metožu pielietojuma iespējas uzņēmumos Paredzētie pētījumi Izanalizēt polimēru kompozītu materiālu virsmu agrīno sabrukšanas diagnostikas metožu pielietojumu iespējas uzņēmumos Diagnostikas metožu pielietojumsmašīnu un konstrukciju ražošanā; Diagnostikas metožu pielietojumsdzeramā ūdens cauruļu ražošanā. A. Slodze Agrīna diagnostika Saraujas saites Mikro/nano plaisas BINI Barjera elektroniem Elektronu emisija Deformācija 1

BINI BINI Light, hν I Ārejavide, ūdens mikroorgamizmi Mikro/nano plaisas Specimen hν Vacuum ϕ 7 2

Ārejavide, ūdens mikroorgamizmi Mikro/nano plaisas Ārejavide, ūdens mikroorgamizmi Mikro/nano plaisas Agrīna diagnostika Agrīna diagnostika B. B. 3

Andrejs Aniskevičs Olga Bulderberga Ar nanocauruļu pildīto kompozītmateriāla agrīnas sabrukšanas diagnostika, izmantojot insituelektronu emisiju Jurijs Dehtjars (PI) Anna Korvena-Kosakovska Igors Kozaks Marina Romanova 1 2 The surface -the gate to strength Complicated loading Concentrators of strength Maximal stress Micro-, nano-scale 3 4 1

Strength, arb units 2 1.6 1.2 0.8 0.4 0 34 36 38 40 42 44 Roughness: peak-to-valley height, nm [Michael S. Gaither, Richard S. Gates, Rebecca Kirkpatrick, Robert F. Cook, and Frank W. DelRio. Etching Process Effects on Surface Structure, Fracture Strength, and Reliability of Single-Crystal Silicon Theta-Like Specimens. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 22, NO. 3, 2013, 589-602] R Square of the sphere (S) = 4 πr 2 Volumeofthesphere(V) = 4/3πR 3 S/V = 3/R R 0 S/V R 0; Surfacecontribution 5 6 Surface Surface Density of charge is different Energy to escape is different 7 8 2

Mean free path, Å 1000 100 10 1 Mean free path of electrons To get the electron out from the surface layer 1 10 100 1000 ϕ 1 5 ev Energy, ev Light, hν Specimen hν Vacuum 9 2016.03.03. aviatest 10 Light, hν I If I 0, hν= ϕ hν Specimen I = coef(hν-ϕ ) m ϕ potential negativity Vacuum 11 ϕ HAP: Ca 5 (PO 4 ) 3 OH Proton Density of protons has the strongest influence on the surface charge Oxygen V S Bystrov, E Paramonova, Yu Dekhtyar, AKatashev,AKarlov, N Polyaka, A V Bystrova, A Patmalnieks,A L Kholkin. Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles. J. Phys.: 2016.03.03. Condens. Matter 23 (2011) 065302 (10pp) aviatest 12 3

Surface tension ~ 1/R R Surface reconstruction depends on R Ca 10 (PO 4 ) 6 (OH) 2 R V. Bystrov et al. IFMBE proceedings. V. 14, 2006, 3149-3150 R nm Proton density Surface charge + 13 [ V. Bystrov, N. Bystrova, Y. Dekhtyar, S. Filippov, A. Karlov, A. Katashev, C. Meissner, E. Paramonova, A. Patmalnieks,N. Polyaka,ASapronovaIFMBEproceedings. V.14.,2006.,3149.-3150.] ECprojectNMP3-CT-2003-504937,2004.-2007., coordinator, Yu.Dekhtyar 2016.03.03. Highproton density + aviatest Low proton density + 14 General approach to particle adhesion Particle Cell General approach to particle adhesion Particle Cell Energy Interaction energy Attractive van der Waals force Repulsive electrostatic force Adhesion Distance Substrate L. Landau 1962 Nobel Prize in Physics Charge Substrate Depends on the substrate surface charge [Derjaguin B.V., Landau L.D. Acta Physic Chimica, USSR, 14, 633-642, (1941). ] 15 [Derjaguin B.V., Landau L.D. Acta Physic Chimica, USSR, 14, 633-642, (1941). ] 2016.03.03. aviatest 16 4

Attractive van der Waals force 2016.03.03. General approach to particle adhesion Microorganism Particle Cell Molecula Charge Substrate Energy Repulsive electrostatic force Interaction energy Distance Depends on the substrate surface charge [Derjaguin B.V., Landau L.D. Acta Physic Chimica, USSR, 14, 633-642, (1941). ] aviatest 17 Even surface Glass for optical microscopy Surface roughness R a = 1,23 ±0,59 nm AFM measurements Solver PRO47 Identification of the electrical charge : electron work function measurement 18 I Electron work function measurement II Radiation I Electron work function measurement II Radiation Glass for optical microscopy Glass for optical microscopy Glass for optical microscopy Glass for optical microscopy Surface roughness R a = 1,23 ±0,59 nm AFM measurements Solver PRO47 III Electron work function measurement IV Immobilization of cells Saccharomycescerevisiae (yeast) Glass for optical microscopy Glass for optical microscopy 19 20 5

V Optical microscopy LiecaDMLA ImagePro-Plus Glass for optical microscopy 21 22 120000 Number of immobilised cells, arb units 80000 40000 Negative charge increases 0 0 0.02 0.04 0.06 0.08 0.1 Increment of the electron work function, ev With courtesy by BScstudent M. Zeidaks 23 With courtesy by BScstudent M. Zeidaks 24 6

Slodze Barjera elektroniem Elektronu emisija Saraujas saites Mikro/nano plaisas Elektronu emisija Deformācija aviatest 2016.03.03. 25 aviatest 2016.03.03. 26 Araldite LY 1564 SP: Hardener XB 3486= 100:34 aviatest 2016.03.03. 27 aviatest 2016.03.03. 28 7

aviatest 2016.03.03. 29 aviatest 2016.03.03. 30 aviatest 2016.03.03. 31 aviatest 2016.03.03. 32 8

aviatest 2016.03.03. 33 aviatest 2016.03.03. 34 A/B Nanotube concentration 0% B Slodze A Deformācija Emisijas strāva 1.6 0.2 2.9 A/B=f(gaisma) BS3 NoFilter BS12 35 36 9

A/B Nanotube concentration 1,0% 1.11 1.02 0.28 Emission current, electron/sec Altitude = I min /I max -1 100 % 400 350 300 I max 250 200 150 I min 100 Electron emission Extension 50 0 0 0.5 1 1.5 2 2.5 3 Strain, % 6 5 4 3 2 1 0 Stress arb units BS3 NoFilter BS12 37 38 Morphology Electrical potential Z, nm 40 35 30 25 20 15 10 5 0 Morphology 0.00 2.00 4.00 6.00 X, μm -45.00-45.50-46.00-46.50-47.00-47.50-48.00-48.50-49.00-49.50 V, mv Electrical potential Morphology Potential 39 40 10

10 Altitude of the max, % 90 80 70 60 50 40 30 20 10 0 0 0.2 0.4 0.6 0.8 1 1.2 Nanotube conceration, % Young module, arb. units 9 8 7 6 5 4 0 0.5 1 1.5 Nanotube concentration, % 41 42 Young module, arb. units 8 7.5 7 6.5 6 5.5 5 4.5 4 0 50 100 Altitude of the max, % Paldies par uzmanību! 43 44 11

INTRODUCTION Polimēru kompozītu materiālu virsmu agrīnas sabrukšanas diagnostikas metode, izmantojot ar sabrukšanu inducēto nokrāsošanu APPLICATIONS of fibre-reinforced reinforced composites: TRANSPORT CAR & RAIL BODY PANELS INSTRUMENT PANELS GENERAL ENGINEERING PIPE SYSTEMS STORAGE TANKS BRIDGES LU MMI - Aviatest 2016 AEROSPACE GENERAL & MILITARY AVIATION FUSELAGE WINGS SPORT EQUIPMENT BIKE FRAMES CANOES 2 INTRODUCTION INTRODUCTION PROBLEM: internal damage is not always visible. Microcracks The technical monitoring requires: special equipment for periodic monitoring; built-in sensors for permanent monitoring; special data treatment for each method of control. Aging of the material/the impact of environmental factors Manca, M., et. al. /Core Debond Fatigue Crack Growth Characterization Using the Sandwich Mixed Mode Bending Specimen, Composites: Part A (2012), http://cohmas.kaust.edu.sa/pages/aging-of-composites-and-structures.aspx 3 4 1

INTRODUCTION INTRODUCTION SOLUTION: polymer composite with damage indication ability - biomimetic function provides damage visibility like a bruise in the human body. The aim of the work: to develop polymer composite with damage indication ability. 5 6 MATERIALS GENERAL IDEA : MATERIALS COMPONENTS: FABRIC WATER EMULSIONS OF: 1. MICROENCAPSULATED LEUCO DYE, 2. DYE DEVELOPER, 3. EPOXY-MODIFIED POLYURETHANE ACRYLIC POLYMER. 7 Fabric, impregnated with the mixture of components 8 2

SUGGESTIONS METHODS: INTERNAL External Capsulated stress capsulated indication stress indication system Internal MANUFACTURE OF SPECIMENS: VACUUM ASSISTED RESIN TRANSFER MOLDING METHOD OPPORTUNITIES TO LOCATE DAMAGE INDICATOR: Damage indicating paints Adhesive elements on different bases Stress sensitive layer Embedded in polymer DURING ASSEMBLING OF COMPOSITE INTO THE EXISTED COMPOSITE Separate layer FRP 9 10 METHODS: INTERNAL METHODS: INTERNAL MECHANICAL TESTING: PROPERTIES OF THE MATERIAL VISUAL RESPONSE EFFECT OF INTEGRATED DAMAGE INDICATION LAYER ON MECHANICAL PROPERTIES OF COMPOSITE CORRELATION OF VISUAL RESPONSE AFTER DAMAGE VS. TIME DIGITAL IMAGE ANALYSIS * : PHOTO OF THE SPECIMENS after specific load F = 400 N F = 2000 N Double notch shear strength tests ESTIMATION OF COLORED RESPONSE IN PHOTOSHOP BY MATHCAD ALGORITHM Quasi-static compression tests 11 * Vidinejevs S., Aniskevich A., Gregor A., Sjöberg M., Alvarez G. Smart polymeric coatings for damage visualization in substrate materiāls. Journal of Intelligent Material Systems and Structures, 2012, Vol. 23, No. 12, pp. 1371-1377. 12 3

RESULTS: INTERNAL RESULTS: INTERNAL LOAD VISUALIZATION THRESHOLD experimental models with protective epoxy coating from 0 till 4.5 mm were tested 8 LOAD VISUALIZATION THRESHOLD experimental models with protective epoxy coating from 0 till 4.5 mm were tested 2.0 6 1.5 B, 10-3 4 2 Photos of specimens and visual response after the load. P*, kn 1.0 0.5 0 0 1 2 3 P, kn Integral colour response B vs. indentation load P for the protective epoxy coating thickness d =1.26 ± 0.05 mm. 13 0.0 0 1 2 3 4 5 d, mm Threshold P* of visualization the load vs. protective epoxy coating thickness d. For d >3mm, an irreversible deformation was detected. 14 RESULTS: INTERNAL RESULTS: INTERNAL Effect of integrated damage indication layer on mechanical properties of composite Correlation of visual response after damage vs. time (T=22±1 C): 25 Shear stress at break GFRC with smart layer Reference GFRC without smart layer. Shear tests Compression tests Photos in time τ, MPa 20 15 10 5 0 0 5 10 15 20 25 average l, mm Elastic, equilibrium model of smart layer Elastic, equilibrium model of reference GFRC 15 Fractional conversion, dimensionless 1.2 1 0.8 0.6 0.4 0.2 0 shear experimental shear theoretical 0 min indentation experimental indentation theoretical 0 1 2 Time, h 3 4 5 Qinetics of visual transformation 10 min 90min 16 4

RESULTS: EXTERNAL RESULTS: EXTERNAL TESTING ON REAL OBJECTS : BUILDING SAFETY HELMET TESTING ON REAL OBJECTS : WIND TURBINE BLADE 17 18 Polymer composite with damage indication ability Polymer composite layer with damage indication ability CONCLUSIONS: A model of polymer composite layer with damage indication ability was developed. Present layer can be placed into the composite during assembling or placed on the finished production. It is possible to vary the sensitivity threshold of damage indicating layer. Maximal colour transformations are reached in 1,5 h for T=21 C. Damage visualization function is preserved for a long time. Latvia state research programme under grant agreement INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY 19 20 5

Kompozītpolimēru materiāli Polimēru materiālu cauruļu ietekme uz baktēriju vairošanos ūdensapgādes tīklā Kamila Gruškeviča Dr.sc.ing. Ūdens pētniecības laboratorija + ilgs kalpošanas laiks; + neskar korozija. Ražošanas procesā pievieno organiskās un neorganiskās piedevas, kas paredzētas materiālu plastiskumu uzlabošanai un kalpošanas ilguma pagarināšanai. Seminārs 03.03.2016 PE, PVC, piedevas biodegradējami organiskie savienojumi. barības vielas baktērijām; dezinfekcijas produkti kancerogēni savienojumi; ūdens organoleptiskās īpašības; apgrūtina ūdens apgādes tīkla attīrīšana pēc tīša vai netīša piesārņojuma. Piesārņota dzeramā ūdens padeve var būtiski ietekmēt cilvēka veselību un, līdz ar to, tā dzīves vides kvalitāti. Testētas caurules 1

- Ultra tīrs ūdens Rezultāti: - Krāna ūdens Rezultāti: Materiāla sabrukšanas paātrināšana: Materiāla sabrukšanas paātrināšana: 2

Mikrobioloģiskie testi: HDPE caurule: Ūdens no cauruļu paraugiem + baktērijas (Evian ūdens konsorcijs vai E.coli) PE-RC (izturīga) caurule: Rezultāti parādīja, ka testētas polimēru caurules izdala ūdenī organiskas vielas, kas sekmē baktēriju vairošanās. Turklāt, ūdenī pēc kontakta ar caurulēm vairojās gan Evian ūdens baktērijas (kas ir normāla parādība, jo tā ir ūdens baktērijām ierasta vide), gan E.coli baktērijas. Savukārt, E.coli šūnu vairošanās norāda uz to, ka polimēra caurules var sekmēt fekālo baktēriju vairošanās tīkla netīša (vai tīša) piesārņojuma gadījumā. 3

Acknowledgement: The research leading to these results has received the funding from Latvia State Research Programme under grant agreement "Innovative Materials and Smart Technologies for Environmental Safety, IMATEH". 4