Electronic quasiparticles and competing orders in the cuprate superconductors

Similar documents
The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Quantum criticality of Fermi surfaces in two dimensions

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Talk online at

Quantum disordering magnetic order in insulators, metals, and superconductors

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Quantum Melting of Stripes

Quantum phase transitions in Mott insulators and d-wave superconductors

Talk online: sachdev.physics.harvard.edu

Quantum criticality and the phase diagram of the cuprates

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Vortices in the cuprate superconductors

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

Quantum transitions of d-wave superconductors in a magnetic field

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Tuning order in the cuprate superconductors by a magnetic field

A quantum dimer model for the pseudogap metal

Saturday, April 3, 2010

Emergent gauge fields and the high temperature superconductors

Quantum phase transitions in antiferromagnets and d-wave superconductors

Tuning order in the cuprate superconductors

Order and quantum phase transitions in the cuprate superconductors

The Hubbard model in cold atoms and in the high-tc cuprates

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Emergent light and the high temperature superconductors

Understanding correlated electron systems by a classification of Mott insulators

Order and quantum phase transitions in the cuprate superconductors

Theory of the nodal nematic quantum phase transition in superconductors

Dual vortex theory of doped antiferromagnets

Quantum Criticality and Black Holes

Theory of the Nernst effect near the superfluid-insulator transition

Tuning order in cuprate superconductors

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

General relativity and the cuprates

Theory of the Nodal Nematic Quantum Phase Transition in Superconductors

Q=0 Magnetic order in the pseudogap state of cuprates superconductors

Competing orders and quantum criticality in the high temperature superconductors

Nematic and Magnetic orders in Fe-based Superconductors

Understanding correlated electron systems by a classification of Mott insulators

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Can superconductivity emerge out of a non Fermi liquid.

Metals without quasiparticles

Quantum theory of vortices and quasiparticles in d-wave superconductors

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

The underdoped cuprates as fractionalized Fermi liquids (FL*)

A non-fermi liquid: Quantum criticality of metals near the Pomeranchuk instability

Quantum criticality of Fermi surfaces

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

Quantum phase transitions in Mott insulators and d-wave superconductors

Quantum theory of vortices in d-wave superconductors

From the pseudogap to the strange metal

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Perimeter Institute January 19, Subir Sachdev

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Topological order in the pseudogap metal

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

The Nernst effect in high-temperature superconductors

Classifying two-dimensional superfluids: why there is more to cuprate superconductivity than the condensation of charge -2e Cooper pairs

Electronic Noise Due to Thermal Stripe Switching

arxiv: v1 [cond-mat.str-el] 16 Dec 2011

Z 2 topological order near the Neel state on the square lattice

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Magnetism in correlated-electron materials

Visualization of atomic-scale phenomena in superconductors

Novel Magnetic Order and Excitations in the Pseudogap Phase of HgBa 2 CuO 4+

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Neutron scattering from quantum materials

A New look at the Pseudogap Phase in the Cuprates.

Quantum Entanglement and Superconductivity. Subir Sachdev, Perimeter Institute and Harvard University

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Wilsonian and large N theories of quantum critical metals. Srinivas Raghu (Stanford)

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

Detecting boson-vortex duality in the cuprate superconductors

Electronic Liquid Crystal Phases in Strongly Correlated Systems

SUPPLEMENTARY INFORMATION

Liquid Crystal Phases in Strongly Correlated Systems. Eduardo Fradkin

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

What's so unusual about high temperature superconductors? UBC 2005

Subir Sachdev Research Accomplishments

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

High-T c superconductors

Intertwined Orders in High Temperature Superconductors

arxiv: v4 [cond-mat.supr-con] 19 May 2009

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Mean field theories of quantum spin glasses

Quantum liquid crystals in strongly correlated materials and ultracold gases

Impurity Resonances and the Origin of the Pseudo-Gap

3. Quantum matter without quasiparticles

Photoemission Studies of Strongly Correlated Systems

Quantum phase transitions of correlated electrons in two dimensions

How spin, charge and superconducting orders intertwine in the cuprates

Transcription:

Electronic quasiparticles and competing orders in the cuprate superconductors Andrea Pelissetto Rome Subir Sachdev Ettore Vicari Pisa Yejin Huh Harvard Harvard

Gapless nodal quasiparticles in d-wave superconductors Brillouin zone

Photoemission spectra of La2-xSrxCuO4 EDC x=0.145 MDC J. Chang, M. Shi, S. Pailhes, M. Maansson, T. Claesson, O. Tjernberg, A. Bendounan, L. Patthey, N. Momono, M. Oda, M. Ido, C. Mudry, and J. Mesot, arxiv:0708.2782

Photoemission spectra of La2-xSrxCuO4 x=0.145 J. Chang, M. Shi, S. Pailhes, M. Maansson, T. Claesson, O. Tjernberg, A. Bendounan, L. Patthey, N. Momono, M. Oda, M. Ido, C. Mudry, and J. Mesot, arxiv:0708.2782

Scanning tunneling microscopy of BSCCO Good fit with!! "#$%&%"%#% J. W. Alldredge, Jinho Lee, K. McElroy, M. Wang, K. Fujita, Y. Kohsaka, C. Taylor, H. Eisaki, S. Uchida, P. J. Hirschfeld, and J. C. Davis Nature Physics 4, 319 (2008)

T c T QUANTUM T X superconducting CRITICAL d x 2-y2 superconductor 0 state X r c r Needed: Quantum critical point with nodal quasiparticles part of the critical theory

Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

Neutron Scattering-LSCO K Brillouin zone Vignolle et al., Nature Phys. 07 Christensen et al., PRL 04 Hayden et al., Nature 04 Tranquada et al., Nature 04

T=0 SC to SC+SDW quantum critical point E. Demler, S. Sachdev, and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).

J. Chang, Ch. Niedermayer, R. Gilardi, N.B. Christensen, H.M. Ronnow, D.F. McMorrow, M. Ay, J. Stahn, O. Sobolev, A. Hiess, S. Pailhes, C. Baines, N. Momono, M. Oda, M. Ido, and J. Mesot, arxiv:0712.2181 SC to SC+SDW quantum critical point

SDW order parameters K2 K1 Brillouin zone S i (r, τ) = Re [ e ik 1 r Φ 1i (r, τ)+e ik 2 r Φ 2i (r, τ) ]. ( 2π )( 1 ) ( 2π )( 1 ) K 1 = a 2 ϑ, 1 2, K 2 = a 2, 1 2 ϑ,

SDW field theory L Φ = τ Φ 1 2 + v 2 1 x Φ 1 2 + v 2 2 y Φ 1 2 + τ Φ 2 2 + v 2 2 x Φ 2 2 + v 2 1 y Φ 2 2 + r( Φ 1 2 + Φ 2 2 ) + u 1 2 ( Φ 1 4 + Φ 2 4 )+ u 2 2 ( Φ2 1 2 + Φ 2 2 2 ) +w 1 Φ 1 2 Φ 2 2 + w 2 Φ 1 Φ 2 2 + w 3 Φ 1 Φ 2 2 Most general theory invariant under spin rotation, square lattice space group, and time-reversal symmetries T x T y R I T Φ 1i e iϑ Φ 1i Φ 1i Φ 2i Φ 1i Φ 1i Φ 2i Φ 2i e iϑ Φ 2i Φ 1i Φ 2i Φ 2i

SDW field theory L Φ = τ Φ 1 2 + v 2 1 x Φ 1 2 + v 2 2 y Φ 1 2 + τ Φ 2 2 + v 2 2 x Φ 2 2 + v 2 1 y Φ 2 2 + r( Φ 1 2 + Φ 2 2 ) + u 1 2 ( Φ 1 4 + Φ 2 4 )+ u 2 2 ( Φ2 1 2 + Φ 2 2 2 ) +w 1 Φ 1 2 Φ 2 2 + w 2 Φ 1 Φ 2 2 + w 3 Φ 1 Φ 2 2 Symmetries: U(1) U(1) Z 4 O(3) x-translations y-translations lattice rotations spin rotations

SDW field theory Stable fixed point in a 6-loop RG analysis: w 1 = u 1 u 2, w 2 = w 3 = u 2, v 1 = v 2 O(4) O(3) invariant theory for ϕ ai, with a =1... 4 an O(4) index, and i =1... 3 an O(3) index, and Φ 1i = ϕ 1i + iϕ 2i, Φ 2i = ϕ 3i + iϕ 4i. M. De Prato, A. Pelissetto, and E. Vicari Phys. Rev. B 74, 144507 (2006).

SDW field theory Symmetries: U(1) U(1) Z 4 O(3) spin x-translations rotations y-translations lattice rotations

SDW field theory Symmetries: O(4) O(3) spin x-translations rotations y-translations lattice rotations

Properties of O(4) O(3) fixed point: The following 9 order parameters have divergent fluctuations at the spin-density wave ordering transition with the same exponent γ: The real nematic order parameter, φ ( i Φ1i 2 Φ 2i 2) which measures breaking of Z 4 symmetry Charge density waves at 2K 1 and 2K 2 : i Φ2 1i and i Φ2 2i Charge density waves at K 1 ± K 2 : i Φ 1iΦ 2i and i Φ 1i Φ 2i At the quantum critical point, the susceptibilities of these orders all diverge as χ T γ, with γ = { 0.90(36) MZM, 6 loops 0.80(54) d = 3MS, 5 loops A. Pelissetto, S. Sachdev and E. Vicari, arxiv:0802.0199

Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

Brillouin zone L Ψ = Ψ 1 ( τ i v F 2 ( x + y )τ z i v 2 ( x + y )τ x ) Ψ 1 +Ψ 2 ( τ i v F 2 ( x + y )τ z i v 2 ( x + y )τ x ) Ψ 2.

Coupling of quasiparticles to SDW order π Ψ h P Ψ 2 Ψ 1 0 Ψ h K Φ α Φ α Ψ h Ψ 1 K Ψ 2 π π Ψ h 0 π Wavevector mismatch suggests SDW order and nodal quasiparticles are decoupled

Coupling of quasiparticles to SDW order π Ψ h P Ψ 2 Ψ 1 0 Ψ h K Φ α Φ α Ψ h Ψ 1 K Ψ 2 π π Ψ h 0 π No Yukawa coupling ΦΨ Ψ

Coupling of quasiparticles to SDW order π Ψ h P Ψ 2 Ψ 1 0 Ψ h K Φ α Φ α Ψ h Ψ 1 K Ψ 2 π π Ψ h 0 π Possible higher order coupling ~ ΦΨ 2 Ψ

Coupling of quasiparticles to SDW order Higher - order couplings allowed by symmetry: L 1 = λ 1 ( Φ1 2 + Φ 2 2) ( Ψ 1 τ z Ψ 1 + Ψ 2 τ z Ψ 2 ) ( ) ( ) [ Energy-energy coupling A. Pelissetto, S. Sachdev and E. Vicari, arxiv:0802.0199

Coupling of quasiparticles to SDW order Higher - order couplings allowed by symmetry: L ( ) ( ) ( L 2 = λ 2 Φ1 2 Φ 2 2) ( ) Ψ 1 τ x Ψ 1 + Ψ 2 τ x Ψ 2 [ L ( Nematic ) ( coupling A. Pelissetto, S. Sachdev and E. Vicari, arxiv:0802.0199

Coupling of quasiparticles to SDW order L ( ) ( ) Higher - order couplings allowed by symmetry: ( ) ( ) [ L 3 = ɛ ijk ( Φ 1j Φ 1k + Φ ) ( ) 2jΦ 2k λ 3 Ψ 2 τ x σ i Ψ 2 + λ 3Ψ 1 τ z σ i Ψ 1 + ( Φ 1jΦ 1k Φ 2jΦ 2k ) ( λ 3 Ψ 1 τ x σ i Ψ 1 λ 3Ψ 2 τ z σ i Ψ 2 )]. Spiral spin order coupling A. Pelissetto, S. Sachdev and E. Vicari, arxiv:0802.0199

Coupling of quasiparticles to SDW order Scaling dimensions of these couplings: dim[λ 1 ] = 1 ν 2= 0.9(2) dim[λ 2 ] = dim[λ 3, λ 3] = { (γ 1) 0.05(18) MZM, 6 loops = 2 0.10(27) d = 3MS, 5 loops { 0.84(8) MZM, 6 loops 0.76(8) d = 3MS, 5 loops A. Pelissetto, S. Sachdev and E. Vicari, arxiv:0802.0199

Coupling of quasiparticles to SDW order Coupling of nematic order is nearly marginal: Quantum-critical features appear in fermion spectrum via coupling to nematic fluctuations of spin density wave order. A. Pelissetto, S. Sachdev and E. Vicari, arxiv:0802.0199

Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

Nematic order in YBCO V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008)

Nematic order in YBCO V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, Science 319, 597 (2008)

STM studies of the underdoped superconductor Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y

di/dv Spectra Ca 1.90 Na 0.10 CuO 2 Cl 2 Bi 2.2 Sr 1.8 Ca 0.8 Dy 0.2 Cu 2 O y Intense Tunneling-Asymmetry (TA) variation are highly similar Y. Kohsaka et al. Science 315, 1380 (2007)

TA Contrast is at oxygen site (Cu-O-Cu bond-centered) R map (150 mv) Ca 1.88 Na 0.12 CuO 2 Cl 2, 4 K 4a 0 12 nm Y. Kohsaka et al. Science 315, 1380 (2007)

TA Contrast is at oxygen site (Cu-O-Cu bond-centered) R map (150 mv) Ca 1.88 Na 0.12 CuO 2 Cl 2, 4 K 4a 0 12 nm Broken lattice translation and rotation symmetries: valence bond supersolid or supernematic S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). S. A. Kivelson, E. Fradkin, V. J. Emery, Nature 393, 550 (1998). M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999).

Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

Outline 1. SDW order in LSCO Emergent O(4) symmetry 2. Nodal quasiparticles at the O(4) critical point Unique selection of quasiparticle coupling to (composite) nematic order 3. Nematic order in YBCO and BSCCO Broken lattice symmetry but no spin order 4. Theory of the onset of nematic order in a d-wave superconductor Infinite anisotropy fixed point

T T c T n Quantum Critical φ/v 1/λ c 1/λ M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. 85, 4940 (2000) E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, arxiv:0705.4099

d x 2 y 2 superconductor + nematic order d x 2 y 2 superconductor r c r

d x 2 y 2 ± s superconductor d x 2 y 2 superconductor r c r Order parameter - s pairing amplitude φ Also φ Φ 1 2 Φ 2 2

Field theory for dsc to dsc+nematic transition S 0 φ = [ d 2 1 xdτ 2 ( τ φ) 2 + c2 2 ( φ)2 + r 2 φ2 + u 0 24 φ4] ; [ ( )] Ising theory for nematic ordering S Ψ = d 2 k (2π) 2 T ω n Ψ 1a ( iω n + v F k x τ z + v k y τ x ) Ψ 1a + d 2 k (2π) 2 T ω n Ψ 2a ( iω n + v F k y τ z + v k x τ x ) Ψ 2a. Free nodal quasiparticles [ ] M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000)

[ Field theory for dsc to dsc+nematic transition ] S Ψφ = d 2 xdτ [ λ 0 φ (Ψ 1a τ x Ψ 1a + Ψ 2a τ x Ψ 2a )], Yukawa coupling is now permitted and is strongly relevant RG analysis close to 3 dimensions yields runaway flow to strong coupling M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000)

Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the nematic order parameter S φ = N f v v F Γ [ + N f 2 λ 0 φ(x, τ); v v F d 2 xdτ + irrelevant terms ] ( ) rφ 2 (x, τ) where Γ is a non-local and non-analytic functional of φ. The theory has only 2 couplings constants: r and v /v F.

Expansion in number of fermion spin components Nf Integrating out the fermions yields an effective action for the nematic order parameter S φ = N f 2 k,ω + λ2 0 8v F v φ(k, ω) 2 [r ( ω 2 + vf 2 k2 x ω 2 + vf 2 k2 x + v 2 k2 y +(x y) )] +higher order terms which cannot be neglected E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, arxiv:0705.4099

Renormalization group analysis Couplings are local in the fermion action, so perform RG on fermion self energy The 1/N f expansion has only one coupling constant at criticality: v /v F. The RG has the structure: dynamic critical exponent : z = 1 + 1 F 1 (v /v F ) N f fermion anomalous dimension : η f = 1 F 2 (v /v F ) N f RG flow equation : d(v /v F ) dl = 1 N f F 3 (v /v F ) where we have computed the functions F 1,2,3 (v /v F ).

Renormalization group analysis The RG flow is to v /v F 0 with d(v /v F ) dl = 4 π 2 N f (v /v F ) 2 ln ( ) 0.46987 (v /v F ) This implies that at the critical point, as T 0 we have the asymptotic result v v F = π2 N f 4 ln ( Λ T ) ln [ 1 0.1904 N f ln ( Λ T ) ], and a more precise result is obtained by numerically integrating the RG equation.

Renormalization group analysis In the limit v /v F 0, the effective action becomes S φ = N f v v F Γ [ + N f 2 λ 0 φ(x, τ); v v F d 2 xdτ + irrelevant terms ] ( ) rφ 2 (x, τ)

Renormalization group analysis In the limit v /v F 0, the effective action becomes S φ N v [terms that have at most a divergence ] which is a power of ln(v F /v ) The theory is controlled by the expansion parameter v /N f, and so results are asymptotically exact even for N f = 2.

Fermion spectral functions φ fluctuations broaden the fermion spectral functions except in a wedge near the nodal points E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, arxiv:0705.4099

Conclusions 1. Theories for damping of nodal quasiparticles in cuprates 2. SDW theory for LSCO yields (nearly) quantum critical spectral functions with arbitrary values of v /v F 3. Nematic theory for YBCO/BSCCO has a fixed point with v /v F = 0 which is approached logarithmically. The theory is expressed as an expansion in v /v F 4. Theories yield Fermi arc spectra.