Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires. by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts

Similar documents
Supporting Information

Supporting Information

Supporting Information for:

Supplementary Figure 1. (a-b) EDX of Mo 2 and Mo 2

Electronic Supplementary Information

Bimetallic Thin Film NiCo-NiCoO as Superior Bifunctional Electro- catalyst for Overall Water Splitting in Alkaline Media

Supporting information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Supporting Information. Cobalt Molybdenum Oxide Derived High-Performance Electrocatalyst

Electronic Supplementary Information

bifunctional electrocatalyst for overall water splitting

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Engineering NiS/Ni 2 P Heterostructures for Efficient Electrocatalytic Water Splitting

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Electronic Supplementary Information

Self-Supported Three-Dimensional Mesoporous Semimetallic WP 2. Nanowire Arrays on Carbon Cloth as a Flexible Cathode for

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Supporting information

Pomegranate-Like N, P-Doped Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution

Hexagonal-Phase Cobalt Monophosphosulfide for. Highly Efficient Overall Water Splitting

Supplementary Information for. High-performance bifunctional porous non-noble metal phosphide catalyst for overall

Supporting Information. for Water Splitting. Guangxing Zhang, Jie Yang, Han Wang, Haibiao Chen, Jinlong Yang, and Feng Pan

Supporting Information

Supporting Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Supporting Information

Supporting Informantion

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS 2 Nanosheets

One-pot synthesis of bi-metallic PdRu tripods as an efficient catalyst for. electrocatalytic nitrogen reduction to ammonia

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Supporting Information for

One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalyst in Acidic and Alkaline Medium

Supplementary Information for

Formation of Hierarchical Structure Composed of (Co/Ni)Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

Electronic Supplementary Information

Bioinspired Cobalt-Citrate Metal-Organic Framework as An Efficient Electrocatalyst for Water Oxidation

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Fabrication of Metallic Nickel-Cobalt Phosphide Hollow Microspheres for. High-Rate Supercapacitors

Supporting Information

Supporting Information

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Cloth for High-Efficient Electrocatalytic Urea Oxidation

Supporting Information

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

Atomic H-Induced Mo 2 C Hybrid as an Active and Stable Bifunctional Electrocatalyst Supporting Information

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Supporting Information for

Supporting Information

Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with. Gui-Xiang Huang, Chu-Ya Wang, Chuan-Wang Yang, Pu-Can Guo, Han-Qing Yu*

Electronic Supplementary Information

Conductive Tungsten Oxide Nanosheets for Highly Efficient Hydrogen Evolution

Supporting Information. Direct Observation of Structural Evolution of Metal Chalcogenide in. Electrocatalytic Water Oxidation

B.E. (ev)

Supporting Information. Molybdenum Polysulfide Anchored on Porous Zr Metal Organic Framework to Enhance the Performance of Hydrogen Evolution Reaction

Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation

Electronic Supplementary Information

Supporting Information

Metal Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Tuning the Shell Number of Multi-Shelled Metal Oxide. Hollow Fibers for Optimized Lithium Ion Storage

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

Supporting Information

Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting

Interconnected Copper Cobaltite Nanochains as Efficient. Electrocatalysts for Water Oxidation in Alkaline Medium

Supporting Information

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane

Electronic Supplementary Information

Supporting Information

Electronic Supporting Information

Self-floating nanostructural Ni-NiO x /Ni foam for solar thermal water evaporation

Supporting Information

Supporting Infromation

Supporting Information

Electronic Supplementary Information

Supporting Information. Unique Core-Shell Concave Octahedron with Enhanced Methanol Oxidation Activity

Supporting Information

Supporting Information

Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably. Increased Visible-light Absorption and Superior Photocatalytic.

A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows

unique electronic structure for efficient hydrogen evolution

Supporting Information

Science and Technology, Dalian University of Technology, Dalian , P. R. China b

Magnesiothermic synthesis of sulfur-doped graphene as an efficient. metal-free electrocatalyst for oxygen reduction

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

Supporting Information

Electronic Supplementary Information

Transcription:

Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts Jin-Xian Feng, Si-Yao Tong, Ye-Xiang Tong, and Gao-Ren Li * MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 5275, China Zhixin High School, Guangzhou 5080, China E-mail: ligaoren@mail.sysu.edu.cn Scheme S1. The fabrication process of PANI/CoP HNWs-CFs electrocatalysts. 1

Figure S1. SEM image of CFs. Figure S2. (a) SEM image of Co(OH)2 NWs-CFs; (b) TEM image of a Co(OH)2 NW. 2

Figure S3. SEM image CoP NWs-CFs (Inset: TEM image of a CoP NW). 3

a Absorbance/a.u. C-C PANI/CoP HNWs-CFs 1492 para-substituted N-H 3249 3180 C-H 3024 C=C 1572 1429 Benzene rings vibrations Parasubstituted C-N 1279 1346 1188 1140 1394 N=Q=N rings vibrations b Intensity/a.u. Co 2p 3/2 782.34 778.63 Sat. Co 2p Co 2p 1/2 798.32 Sat. 793.50 Co 2+ in CoPO x Co in CoP 3600 3400 30 30001650 1500 1350 10 775 780 785 790 795 800 805 8 Wavenumber/cm -1 Binding energy/ev c Intensity/a.u. PANI/CoP HNWs-CFs P in CoP P 2p 3/2 129.42 130.27 P 2p 1/2 130.75 P 2p P in surface CoPO x d Intensity/a.u. -NH- 399.76 -N= 400.47 -N + - 402.40 N 1s PANI/CoP HNWs-CFs 128 129 130 131 132 133 134 135 136 137 Binding energy/ev 398 399 400 401 402 403 404 Binding energy/ev Figure S4. (a) FT-IR spectra of PANI/CoP HNWs-CFs; (b-d) XPS spectra of (b) Co 2p, (c) P 2p and (d) N 1s of PANI/CoP HNWs-CFs. 4

Figure S5. SEM image of PANI NDs-CFs. (a) Current density/ma cm -2 0 CoP NWs-CFs PANI/CoP=0.25 PANI/CoP=0. - PANI/CoP=0.15 PANI/CoP=0. -40 PANI/CoP=0.05-60 -80-0 -0.30-0.25-0. -0.15-0. -0.05 0.00 Potential/V vs. RHE (b) 24 j a -j c /ma cm -2 5 21 18 15 12 9 6 3 PANI/CoP=0.05 PANI/CoP=0. PANI/CoP=0.15 PANI/CoP=0. PANI/CoP=0.25 0 0 40 60 80 0 Scan rate/mv s -1 Figure S6. (a) HER polarization curves of PANI/CoP HNWs-CFs with different PANI/CoP mass ratios; (b) Charging current density differences j a -j c plotted against the scan rates of PANI/CoP HNWs-CFs with different mass ratios of PANI/CoP.

Current density/ma cm -2 0 - -40-60 -80 0.50 mg cm -2 0.60 mg cm -2 0.70 mg cm -2 0.80 mg cm -2 0.90 mg cm -2 1.00 mg cm -2-0 -0.30-0.25-0. -0.15-0. -0.05 0.00 Potential/V vs. RHE Figure S7. Relationship between the catalytic activity and loading mass of PANI/CoP HNWs-CFs. Current density/a g -1 0 0.4 mg cm -2 PANI NDs - -40-60 -80 0.696 mg cm -2 0.80 mg cm -2 CoP NWs PANI/CoP HNWs -0-0. -0.15-0. -0.05 0.00 Potential/V vs. RHE Figure S8. HER polarization curves of PANI NDs-CFs, CoP NWs-CFs and PANI/CoP HNWs-CFs based on loading masses. 6

0.16 PANI/CoP HNWs-CFs CoP NWs-CFs Overpotential/V 0.12 0.08 0.04 111.8 mv/dec 46.3 mv/dec 0.8 1.0 1.2 1.4 1.6 Log(j/mA.cm -2 ) Figure S9. Tafel plots of PANI/CoP HNWs-CFs and CoP NWs-CFs. j a -j c /ma cm -2 24 21 18 15 12 9 6 3 PANI/CoP HNWs-CFs PANI NDs-CFs CoP NWs-CFs 113.4 mf cm -2 98.34 mf cm -2 19.09 mf cm -2 0 0 40 60 80 0 Scan rate/mv s -1 Figure S. Charging current density differences j a -j c plotted against the scan rates of PANI NDs-CFs, CoP NWs-CFs and PANI/CoP HNWs-CFs electrocatalysts. 7

Figure S11. SEM image of PANI/CoP HNWs-CFs after HER at -0.12 V for 30 h (Inset: TEM image of CoP NW). After HER electrocatalysis Before HER electrocatalysis Potonated N=Q=N Intensity/a.u. -OH -NH + 2 Benzene rings vibrations H 2 O C-C C-N + C=C 3600 3450 3300 3150 3000 1600 1400 10 00 Wavenumber/cm -1 Figure S12. FT-IR spectra of PANI/CoP HNWs-CFs before and after HER at -0.12 V for 30 h. 8

Intensity/a.u. Amorphous PANI * (011) (111) (2) * * * (112) (211) Before 30 h HER After 30 h HER (301) * * * * PANI * CoP 25 30 35 40 45 50 55 60 65 2θ/degree Figure S13. XRD patterns of PANI/CoP HNWs-CFs after HER at -0.12 V for 30 h. 9

a b Figure S14. Hydride proton H 13 O 6 + (a) and (b) Protonated PANI model.

a b c d Figure S15. Models of (a) CoP-H 13 O 6 + ; (b) CoP-H + +6H 2 O; (c) CoP/PANI-H + +6H 2 O; and (d) CoP-H + / PANI+6H 2 O. 11

a b c Figure S16. Simplified CoP cluster: (a) front view (b) top view, and (c) side view. Figure S17. Simplified PANI cluster. 12

a b Figure S18. Simplified PANI/CoP cluster (a) front view and (b) side view. Current density/ma cm -2 0 CoP NWs-CFs (1.0 M PBS ph=7) - -40-60 -80 PANI/CoP HNWs-CFs (1.0 M PBS ph=7) CoP NWs-CFs (0.5 M H 2 SO 4 ) PANI/CoP HNWs-CFs (0.5 M H 2 SO 4 ) -0-0.30-0.25-0. -0.15-0. -0.05 0.00 Potential/V vs. RHE Figure S19. Polarization curves of CoP NWs-CFs and PANI/CoP HNWs-CFs electrocatalysts in ph=7 media (1.0 M PBS) and 0.5 M H 2 SO 4. 13

Table S1. Comparisons of the electrocatalytic activity of PANI/CoP HNWs-CFs catalysts in acidic media vis-à-vis some representative solid-state HER catalysts recently reported. (U: Onset potential; η j : Overpotential at the applied current density; j: Current density). Electrocatalyst PANI/CoP HNWs-CFs Loading/mg cm -2 U/mV η j /mv j/ma.cm -2 Reference 0.80 15 CoP/CC 0.92 38 57 82 1 122 67 0 4 50 0 0 Our work Ref 1 CoP NPs/Ti 2.0 30 85 Ref 2 CoP NSs/Ti 2.0 40 90 146 0 Ref 3 Urchin-like CoP NCs 0.28 50 1 150 180 50 0 Ref 4 0 MoP S 1.0 25 1 50 Ref 5 140 0 CoP@NC 0.3 21 78 115 50 Ref 6 FeP NA/Ti 3.2 16 55 127 0 Ref 7 Co 2 P@NPG 0.5 45 5 194 Ref 8 Cu 3 P NW/CF 15.2 62 143 2 50 Ref 9 84 2 MoP-CA2 0.36 40 125 Ref 0 0 14

Ni 5 P 4 films -- 50 140 150 Ref 11 Nanostructured Ni 2 P 1 50 130 180 0 Ref 12 CoS 2 /RGO-CNT film 1.15 0 142 153 178 0 Ref 13 CoNi@NC 0.62 30 160 224 5 Ref 14 WS 2 /WO 2.9 /C 0.12 115 175 Ref 15 137 CoSe 2 nanoparticles 2.8 75 150 Ref 16 180 0 Defect-rich MoS 2 ultrathin nanosheets 0.285 1 0 215 270 50 Ref 17 Fe 0.9 Co 0.1 S 2 /CNT 4.9 0 1 170 0 Ref 18 MoS 2 /CoSe 2 0.24 11 68 40 40 Ref 19 Core-shell NiAu/Au -- 0 183 2 Ref α-ins ultrathin nanosheets 0.254 80 0 140 Ref 21 MoP@RGO 0.28 118 125 50 Ref 22 WO 2.9 0.285 50 70 94 Ref 23 CoMoS 3 0.114 0 175 2 Ref 24 Pt-TaS 2 0. 0 15 180 190 5 Ref 25

190 Co 9 S 8 @MoS 2 /CNFs 0.212 64 2 Ref 26 250 30 Ni-doped graphene -- 30 162 185 15 Ref 27 60.9 Ni-C-N nanosheets 0.2 34.7 0 50 Ref 28 125 0 138 Co-C-N complex 4.9 0 160 Ref 29 212 0 WO 2 -carbon 138 mesoporous 0.35 0 160 Ref 30 nanowires 212 0 Pt@CIAC-121 -- 300 480 600 Ref 31 16

Table S2. Comparisons of the long-term stability of the PANI/CoP HNWs-CFs catalysts under the acidic conditions vis-à-vis some representative solid-state HER catalysts recently reported. η o : Applied overpotential; j i : initial current density; j f : final constant current density. Electrocatalyst Loading/ mg cm -2 Reaction time/h Electrochemical performance j i =19.2 ma/cm 2 η 0 =50 mv j f =18.8 ma/cm 2 Reference PANI/CoP HNWs-CFs 0.80 30 η 0 =75 mv η 0 =0 mv j i =32.0 ma/cm 2 j f =31.0 ma/cm 2 j i =53.1 ma/cm 2 j f =52.9 ma/cm 2 Our work η 0 =1 mv j i =87.9 ma/cm 2 j f =86.4 ma/cm 2 CoP NSs/Ti 2.0 2.8 η 0 =150 mv j i =1 ma/cm 2 j f =1 ma/cm 2 Ref 3 Urchin-like CoP NCs 0.28 9 η 0 =150 mv j i =1 ma/cm 2 j f =1 ma/cm 2 Ref 4 Cu 3 P NW/CF 15.8 25 η 0 =0 mv j i =28mA/cm 2 j f =28 ma/cm 2 Ref 9 Co 2 P@NPG 0.5 30 η 0 =0 mv η 0 =150 mv j i =6.3 ma/cm 2 j f =6 ma/cm 2 j i =25 ma/cm 2 j f =23 ma/cm 2 Ref 8 MoP-CA2 0.36 24 η 0 =150 mv WS 2 /WO 2.9 /C 0.12 22 η 0 =1 mv j i =27 ma/cm 2 j f =25 ma/cm 2 Ref j i =11 ma/cm 2 j f = ma/cm 2 Ref 15 CoSe 2 nanoparticles 2.8 30 η 0 =155 mv η 0 =173 mv j i = ma/cm 2 j f = ma/cm 2 j i =50 ma/cm 2 Ref 16 17

η 0 =185 mv j f =45 ma/cm 2 j i =0 ma/cm 2 j f =95 ma/cm 2 Defect-rich MoS 2 ultrathin nanosheets 0.285 25 η 0 =0 mv j i =13 ma/cm 2 j f =12.5 ma/cm 2 Ref 17 Fe 0.9 Co 0.1 S 2 /CNT 4.9 40 η 0 =1 mv MoS 2 /CoSe 2 0.24 η 0 =700 mv WO 2.9 0.285 5 η 0 =0 mv CoMoS 3 0.114 12 η 0 =170 mv j i =21 ma/cm 2 j f = ma/cm 2 Ref 18 j i =150 ma/cm 2 j f =250 ma/cm 2 Ref 19 j i =.2 ma/cm 2 j f =19 ma/cm 2 Ref 23 j i =12 ma/cm 2 j f =4 ma/cm 2 Ref 24 Co 9 S 8 @MoS 2 /CNFs Ni-doped graphene 0.212 13 η 0 =190 mv -- 30 η 0 =150 mv j i =18 ma/cm 2 j f =23 ma/cm 2 Ref 26 j i =9.2 ma/cm 2 j f =9.2 ma/cm 2 Ref 27 Co-C-N complex 4.9 40 η 0 =1 mv j i =21 ma/cm 2 j f = ma/cm 2 Ref 29 References (1) Tian, J.; Liu, Q.; Asiri, A.; Sun, X. J. Am. Chem. Soc. 14, 136, 7587. (2) Popczun, E.; Read, C.; Roske, C.; Lewis, N.; Schaak, R. Angew. Chem. Int. Ed. 14, 53, 5427. (3) Pu, Z.; Liu, Q.; Jiang, P.; Asiri, A.; Obaid, A.; Sun, X. Chem. Mater. 14, 26, 4326. (4) Yang, H.; Zhang, Y.; Hu, F.; Wang, Q. Nano Lett. 15, 15, 7616. (5) Kibsgaard, J.; Jaramillo, T. Angew. Chem. Int. Ed. 14, 53, 14433. (6) Yang, F.; Chen, Y.; Cheng, G.; Chen, S.; Luo, W. ACS Catal. 17, 7, 3824. (7) Jiang, P.; Liu, Q.; Liang, Y.; Tian, J.; Asiri, A.; Sun, X. Angew. Chem. Int. Ed. 14, 53, 12855. (8) Zhuang, M.; Ou, X.; Dou, Y.; Zhang, L.; Zhang, Q.; Wu, R.; Ding, Y.; Shao, M.; Luo, Z. Nano Lett. 16, 16, 4691. (9) Tian, J.; Liu, Q.; Cheng, N.; Asiri, A.; Sun, X. Angew. Chem. Int. Ed. 14, 53, 9577. 18

() Xing, Z.; Liu, Q.; Asiri, A.; Sun, X. Adv. Mater. 14, 26, 5702. (11) Ledendecker, M.; Calderón, S.; Papp, C.; Steinrîck, H.; Antonietti, M.; Shalom, M. Angew. Chem. Int. Ed. 15, 54, 12361. (12) Popczun, E.; McKone, J.; Read, C.; Biacchi, A.; Wiltrout, A.; Lewis, N.; Schaak, R. J. Am. Chem. Soc. 13, 135, 9267. (13) Peng, S.; Li, L.; Han, X.; Sun, W.; Srinivasan, M.; Mhaisalkar, S.; Cheng, F.; Yan, Q.; Chen, J.; Ramakrishna, S. Angew. Chem. Int. Ed. 14, 53, 12594. (14) Deng, J.; Ren, P.; Deng, D. Bao, X. Angew. Chem. Int. Ed. 15, 54,. (15) Wang, X.; Gan, X.; Hu, T.; Fujisawa, K.; Lei, Y.; Lin, Z.; Xu, B.; Huang, Z.; Kang, F.; Terrones, M.; Lv, R. Adv. Mater. 17, 29, 1603617. (16) Kong, D.; Wang, H.; Lu, Z. Cui, Y. J. Am. Chem. Soc. 14, 136, 4897. (17) Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X.; Xie, Y. Adv. Mater. 13, 25, 5807. (18) Wang, D.; Gong, M.; Chou, H.; Pan, C.; Chen, H.; Wu, Y.; Lin, M.; Guan, M.; Yang, J.; Chen, C.; Wang, Y.; Hwang, B.; Chen, C.; Dai, H. J. Am. Chem. Soc. 15, 137, 1587. (19) Gao, M.; Liang, J.; Zheng, Y.; Xu, Y.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. Nat. Commun. 15, 6, 5982. () Lv, H.; Xi, Z.; Chen, Z.; Guo, S.; Yu, Y.; Zhu, W.; Li, Q.; Zhang, X.; Pan, M.; Lu, G.; Mu, S.; Sun, S. J. Am. Chem. Soc. 15, 137, 5859. (21) Long, X.; Li, G.; Wang, Z.; Zhu, H.; Zhang, T.; Xiao, S.; Guo, W.; Yang, S. J. Am. Chem. Soc. 15, 137, 11900. (22) Zhang, G.; Wang, G.; Liu, Y.; Liu, H.; Qu, J.; Li, J. J. Am. Chem. Soc., 16, 138, 14686. (23) Li, Y.; Liu, P.; Pan, L.; Wang, H.; Yang, Z.; Zheng, L.; Hu, P.; Zhao, H.; Gu, L.; Yang, H. Nat. Commun. 15, 6, 8064. (24) Yu, L.; Xia, B.; Wang, X.; Lou, X. Adv. Mater. 16, 28, 92. (25) Zeng, Z.; Tan, C.; Huang, X.; Bao, S.; Zhang, H. Energy Environ. Sci. 14, 7, 797. (26) Zhu, H.; Zhang, J.; Yanzhang, R.; Du, M.; Wang, Q.; Gao, G.; Wu, J.; Wu, G.; Zhang, M.; Liu, B.; Yao, J.; Zhang, X. Adv. Mater. 15, 27, 4752. (27) Qiu, H.; Ito, Y.; Cong, W.; Tan, Y.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. Angew. Chem. Int. Ed. 15, 54, 14031. (28) Yin, J.; Fan, Q.; Li, Y.; Cheng, F.; Zhou, P.; Xi, P.; Sun, S. J. Am. Chem. Soc., 16, 138, 14546. (29) Wang, Z.; Hao, X.; Jiang, Z.; Sun, X.; Xu, D.; Wang, J.; Zhong, H.; Meng, F.; Zhang, X. J. Am. Chem. Soc., 15, 137, 15070. (30) Wu, R.; Zhang, J.; Shi, Y.; Liu, D.; Zhang, B. J. Am. Chem. Soc. 15, 137, 6983. (31) Wang, S.; Gao, X.; Hang, X.; Zhu, X.; Han, H.; Liao, W.; Chen, W. J. Am. Chem. Soc. 16, 138, 16236. 19