RAIRO MODÉLISATION MATHÉMATIQUE

Similar documents
COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

RAIRO MODÉLISATION MATHÉMATIQUE

Séminaire Équations aux dérivées partielles École Polytechnique

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION B

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

A note on the generic solvability of the Navier-Stokes equations

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

REVUE FRANÇAISE D INFORMATIQUE ET DE

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

RAIRO INFORMATIQUE THÉORIQUE

Séminaire Équations aux dérivées partielles École Polytechnique

ANNALES DE L I. H. P., SECTION C

Local Lyapunov exponents and a local estimate of Hausdorff dimension

ANNALES DE L I. H. P., SECTION C

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES DE L INSTITUT FOURIER

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

Séminaire de Théorie spectrale et géométrie

RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

INFORMATIQUE THÉORIQUE ET APPLICATIONS

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

RAIRO ANALYSE NUMÉRIQUE

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

Groupe de travail d analyse ultramétrique

ANNALES MATHÉMATIQUES BLAISE PASCAL

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

RAIRO. RECHERCHE OPÉRATIONNELLE

On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

ANNALES DE L I. H. P., SECTION B

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L I. H. P., SECTION A

Groupe de travail d analyse ultramétrique

ANNALES DE L I. H. P., SECTION A

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and Banach spaces

Séminaire Équations aux dérivées partielles École Polytechnique

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JUAN ENRIQUE SANTOS ERNESTO JORGE OREÑA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

RAIRO. INFORMATIQUE THÉORIQUE

INFORMATIQUE THÉORIQUE ET APPLICATIONS

COMPOSITIO MATHEMATICA

REVUE FRANÇAISE D INFORMATIQUE ET DE

REVUE FRANÇAISE D INFORMATIQUE ET DE

COMPOSITIO MATHEMATICA

INFORMATIQUE THÉORIQUE ET APPLICATIONS

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

COMPOSITIO MATHEMATICA

RICHARD HAYDON Three Examples in the Theory of Spaces of Continuous Functions

ANNALES DE L I. H. P., SECTION A

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L I. H. P., SECTION B

ANNALES DE L I. H. P., SECTION C

ANNALES. FLORENT BALACHEFF, ERAN MAKOVER, HUGO PARLIER Systole growth for finite area hyperbolic surfaces

Séminaire d analyse fonctionnelle École Polytechnique

ANNALES DE L I. H. P., SECTION C

RAIRO. RECHERCHE OPÉRATIONNELLE

Série Mathématiques. C. RADHAKRISHNA RAO First and second order asymptotic efficiencies of estimators

RAIRO. RECHERCHE OPÉRATIONNELLE

ANNALES DE L I. H. P., SECTION A

RAIRO MODÉLISATION MATHÉMATIQUE

H. DJELLOUT A. GUILLIN

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

INFORMATIQUE THÉORIQUE ET APPLICATIONS

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION A

RAIRO ANALYSE NUMÉRIQUE

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

ANNALES DE L I. H. P., SECTION B

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION C

RAIRO MODÉLISATION MATHÉMATIQUE

A maximum principle for optimally controlled systems of conservation laws

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L INSTITUT FOURIER

RAIRO MODÉLISATION MATHÉMATIQUE

The center of the convolution algebra C u (G) Rendiconti del Seminario Matematico della Università di Padova, tome 52 (1974), p.

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Cahiers de topologie et géométrie différentielle catégoriques, tome 32, n o 2 (1991), p.

COMPOSITIO MATHEMATICA

Séminaire Brelot-Choquet-Deny. Théorie du potentiel

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

RAIRO MODÉLISATION MATHÉMATIQUE

J. H. BRAMBLE V. THOMÉE

Transcription:

RAIRO MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE D. D. BAINOV A. B. DISHLIEV Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population RAIRO Modélisation mathématique et analyse numérique, tome 24, n o 6 (1990), p. 681-691. <http://www.numdam.org/item?id=m2an_1990 24_6_681_0> AFCET, 1990, tous droits réservés. L accès aux archives de la revue «RAIRO Modélisation mathématique et analyse numérique» implique l accord avec les conditions générales d utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Q3-QGI3 MAnCIWTHyU-MOOaiJNGAHOHUMEIÜCALANALYStS fhïbhb M0OÉUSAT1CW MATHÉMATIQUE ET ANALYSE NUMÉRIQUE (Vol 24, n 6, 1990, p 681 à 692) POPULATION DYNAMICS CONTROL IN REGARD TO MINIMIZING THE TIME NECESSARY FOR THE REGENERATION OF A BIOMASS TAKEN AWAY FROM THE POPULATION (*) D. D. BAINOV C), A. B. DISHLIEV C 2 ) Communicated by R TEMAM Abstract The dynamics of a population whose mathematical model is the équation of Verhulst is considered From the population by discrete outer effects (in theform of impulses) a certain quantity ofbiomass is taken away (supplemented) This process is descnbedby means of differential équations with impulses at fïxed moments The moments of impulse effect and the magnitudes of the impulses are determined so that the time of régénération of the quantity of biomass taken away from the population be minimal Résume Controle de la dynamique d'une population par minimisatwn du temps nécessaire à la régénération d'une biomasse enlevée On considère la dynamique d'une population dont le modèle mathématique est l'équation de Verhuist Par des effets extérieurs discrets (sous forme d'impulsions) une certaine quantité de biomasse est ôtèe (ou ajoutée) a la population Ce phénomène est décrit par des équations différentielles, avec impulsions à des instants fixes Les instants des effets impulsionnels et les amplitudes des impulsions sont déterminés de façon que le temps de régénération de la quantité de biomasse ôtee à la population soit minimal I. INTRODUCTION In the paper the équation of Verhulst is mvestigated : L = ±N(K-N), (1) at K The present investigation is supported by the Mmistry of Culture, Science and Education of People's Republic of Bulgana under Grant 61 ( ) Received in July 1989 (*) Academy of Medicine, Sofia, Bulgana ( 2 ) Higher Institute of Chemical Technology, Sofia, Bulgana M'AN Modélisation mathématique et Analyse numérique 0764-583X/90/06/681/ll/$ 310 Mathematical Modelhng and Numencal Analysis AFCET Gauthier-Villars

682 D D BAINOV, A B DISHLIEV which describes the dynamics of many populations. In (1) N = N(t) >0 dénotes the biomass of the population at the moment / s= 0, K > 0 is the capacity of the environment and JL > 0 is the différence between the birthrate and the death-rate. We assume that at the initial moment t = 0 we have where 0 < N o < ^. N ö, (2) A frequently occurring situation is that, when the population is subject to outer effects, anthropogeneous ones included. We shall consider the case when the outer effects are discrete in time and are expressed in abrupt (instantaneous) taking away or supplementing of certain quantities of biomass. The differential équations with impulses are an adequate mathematical model of such dynamical processes [l]-[4]. Consider the impulsive analogue of the équation of Verhulst : l r i+o)-n(t,) = -I l, i = l,2,..., (4) where T 1S T 2,... (0<T 1 <T 2 <=... ) are the moments at which the discrete outer effects are realized, also called moments of impulse effect ; I t, i = l, 2,... are the quantities of biomass taken away (I l >0) or supplemented (ƒ, < 0) respectively at the moments T S I = i, 2,... We shaïl consider the important in regards to the applications in the biotechnologies case of taking away of biomass, i.e. I t =2= 0, / = 1, 2,... The solution of problem (3), (4), (2) is a piecewise continuous function with points of discontinuity of the fïrst kind TJ, T 2,... at which it is continuous from the left. We shall note that for T, <C t ^ j t +19 i = 1, 2,..., the solution of problem (3), (4), (2) coincide with the solution of équation (1) with initial condition N(T l + 0)=N(T l )-I l. (5) Since the solutions of problems (1), (5) for t => T Ï5 i 1, 2,..., are monotone increasing functions, then in a certain time after the moment T I5 the population will regenerate its biomass which it had at the moment T t (just before the taking away of the biomass). This time we shall call time of régénération of the biomass taken away at the moment T, and dénote by AT (. It is clear that if T, + x - T ; = AT (, then N(r t + ATJ = N(*T t ). Let a certain quantity of biomass be planned to be taken away from the population by several consécutive discrete outer effects. We shall dénote this quantity by /. It is natural to assume that the quantities of biomass taken M 2 AN Modélisation mathématique et Analyse numérique Mathematical Modelhng and Numencal Analysis

POPULATION DYNAMICS CONTROL 683 away at a single moment are bounded below, i.e. / 0 =s ƒ,, i = 1,2,..., where 0 < / 0 < K. The aim of the present paper is to find the moments T 1S T 2,..., of impulse effect at which biomass is taken away, as well as the quantities I u I 2,... of biomass taken away so that the sum of the times of régénération of the quantities of biomass taken away be minimal. H. PRELIMINARY NOTES In the form of lemmas we shall give some inequalities which are useful for the further considérations. LEMMA 1 : If 0 < 1 19 1 2 < K, then The proof of Lemma 1 is trivial. \K- (/! LEMMA 2 : If I x > 0, i = 1, 2,..., n and I x + I 2 + - + I n <K y then K-I x -I 2 In* (K Lemma 2 is proved by induction. Note that the equality is achieved for n= 1. LEMMA 3 : IfO^I^K and 1 ^m <w, then K+I/m \" l K+I/n \«Proof : Set a =. It is clear that O < a <= 1. Then inequality (6) becomes K / rn + a \ m / n + a \ n \m-a ) \n a J The above inequality will hold if we establish that the function = Zin a vol. 24, n 6, 1990

684 D. D. BAINOV, A. B. DISHLIEV is strictly monotone decreasing, i.e. that the inequality is valid. For this purpose we establish that which implies that the function <p' is strictly monotone increasing for X s* 1. Moreover, hm tp'(x) hm In = 0. jr^oo ^^oo L x ~ a X 2 -a 2 ] Hence <p'(x)<0 for X^l, i.e. the function <p is strictly monotone decreasing. Thus Lemma 3 is proved. LEMMA 4 [5] : Let f :R^> R and for any two points I u I 2 R we have Then for any «^2 we have 7(/i)+/(/ 2 ) + +ƒ(/ where ƒ b / 2?..., I ne R. The proof of this well known assertion can be found for instance in [5]. We shall make some remarks : Equation (1) is Bernoulli's, hence its solution can be found in quadratures. The solution of the initial value problem (1), (2) is given by the formula Jl_l W-^'+l, *>0. (7) The inflection point of the graph of the function N = N(t) has coordi- «.(!.(*-.) f). Since the function (7) is strictly monotone increasing for t s* 0, then it has an inverse function : M 2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

POPULATION DYNAMICS CONTROL 685 JL-i = lin 2, 0<zN<K. (8) M- _ i From (8) we obtain immediately that for 0 < I < K and 0 < N <AT ƒ,.1 I) - t(n) = IIn ^. (9) N + ƒ In particular, for N - V 7 2 ' K-I \ 2, K+I, im )=-ln f. (10) m. MAIN RESULTS THEOREM 1 : If 0*zI <K and 0*zN *zk-i, then * > ^ ^ I \ Proof : From (9) it follows that the function ^ = 4#(iV) achieves its minimum at N = -, which immediately implies (11). Remark 1 : The above theorem allows us to claim that the time of régénération of the quantity of biomass I t taken away at the moment T, is minimal if the moments of impulse effect T, satisfy the equality i.e. if 2 = N ( T t) -^2=^> ^() ^ l2 The impulse effects /,, i = 1, 2,..., satisfying the last equalities will be called centered. vol 24, n 6, 1990

686 D. D. BAINOV, A. B. DISHLIEV THEOREM 2 : If I t > 0, i = 1, 2,., n and I x + ƒ 2 + + I n = I < K, then for any N, 0 < N < K I, we have r / K+I x \ i K-I x Proof : For the left-hand side of (12), by Theorem 1, we have (12) From the above inequality by means of (10) it is seen that For the right-hand side of (12) we obtain -In ^±-L, O^N^K-I. (13) fji K. I 2 K+I In view of Lemma 2 we establish that K+I whence it follows that 9 _(K I) (KIy 2, K+I 2, (K+I X )(K+I 2 )... (K+I n ) _ In 2= In M. K-I»L (K- From the last inequality, in view of (13) and (14), we get (12). Remark 2 : Theorem 2 shows that the time of régénération of the biomass / taken away by an arbitrary outer effect is not smaller than the sum of the times of régénération of the same biomass taken away by several centered impulse effects. M 2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

THEOREM 3 : Ij 0 < / ls I 2 <= A:, POPULATION DYNAMICS CONTROL 687 Proof : By Lemma 1 we have. (.5) We take the logarithm of both sides of the last inequality and obtain 2 K + X 2 K + I 2 7 _ In - + In =s 2 In \x K-I x IJL K-I 2 x whence, by (9) and (10), we get to (15). Remark 3 : Theorem 3 allows us to claim that the time of régénération of the biomass of quantity I x + ƒ 2 taken away by two centered outer effects of magnitude respectively ƒ! and I 2 is not smaller than the time of régénération of the same biomass by two centered outer effects of magnitude /i +/ 2 /; and V2 where I[ =I' 2 =. THEOREM 4 : I/O < I o === I t -^ K, O^N^K- IJor i = 1, 2,..., m and if, moreover, nl o =s / < (n + 1 ) / 0 where I = I x + I 2 + V I m (n is a positive integer), then [t(n x + 10 - t(n x )] + [t(n 2 + I 2 ) - t(n 2 )] + + )(*^)] (16) Proof: From Theorem 1 it follows that + [t(n m + I m ) - t(n m )] Consider the function ƒ : (0, K) -> R + (17) defined by means of the equality vol. 24, n 6, 1990

688 D. D. BAINOV, A. B. DISHLIEV By Theorem 3 we have whence, in view of Lemma 4, we conclude that From the above inequality, (17) and the définition of the function ƒ we obtain the estimate [t(n y + ƒ,) - t(no] + + [t{n m + / m ) - t(n m )] s ^*)]. (18) In view of (10) we obtain that m / K-l/m It is easy to see that m =s n. Then from Lemma 3 we conclude that whence it follows that (K+I/m Y l K+I/n \" \K-I/m ) * \K-I/n) ' K+I/m \«2. (K+I/n y From the last inequality, (18) and (19) we obtain (16). Remark 4 : Theorem 4 will be given the following interprétation. Let a quantity I be taken away from the biomass of the population investigated in the form of discrete outer effects. Moreover, let the quantity of biomass which can be taken away at a single moment, be bounded below by the positive constant / 0. Let n be the greatest integer in -. Then the minimal time of régénération of the quantity / taken away from the biomass of the population considered is realized by n centered discrete outer effects of magnitude. n M 2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

POPULATION DYNAMICS CONTROL 689 IV. MODEL OF THE OPTIMAL REGIME OF OUTER EFFECTS Optimal here (as well as throughout the paper) is understood in the sense of the quickest régénération of the quantity of biomass taken away from the population. The assumptions here coïncide with the conditions of Theorem 4. Let us formulate them : 1) 0 <ƒ<)*=ƒ, ^K, i = 1,2,...; 2) /! + ƒ 2 +.-. = /, h < I ; 3) ni 0 * = / < (n + 1 ) / 0, where n is a positive integer ; 4) 0<iV 0 <. Then by Theorem 4 the optimal regime of the impulse effects on the dynamics of the population is described by the following initial value problem for a équation with impulses : N(KN), r# T (, (20) T j = ^, i=l,2 n, (21) N 0, (22) where the moments of impulse effect T 1S T 2,..., T are determined in the following way. We find T! by the formula _ i (K-N 0 )(nk+ I) = ~ÏL n N 0 (nk-i) * Moreover, we have where T / +1 = T,- + AT ( - = T f + AT, i = 1, 2,..., n, Hence Finally we shall note that under the restrictions 1-4 imposed above the minimal time of régénération of the biomass I taken away from a population vol. 24, n 6, 1990

690 D. D. BAINOV, A. B. DISHLIEV whose dynamics is described by the équation of Verhulst is «AT= In - -, x nk- I where n is the greatest integer in and / 0 is the minimal quantity of biomass which can be taken away at a single moment. Thus, for instance, for jx ^ 0.03 ; K = 100 ; A^o = 15 ; I o = 15 and / = 50 the graph of the optimal solution of problem (20), (21), (22) is shown on figure 1. For these initial data we have : n = 3 ; ^i «= 69.034 ; T 2 == 91.466 ; T 3 «1 13.897 ; I x = I 2 I3 = I/n «16.67 and the minimal time of régénération of the biomass taken away is 3 AT «67.294. The authors express their gratitude to Prof. BI. Sendov for the statement of the problem considered. REFERENCES [1] A. B. DiSHLiEV, D. D. BAINOV (1988), Continuous dependence of the solution of a System of differential équations with impulses on the initial condition and a parameter in the présence of beating, Int. J. Systems sci., Vol. 19, No. 5, 669-682. [2] A. B. DiSHLiEV, D. D. BAINOV (1988), Continuous dependence of the solution of a System of differential équations with impulses on the impulse hypersurfaces, J. of Math. Analysis and Applications, Vol. 135, No. 2, 369-389. M 2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numerical Analysis

POPULATION DYNAMICS CONTROL 691 [3] V. LAKSHMIKANTHAM, LIU XINZHI (1989), On quasi stability for impulsive differential Systems, J. of Nonlinear Analysis (to appear). [4] V. D. MiL'MAN, A. D. MYSHKIS (1960), On the stability of motion in the présence of impulses, Sib. Math. J., Vol. 1, No. 2, 233-237 (in Russian). [5] I. P. NATANSON (1957), Theory of the Functions of a Real Variable, State Edition of Technico-Theoretical Literature, Second Ed., 581 p. (in Russian). vol. 24, n 6, 1990