! " # $%& Puccinia striiformis West f.sp. tritici

Similar documents
Transfer of Rust Resistance from Triticum aestivum L. Cultivar Chinese Spring to Cultivar WL 711

Stripe Rust (Yellow Rust) of Wheat

Relationship between Partial Resistance and Inheritance of Adult Plant Resistance Gene LR 46 of Leaf Rust in Six Bread Wheat Varieties

MONOSOMIC ANALYSIS OF ADULT-PLANT RESISTANCE TO LEAF RUST IN THE BRAZILlAN WHEAT CULTIVAR 'TOROPI' 1. Abstract

Effect of Rust Disease on Photosynthetic Rate of Wheat Plant. Sevda Abdulbagiyeva, Atif Zamanov, Javanshir Talai and Tofig Allahverdiyev

formula: var.o^ std MATERIALS AND METHODS where:

Marker Assisted Gene Pyramiding of Leaf Rust Resistance Genes Lr24 and Lr28 in the Background of Wheat Variety DWR 162 (Triticum aestivum L.

EVALUATION OF LEVELS OF NON-HYPERSENSITIVE RESISTANCE IN DIFFERENT SPRING WHEAT CULTIVARS TO LEAF RUST

Achieving sustainable leaf rust control in durum wheat: What have we learnt and how to move forward

1/30/2015. Overview. Measuring host growth

Research Notes: G. B. Pant University of Agriculture and Technology

of Nebraska - Lincoln

Screening for Leaf Spot Resistance in Hard Red Spring Wheat

Leaf rust or brown rust, caused by Puccinia triticina Eriks., is

2/9/2015. Dispersal. Light. Chemical. Spatial and temporal scales of atmospheric motion systems are cross dependent.

Resistance to Leaf Rust in Pakistani Wheat Lines

Identification of Molecular Markers for Karnal Bunt Resistance by Using RGAP in Wheat (Triticum aestivum L. em. Thell)

Status Analysis: projecting genotype performance into long term environment discrimination space

Global Movements of Rust Pathogens in the Atmosphere

RESISTANCE TO WHITE RUST (Albugo tragopogonis) and EVIDENCE OF MULTIPLE GENES

Reviews of related Literatures. Dwarf Bunt

Revealing of Brown Rust Resistance Genes by Molecular Marker in Wheat: A Review

Disease management in oilseed rape Bruce Fitt, Professor of Plant Pathology University of Hertfordshire

belonging to the Genus Pantoea

Landraces: Genetic Diversity and Evaluation

timopheevii to durum and bread wheat and the location of

Evaluation of wheat collections from national genbank in Azerbaijan. Mehraj Abbasov

PLP 6404 Epidemiology of Plant Diseases Spring 2015

Investigation of Correlation and Board Sense Heritability in Tritipyrum Lines under Normal and Drought Stress Conditions

Non-host resistance to wheat stem rust in Brachypodium species

Transferring Powdery Mildew Resistance Genes from Wild Helianthus into Cultivated Sunflower. Pilar Rojas-Barros, Chao-Chien Jan, and Thomas J.

Wheat Genetics and Molecular Genetics: Past and Future. Graham Moore

Prediction of Karnal Bunt of Wheat Based Upon Weather Variables Prevalence in Northern India

2013 Breeding Progress for Rust Resistance in Confection Sunflower

Title: The Plant Disease Triangle - How Plants Defend Themselves, Part II Speaker: Dean Glawe. online.wsu.edu

How to connect to CGIAR wheat (CIMMYT and ICARDA) CRP??- Public wheat breeding for developing world

VIRULENCE AND AGGRESSIVENESS OF SUNFLOWER BROOMRAPE (OROBANCHE CUMANA WALLR.) POPULATIONS, IN ROMANIA

Resistance to powdery mildew and Cercospora leaf spot of multigerm dihaploid sugar beet lines and its inheritance in their hybrids

ADIOLUS GLADIOL. Jitendra Kumar*, Rakesh Kumar and Krishan Pal

wild tomato tomato teosinte corn, maize

CHARACTER ASSOCIATION AND PATH ANALYSIS IN GARLIC (Allium sativum L) FOR YIELD AND ITS ATTRIBUTES

Part I. Origin and Evolution of Wheat

Genetics of host resistance in wheat

Possible effects of climate changes on plant diseases

Understanding the genetic control of flowering time to create adapted and high yielding narrow-leafed lupins

DETERMINING THE RELATIONSHIP BETWEEN VIRULENCE AND AGGRESSIVENESS IN PLASMOPARA HALSTEDII BY USING MOLECULAR MARKERS

PRINCIPLES OF PLANT PATHOLOGY

MORPHOLOGICAL, CULTURAL AND PATHOGENIC CHARACTERISTICS OF MACROPHOMINA PHASEOLINA ISOLATES FROM SUGAR BEET

Deterioration of Crop Varieties Causes and Maintenance

The impact of Agrobacterium tumefaciens and other soil borne disease causing agents of economic importance in production of roses

Redacted for Privacy. Redacted for Privacy AN ABSTRACT OF THE THESIS OF. Hafiz Uddin Ahmed for the degree of Doctor of Philosophy in

The influence of climatic factors on resistance of barley to different rust species

Mapping QTL for Seedling Root Traits in Common Wheat

This is a refereed journal and all articles are professionally screened and reviewed

Report of the Research Coordination Meeting Genetics of Root-Knot Nematode Resistance in Cotton Dallas, Texas, October 24, 2007

Principles of QTL Mapping. M.Imtiaz

Variability, Heritability and Genetic Advance Analysis in Bread Wheat (Triticum aestivum L.) Genotypes

Influence of simulated rain on dispersal of rust spores from infected wheat seedlings

WHEAT-BUNT FIELD TRIALS, II

Cytogenetic identification of Aegilops squarrosa chromosome additions in durum wheat*

WHEAT - Triticum sp. ( x =7 ) (Gothumai/ Kottampam/Gothi/Godi/Genhu)

Crop Monitoring in Europe WINTER CEREAL HARDENING IS PROGRESSING WELL. MARS BULLETIN Vol.20 No.12 (2012)

, Waxy : A : (2003)

MARKER ASSISTED SELECTION (MAS) FOR DROUGHT TOLERANCE IN WHEAT USING MARKERS ASSOCIATED WITH MEMBRANE STABILITY

An Alternaria Leaf Spot of the Sugar Beet

University Free State GEEN OMSTANDIGHEDE UIT DIE. BIRLIOTEEK VERWYDER wono Nlf. I ~IIII

Water use efficiency in agriculture

PATHOGENICITY ASSOCIATION IN XANTHOMONAS ORYZAE PV. ORYZAE- THE CAUSAL ORGANISM OF RICE BACTERIAL BLIGHT DISEASE

Biology and Ecology of Forest Health. Climate Change and Tree Health

EVALUATION OF WILD JUGLANS SPECIES FOR CROWN GALL RESISTANCE

TYPES AND MECHANISMS. Course teacher Dr. A. Prabhuraj Professor Department of Entomology UAS, Raichur

Unit D: Controlling Pests and Diseases in the Orchard. Lesson 5: Identify and Control Diseases in the Orchard

Transfer of Hessian fly resistance from 'Chaupon' rye to hexaploid wheat via a 2BS[2RL wheat-rye chromosome translocation*

PLANT PATHOLOGY PLANT DISEASE RESISTANCE

Developing and implementing molecular markers in perennial ryegrass breeding

Combining Ability and Heterosis in Rice (Oryza sativa L.) Cultivars

From these observations he made a number of deductions, which are listed below in Table 6.1.

Document category: There is no restriction on the circulation of this document

Genetic Divergence Studies for the Quantitative Traits of Paddy under Coastal Saline Ecosystem

Broomrape resistance in newly developed sunflower inbred lines

The ways of oat winterhardiness improvement in Poland Bogusław Łapiński and Agnieszka Rachwalska

RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.)

non-host plants immunity basic resistance basic incompatibility avoidance pathogenicity factor host plant basic compatibility disease symptoms

An assessment of the risk of aerial transport of rust pathogens to the Western Hemisphere and within North America

Washington Grain Commission Wheat and Barley Research Annual Progress Reports and Final Reports

Morphological and Agronomical Characterization of Common Wheat Landraces (Triticum aestivum L.) Collected from Different Regions of India

A simple leaf-scale model for assessing life-history traits of fungal parasites with growing lesions

In-vitro Evaluation of Arabidopsis thaliana Ecotypes against Ralstonia solanacearum Race4

A WEB-BASED MODEL FOR ESTIMATING WINTER SURVIVAL IN CEREALS

Stripe Rust Update May Xianming Chen

OCR Biology Checklist

Rapid speciation following recent host shift in the plant pathogenic fungus Rhynchosporium

Charles Barnes Universidad de la Américas Ecuador

OCR Biology Checklist

An innovation technique for detecting Powdery mildew (Blumeria graminis tritici) disease of wheat using thermal imaging Technique

Basidiomycetes (the club fungi)

Genetic variability, Heritability and Genetic Advance for Yield, Yield Related Components of Brinjal [Solanum melongena (L.

UNIVERSIDADE ESTADUAL PAULISTA PLANO DE ENSINO DA DISCIPLINA

A Study of Race Populations of Puccinia recondita f. sp. tritici

Situation of corn in Myanmar

Transcription:

! " # $%& Puccinia striiformis West f.sp. tritici /.., #. ( 0! ( )* +, -. 2! ( +1 ' 31 " 1, $ 7 0! 1& 6( )* " 5 5, 42 4 & %& 1& *! 0,: & 0!.230 E150 38 E150 " %&,, 8. 8. " 1 =* " 5%<! 6E16 & ; %& 38E150 %&..& 230E150 infection (IT).,!, Disease Severity (DS).@ #?>.,, " B.(ACI) Average coefficient of infection.@ & A&> type 4,, & 6100 0 " D* 1&. (DS).@ # ;.C%: % ( (IT),.Area Under Disease Progress Curve (AUDPC) - H1 0! GB.@ # 4 &.F&, D* 1&. 6- E.,! 0!.,! & 90 D* 1& 6.& J,. :%:. I* 4 " B 0!.K 5%.; "B Jpateco73S +, " "?.!. "L! 0. " B 0! 5* "B!.Sardari +,.0: F.B 0! * : ( +,,. 6/.., 0! *., #. 0! # * : 4 /.., 0! 5* #. 0!.K 5%.; "B Oxely APR "B " 0! #. 0! 5* DB 4 "B! 6Avocet Yr 18 +, (minor gene) "L! : " 6# :O 4 N 7 " "B EHM 6/.., 0!.K 5%.; 4..,. R. 0! 1 " 5< "B * " P, HM Q 0 +, EHM : & 0! 1& F$%& -. 0. ' & " S " Q,M 6* +, 0! : 12 J " & 0 230E150 %& 4 #* 6#. 0! * ), 0 Yr1, Yr5, Yr3+4 Yr 6, Yr15: : Q H 6. R. 0! J1& "B 0 )* 4 - * ), 6J,,$ & &$ * 0! # +, 4 N "J %1 " J*,. D %& * +, N "O. )< B.- HM ", 0 < " *. F$%& 0! ". 7 - ' &. @ ". - 5TJ, 5% B 0! )*., 4 * #*., J, 7 0! :. @,: : 6(Major gene) &T :. 4&. HM E, 0 & " ) ".., 0. & 0 B : " 5%<!.(minor gene) & %1 ".: ; (durable resistance) #& * " P,. 1 +,., 0! (R) #. 0! (2 0) F! "B UJB E 0! - F* JB - * F (H "! :B F& F '&. ), H 6/..K.* +, 4 N F, * : *, 0! 1. : B.!" #$ 30621.. 367

...Puccinia striiformis Wesi ' ( ) * +, %& 2 ( +1 Interaction of Specific (Selected) Races of Yellow Rust Fungus Puccinia striiformis West f. sp.ttritici with Bread Wheat Varieties at Seedling and Adult Plant Stages S. Kharouf ; F. Azmeh and A. Yahyaoui ABSTRACT The study is based on 42 varieties and types of bread wheat. A mixture of urediniospores of the two strains (38E150 and 230E150) was used in inoculation in the first season. In the second season, 230E150 is replaced with a less severe strain 6E16 in addition to a mixture of urediniospores. Disease severity (DS), infection type (IT), and average coefficient of infection (ACI) were determined for the three treatments. DSI was estimated using a scale of 0-100 and the area under the disease progress curve (AUDPC). Infection type (IT) which is the plant response towards the pathogen, is determined using the same method which estimates the proportion of the tissues affected by the disease during a given period of time throughout the entire epidemic development of the pathogen. The average of the highest coefficient of disease severity is considered as an indicator when taking the readings during a seven-day interval of three periods..as 0-100 scale is used to study plant reaction during seedling stage; it is found that the variety Jpateco73S is susceptible during both stages indicating the lack of any resistance gene in its genetic composition. The variety Sadari, on the other hand, was resistant during both stages and, consequently, the resistance gene during seedling stage gave the plant the necessary resistance during the adult stage. The variety Oxely APR was susceptible during the seedling stage but resistant during the adult stage. In contrast, the variety Avocet Yr 18 was susceptible only during the adult stage. This condition is due to the effect of temperature. Consequently, varieties which have this type of resistance can be used by plant breeders. In spite of the virulence of the natural population of the yellow rust fungi, and some variants used in the study, such as race 230E150, which was able to attack the gene in 12 Differential varieties, there are still a number of such genes Yr1, Yr5, Yr3 +4 Yr 6, Yr15, which gives the resistance in the seedling stage which can be used in breeding programs, and transported through hybridization to the items adopted and cultivated in the country, especially the widespread, thereby reducing the damage caused by this pathogen. The above suggests that identifying the resistant varieties for a given strain is not sufficient for the disease control without determining the degree of severity of the disease and knowledge of how the genes work to give the plant the ability to resist wheat yellow rust during both growing stages. This is related to major genes and minor genes in addition to availability of cumulative inheritance which assist plant breeders. The variety Cham 1 is likely to have durable resistance as all studies demonstrated its ability to resist the disease at all stages with a reaction of (0-2) during seedling stage, and R during the adult stage. Therefore, it is recommended that this variety to be planted on large scale while studies should continue to determine the rust resistance gene to be introduced to susceptible varieties. Key words: Wheat, Yellow rust, Stripe rust, Resistance, Adult plant, Seedling, Syria. Faculty of Agriculture, P.O.Box 30621, Damascus University, Syria. 368

*.1 314 /01& 2&.' ) # - * %*.#&& 811 119 11" 2115 11 611#& 117* 11 117&$&4 21( <.' =*&.(Jones and Clifford,1983) CAD D &.@AB 2#?&9 ) %20 3 & %*. %* ) " 2&E )9 @AF ) %70 * ) A4 ) Stripe Yellow rust ' H,H 7E Rusts <' G#& )1 Leaf rust 21 Stem rust '! rust 21( 1* %* $ 65!*& 2& "&+ # 7.' ( G#& (1995 K 2#) 7( I# 2( 7&! J& +,1 )1 3 * L /&* A4 & )1 # J 4 2( & 59 7& 2( & $.(Stubbs, 1985) %<# ) 3 Stripe rust rust Yellow '. I$ /A Puccinia striiformis West f. s. p. tritici (2) / 1$ 65 6H* # A 6 I! 2(.1 I 7 7M& 2& 8<' C7M 34 6M )1 251 A4 1 1* A <' ) ' G# 17M.)N 31&* J1# F 85 3 2&& 2 )1 C1B 1' &.2 $&! ) 6. 21( 1& Physiological races 1$ +, #& O' <' AD DF ) %<# J.# 4 2( & 59 7& $ (B$! 2( 7& J'.# 21( )&* 2( %<# 2( 7M&.(Stubbs, 1985 P1992 I*) Adult plant * 2( Seedling resistance * D#& #( 2( J&& 2( (& H )Q( 8. resistance.1# ( B& 4 2# AD & %* J,& ) R1$ +1* )Q1( # # IF. I& R H 1$.(1992 I*) $ S<& J' ) )$7&! ) 7&H H 16 7 5 10 I*&& H 114 H %$ 2( 17 )H * 2( #( 7 " Puccinia striiformis I*&&. A7 ) (Stubbs, 1988) ".< )& F %& %" $& )+ KA ) IF 3.I# 2( C"&! J& 2( 7 H 369

...Puccinia striiformis Wesi ' ( ) * +, %& 2 ( +1 59 2( (,&+.# $ 6< %H& L& AD ).&( %1* 21( H 2(. HE& (# T#& 8.(1992 I*) A4.1 J & S 2( B D A & & + H ) 3 /&*& 2& J' & 2 ).& C& %* 2(. 3 & 2& 2& H' A K& U1 ) 6,5( ' ) * +, HE& 34 =* AD JD CA1D %#( / J.# 2( V' ) 21( H HE& O (# B / 2( J' 7 I*& JM )5 * 2( * JM )5 )&* &. * 2( F*T C. :, $ 7 0! 1& ( =* W1 : & 2( I& 1*) 1* %& )! I ) $ V' ) W %1 Morocco J1 1 3 DH4 ) # (+ < 2( )N 3&* & 2& +, % R - % 8 H /A -.), 21 1 %* 2( * %& R 2( (# $, W 1 21( M* 38 E150 () ($! 2( =*.@7 ) F $$ 651 230 E150 * %& R 2( (# $, W?.@7 ) F $$ 2( M* 230 )&, V' ) @9 I& ( 0,: & 2( )1 6+ 7&A M* 2( 65 (# 6 E 16 E150 21( 1 =* 2 ) A 3 %* I& 38 E150,. # =* # <7 ($! :* & 2 )1 #& Reaction Type (RT) 9 (# J' X& Latent (LP) )1 $' 9 C$& %#( 370

1 1 3 9. % 7M 9 ) 2D Period.Infection Type (IT) 7&4 2<1 & %, * 2(. HE& $' * /A 19 " I & - % - &. 21( I&1.9 @ @H 3# /A I / Disease severity (DS) % D (6 13W11) ) & D" - % J $& 1 19 " )Q( * 2( 9 W7 $ * 2( 6$.7 + " 3 @ A 2( < &#Y.%10034 %& 1($!1 21( =* 2 %* 2( $ 61 42 %' I1 2( ". * M(* * %& 2( (4) 1& J1' 1$ )1 1&[ 61H 61 61 31 /17 1(# isogenic 6H 7"& J' $ (Johanson et al., 1972) 1 I1 21 J ) 6,5( PE" & 2D Cobbty I 17322 4 I" 6 I" 8 I" 2D J 10 74 J5 1 I" '. Gerek Anza YrA ) 19517 13903 17323 12514 1* %1& 2( %* 2( & R # 2( & J' 2 2.5) I33= 1$& 1# * R % 2( H,H %# ) I 30 ( I1 % ) 2( J % A =*.(I13.20 1& 1H*.1 21( A 12 %# N J ) I 50 N 2001/12/2 %' I 2( 2000/12/6 ]& % 6H ' 5 O# $.%46 1D/200 P 2 O 5 1D/ 40 %# 2H I 2( (Zadoks et al.,1974) X #& 40 20@"9 * 2( & + )5, )E& @ 9 % @ & ".), 2( )1 1 1& IH.&! 3 6$ V'!& 2&1, @1B % @H 2( & F.K& R V' ) # @9.7 %, @B % 3 M(* X1 61#& 80 70 1 %9 * 2( S<& Y.7&A @1 )1 L % =,H @ A (Zadoks et al., 1974) H1 1B 1 1 6#& (DS) 9 " & I&.O' Resistance X1 I& (IT) 7 % 100 0. Susceptible 1 1& (MR) Moderate Resistance I 1 (R) 371

...Puccinia striiformis Wesi ' ( ) * +, %& 2 ( +1 (S) Susceptible 1- %1 1- & (MS) Moderate )1 %1 (ACI) 19 %1# & Y*.(Peterson et al., 1948) :#!( (AUDPC). & 3* *& * =,H,# AUDPC= [ D1( X1+X2)/2]+[D2(X2+X3)/2] :)4 A4 HH 34 H @ ) I' = D2 H 34 3' @ ) I' 2H 2( 9 " = X2 %' 2( 9 " =H 2( 9 " :.1 & 3 = D1 = X1 = X3 1 21( 8&+, J ) $ R 1 X& % & ) I# @ (I7) B &, # " '. /A 7 R 2& 3 (1: 2.7:1.3) 1 "(.M& 2( / 6 6,1 L1$ % & @9 I&.K& R$ H* V' ) +1# (Bulk) 1 V 6E16 38E150 230E150) ) * 2&, @F *& # 5*. ) I H # KA (& Xb 2±10 * $ 24 7 I*& JM )5 5* 2( 1* $ O 5* 34 KA # %80W70 #& 1 %1& I1& I&.6 17 & Xb 2±15 1" 1F, TY (McNeal et al., 1971) 9W0 X& I 3 &+ A4 (virulent) 1" 6W0 ) D@4 %#( ) (avirulent). (Johnson. et al.,1972) 9 W7 ) 7D$& %#( ) ;, RT, +, J %#( 2( 6( %' I 2( S<& 7M& I V1' ) O# C$& KA 230 E150 38 E150 )&, ) % C$& A4 " =* ) @9 2( )&& )&# & 34 6M KA Yr8 Yr2 YrA, Yr9 1 1H 3 B& 3 )& )&, )4 1 230 E150, ) ) 6,5( Yr6 Yr7 YrSD Yr6+ Yr7+ Yr2+.Yr9+ YrSU Yr3V )&H ) $ 3 65 )& )&# ) 6,5( & + )5& ( V' 1 O1 1H 3, 7 H 2( H0 8Q( IH ).(1 %$) O' +# 75&& 372

$%& E /.., 0! %1 +,! (1) "&, $ 7 +2 "< #.1 P. striiformis.20012000 2000-1999 0,: & & I@ 0! 1& $%& I@ 0! 1& $%& / %1 M =* 230E150 6E16 1 M =* 230E150 38E150 C +, 1 * 25MS 55S 35S 45MS 25MS 60S 40S 75MS Yr18 Jupateco73R 25MS 55S 35S 45MS 25MS 60S 40S 75MS Jupateco73S 35MS 30MS 75MS 65MS 5S 30MS 75MS 25S Yr18 Avocet 25S 70S 95S 55S 60S 70S 95S 90S Yr17 Avocet 5R 5R 5MR 5R 5MR 5R 5MR 25MR Sardari 10MR 5R 15MR 10MR 5R 5R 15MR 5R Yr1 Chinese166 R R R R 5MR R R 1 5 M R Yr1 Avocet 5R 5R 5MR 5R 5MR 5R 5MR 15MR Yr1 Aroona 25MS 20S 30S 25MS 5MS 20S 30S 5MS Yr3+4 Vilmorin23 10MR 5MR 10MR 10MR MR5 5MR 10MR 35MR Strupes DikkoPF 15MS 55MS 45MS 35MS 15MS 55MS 60MS 55MS Suwan92x Omar 55MS 70S 35S 45MS 10S 70S 35S 20S Yr2+ Heins VII 15MS 55S 55S 25MS 10MS 35S 15S 20MS Yr2 Kaly Ansona 25MS 10S 15S 5S 15MS 10S 5S 50MS Yr5 Avocet R 5R 5R R 5 R 5R 5R 5R Yr5 Aroona 5R 10MR 10MR 5R 5MR 25MR 10MR 5MR Yr5 Triticum spelta 5R 30MR 25MR 5R 5MR 20MR 5MR 5MR Yr10 Avocet 5R 15MR 10MR 5R 5MR 15MR 10MR 5MR Yr15 Avocet 15MR 10MR 5MR 15MR 5MR 5MR 5MR 15MR Yr15 Aroona 50S 70S 95S 50S 45S 70S 95S 75S Avocet S 20S 25S 40S 15S 25S 35S 40S 35S Avocet R 5MS 10MS 35MS 5MS 15MS 5MS 20MS 25MS Yr24 Avocet 45MR 10MS 5MS 55MR 10MS 5MS 5MS 10MS Yr26 Avocet 25MS 40MS 65MS 20MS 25MS 40MS 65MS 45MS Yr6+7+18 Corella R R 5R R 5 R R 5 R 5R Yr6+APR Oxely 35S 65S 70S 30S 30S 65S 70S 50S 1I" 5MS 25MS 15MS 5MS 15MS 20MS 20MS 15MS Seris2 10S 90S 70S 10S 25S 90S 70S 45S Yr17 Aroona 35MS 40S 45S 55MS 25S 40S 45S 35S Yr11 Avocet 5MS 20MS 40MS 15MS 35MS 40MS 65MS 55MS Yr7 Avocet 45MS 60S 55S 65MS 20S 60S 45S 35S Yr12 Avocet 65S 95S 99S 90S 70S 95S 99S 90S YrA Anza 55S 90S 85S 55S 60S 95S 95S 90S Morocco 55MS 65MS 45MS 75MS 20MS 35MS 35MS 30MS 4I" 55MS 15S 15S 75MS 10MS 25S 95MS 25MS Greek 15MS 55MS 85MS 25MS 5MS 15MS 45MS 25MS 8I" 10MS 30MS 55MS 10MS 80MR 30MS 15MS 5MS Douma19517 10MR 20MR 35MR 10MR 10MR 20MR 35MR 10MR 6I" 5R 5R 5R 5R R R R R D o u m a 1 7 3 2 3 5R 5MR 5MR 5R 5R 5MR 5MR 5R Douma12514 5MR 10MS 25MS 5MR 5R 5MS 25MS 5MR Douma17322 5R 5MR 15MR 5R 5R 5MR 5MR 5R Douma13903 cc 7 ) H #& ) # %H 7& $d.# J' % = S & =MS & = MR I = R. 2< & %, * 2(. HE& $' 34 " I * 373

...Puccinia striiformis Wesi ' ( ) * +, %& 2 ( +1 1& 1 31', 3 7#( 2& J' )' ) 6, % %" ) V' 3 H, 3 7#( 1 MS 7#( 2& J'(.D" O ) & 2& J' S<& H& ( S R MR 7#( 2& KA,# % *& & 1H 21( 1DHE& 2( & +, ) H AD %' I 2(. 1" J,&1 34 6M,# ) 6( 2H I S<& 7M 1 H %*& J 3 " 6E16, & =* +, J1' ) *5! 38 E150, ) 6+ Yr8, Yr7, Yr6 J1'.# ) =* # CAD C$& & J' %#( & =*.(1 %$) - 6, N 75# ) )* 2( & O 6 1H )1& )A1Jupateco73RYr18 Avocet Yr18 ) & McIntosh. et ) * 2( ' & 2& Yr18 21( @9 2( )&& )&, )&D C$& - % %#( (al., 1995 I1& R1 9 " &. V' C$& KA %' I.(1 %1$) 1 V' ) I& 60S34 =* )4 / 1" %' 6E16, I& IF 2H I S<& R KA!(& 1( 2(. 9 ) [!& I Yr18 H S<1& CA1D @9 2( & +# % C$& 7 6 ) ) %#( 21( 1 2 D#& ) ) A (2 %$).(McIntosh, 1988) R (&.(1 %") & S @H 2( - 7& Avocet R Avocet S Jupateco 73 S J' & 1 2 %#( Jupateco 73 S J O 2&* 1 1* 2( 90S 34 9 " (2 %$) * 2( (9) 1 * 2( 7#( U& ( Avocet R Avocet S ) %1$) 70S * 2( 7#( ) )* 2( (2 %$) 9 34 8 ) )1 )&* & 2( ) L /E I&& + J' CAD ) 0 (1 V1' D" =* (2 %") I& R & 9 " ) M*, 21( K1&& + J' CAD ) 3 % (# % 3 )15 3&* 9 ) 2& ) R&& I A H / 2H 7&.(1 %$) # O# JM 374

! $%&.K #. 0! %1 +,.N.; (2) P. striiformis! " & 1 $ +, V' ) - % =9W8 230E150 38E150 6E16 = +, / %1 7 7 7 7 Yr18 Jupateco73R 9 9 9 9 Jupateco73S 7 7 7 6 Yr18 Avocet 9 9 8 8 Yr17 Avocet 2 2 2 2 Sardari 2 2 2 2 Yr1 Chinese166 2 2 2 0 Yr1 Avocet 2 2 2 0 Yr1 Aroona 4 4 4 2 Yr3+4 Vilmorin23 9 9 9 8 W Strupes DikkoPF 6 6 6 4 W Suwan92x Omar 8 8 7 6 Yr2+ Heins VII 8 8 8 7 Yr2 Kaly ansona 6 6 6 2 Yr5 Avocet 4 4 4 4 Yr5 Aroona 4 4 4 2 Yr5 Triticum spelta 4 4 4 4 Yr10 Avocet 4 4 4 4 Yr15 Avocet 6 6 4 4 Yr15 Aroona 9 9 8 8 W Avocet S 9 8 7 7 W Avocet R 8 7 6 6 Yr24 Avocet 7 7 7 6 Yr26 Avocet 4 4 4 2 Yr6+7+18 Corella 4 6 4 4 Yr6+APR Oxely 2 2 2 0 1I" 9 8 8 7 Seri2 8 6 7 6 Yr17 Aroona 7 7 7 7 Yr11 Avocet 9 9 8 7 Yr12 Avocet 8 8 7 6 Yr7 Avocet 9 9 9 9 W Morocco 4 4 4 4 W 4I" 7 7 6 4 Yr A Anza 9 9 7 7 W Greek 4 4 2 2 W 8I" 6 6 4 4 W Douma19517 2 2 2 2 W 6I" 2 2 0 0 W Douma17323 0 2 0 0 W Douma12514 6 6 4 4 W Douma17322 4 4 2 2 W Douma13903 - & =7W6W5 & = 4W3 I = 2W1 375

...Puccinia striiformis Wesi ' ( ) * +, %& 2 ( +1 Avocet Yr18 70 60 50 40 30 20 10 0 R9=63 R8=56 R7=49 R6=42 R5=35 R4=28 R3=21 R2=7 R1=0 230 E 150 6 E 150 BULK M,, 8. 1 #.1 $%&..@ # (1) B Avocet Yr18 +, 4 Jupateco YRS R9=63 R8=56 R7=49 R6=42 R5=35 R4=28 R3=21 R2=7 R1=0 230 E 150 6 E 150 BULK 100 90 80 70 60 50 40 30 20 10 0 & M,, 8. 1 #.1 $%&..@ # (2) B S Jupateco +, 4 376

)14 2( - 8& J# Saradari J %H J'.# 1& %1* %,1 R 34 MR 7#( ). (Ketata, 2002) )1 1 3 $& 2( * 2( (2) 8#( ) )* 2( 21( 1$. $ +, ) ) ) 8E KA.6 4 I KA 3 < 2( $ K& H )& + )4 3! /&*& 2& V' D" 2( J AD.(3 %") +, ) Sardari R9=63R8=56R7=49R6=42R5=35R4=28R3=21 R2=7 R1=0 230 E 150 6 E 16 BULK CHECK 38E 150 10 8 6 4 2 0 M,, 8. 1 #.1 $%&.@ # (3) B.Sardari +, 4 $ ( Lupton and Macer., 1962) % ) ( 2& Yr1 H 1( Chinese166 Yr1 Avocet Yr1 Aroona Yr1 J1' ) % 2( Bayles. et al., ) I1#!1 %1 2( )&* & 2( I %#( * 2( (5R) * 2( (2) H CAD %#( (2001 CA1D %& ) A =* AD 2( R!& AD.(2 1%$) J1' ) H % 3 %#& 2& & S )5 H A1D 21( 7 %* I& 2& S<& 34 M. J' 3 Kaly ansona J 2( Yr2 H 2( HE& L&. ) )& =* Vilmorin23 J1 21( +4 Yr3 1H KA Yr2+ Heins VII H 377

...Puccinia striiformis Wesi ' ( ) * +, %& 2 ( +1 1 * 2( - 6, ) & I IH ) %" 3 V' 230E150 38E150 6E16 +, C$& (8-7-6) 2( %#( % =* 6$ % 34 (60MS) - & 2& R1!1(& 1 A1D (2 1%$) * 2( 70S 34 %' I 1 ) % 2( 9 ) 2( 8&( I H A4 21(.(Vallavieille, Pope. et al., 1989) 1 %1" K1 ( 1M(* 4 H CA7 &H Yr5 H 3 $ 2& & 21( 17 C& %* 2(. C$& 7&( 3 )*.(Chen, 2003) ' *& + 7 7( 2& I#! 2( (1%$) 5R =* Yr5 H %*& 2& & %#( 7"& 1 1 H / (2 %$) 6 34 4 ) *&( * * 2( & 7E (# Yr5 H )4 / # 2( 8& %1 1 * 2( & * (Stubbs, 1988) + 21& 1 H ID ) 2D Yr5 H ) 34 D "9 $& 65 Aroona, J' 2( I#! J& 2( & %* 2( #( %&.(4 %") Avocet R9 R8 R7 Aroona Y r 5 R6 R5 R4 R3 R2 R1 10 9 8 7 6 5 4 3 2 1 0 11 1 230 E 150 6 E 16 38 E 150 BULK CHECK M,, 8. 1 #.1 $%&..@ # (4) B.Aroona Yr5 +, 4 378

21( 1 =1* - % %#( ( Yr17,Yr 7, H 1 * 2( - 8& & (2 %$) 8 7 6 * Avocet )1 )1 % 2( KA 95S 34 90S ) %# *& ( )&1D 31 $ * & I& H* %, ).Aroona 61# ),"& 7 $ =*. 3 )& F 7 H )&H 1 8 J 2( H 2& HE& )Q( IH ) Yr 9 H R 6H. ( Hovmøller, 2000) - 8& ) Yr11 )&H1 ),* )A Avocet Yr12 Avocet Yr11 ) O1 1 2&* 2( - ) ( 2& 3 Yr12 314 8#( =* * 2( 2H ) - %' Stubbs =1* R $& CAD & 40S 2H %#( )* 2( 90S 1H 17 3 ' J' ) )&H )&D %# I (1985). ) $ )A Johnson (1992) McIntosh (1988) R!&& 3 %#& 2& S ) D#& %5 A )&H )&7. H % 21(. 7& Yr10 H %*& 2& AvocetYr10 J' 7M 2( 5R * 2( (4) %#( ) A4 P), 2( ) % %1" 2( "& +, )5 7&( H CAD &H * 1 A 65 CAD 8&&H AD.(Hovmoller, 2007) 7 F.& S 2( H CAD %Q LA1 3 R& H KD ) (Stubbs, 1985) I# J"& 1985 I 2( C$& 2#& < H CAD ) H 1B I 3 %* 2( & 7 H 2& Yr15 H CAD (. =1* R1 =* AD S<& (& (McIntosh, 1996) 7 C& C1$& 17#( ) Aroona Yr15 Avocet Yr15 J' 2( $ 2( (4) * 2( 7& & =* 7 @9 2( & +,.(2 1%$) 25R34 5R) 2( *& )* 379

...Puccinia striiformis Wesi ' ( ) * +, %& 2 ( +1 Oxely YrAPR 50 R9=63 R8=56 R7=49 R6=42 R5=35 R4=28 R3=21 R2=7 R1=0 40 30 20 10 0 230 E 150 6 E 16 BULK M,, 8. 1 #.1 $%&..@ # (5) B.Oxely YrAPR 6+, 4 21( K1A 1- & %#( Yr6+7+18 Corella J 7M P & 2& Yr6 H 3 8<&* ) IF 3 * 17#$ 1 17&.& 34 O Yr7 H R H CAD $ ) +4 )1& ).& ) )( 2( * 2( KA & 1 I& H CAD )! 8 +4 Yr18 H $. 1H I& ) IF 3 J AD )E M*, A. 3 7& 1 2( 7& &H /A Yr18 H 7 H =,H 3 8<&* 8& 2( 45MS 34 25MS ) 8#( ). & 8f +4 )1 8#( * 2( - & Oxely YrAPR J ) J1 AD )' (R) 8#( ) * 2( 6 ) )* 2( (6 4) )4 A4 1 2 7 $& CAD * 2( H 3 /&* S1 2( 84 ) A 8&. ) 7 R& * CAD 2( AD.(5 %") (Singh, 1992). 7 J' ) 8' & 1& %#( Anza YrA J 7M.=* AD 2( S<& R 65!(& % ( 2( - 6, ) * 2( (6 7) )* 2(.(2 %$) V' 230E150 ", C$& 65S 45S 34 8#( 1 A1D (1 %$) 6E16" %', C$& (75MS) J#5 8#( 380

7#$ ( 1I" 6I" 8I" J' McIntosh,(1988) S<& R!(& 1* 21( 7#( )* 2(.2 W0 7#( B * 2( CA1D ) 31 % (5) I 34 (5MR) - & ) 1 71& )N 3&* (# F H H H 7& 2( K&& J' (20MS) - & %#( 3 ( 4I" J 1 1& * 2( 230E150, R 65MS 34 8#( A17 1& 1 6H & $ A (21%$) * 2( (4) - 2( 8#( *& (.)&* & 2( - 6, Greek J ) J 21( 1 I& 75MS 34 25S ) (2 %$) 9 34 7 ) * 1( 13903 1 17323 1 12514 J'.(1 %$) # (5MR) 1 & 34 (5R) (2 0) * 2( 7#$ 1 17& 2( H 3 /&*& 7 3 % * 2( 1 1& %1#( 19517 1 17322 ) O )* 2(.2H ( 55MS 34 25MS) * 2( KA * 2( (6 4) -.2& 3 7 % 8&+,1.#1 1' 2# R&$ " ) IF 3 2( H 12 I$7& ) & 2& 230E150, %H 2( & Yr1, Yr5, Yr3+4 Yr 6, %H H ) KD % 8Q( & J'.1 1 3 * 2( 2& Yr15 %, ) 7 KA & S 2( 7& ) 2& 3 ' 7 "&+ # + 2( &# J' 34 )$7&.. AD ) I$& 2& 5' ) %. 6<7 6,* X, J' $4 )E 5& I& % ).1$ 8&+,1 21( )& O. R&$ " I9 ) %# 1 3 ' 7* O 2( H %# I9 (Major gene) 1< H 3!#& AD C 2&* & 2( ) $1 ).(McIntosh et al., 2001) (minor gene) H )1 H =* (durable resistance) < ) L 1I" J I& 21( (2 W0) 81#( )1 7 C 2(. 8& 7 %, 1H 8&1 8& R& A * 2( (R) * 1H %1 21( %. I 8 $ H (#.(1995 K 2#) - J' 34 8 381

...Puccinia striiformis Wesi ' ( ) * +, %& 2 ( +1 REFERENCES ' 1- Bayles, R. A, Stigwood, P. L., 1998. Yellow rust wheat. United Kingdom cereal pathogen virulence survey 1997. Report Committee. Cambridge, UK, United Kingdom Cereal Pathogen virulence survey, 23-29. 2- Bayles, R. A, Flath, K, Hovmøller, M. S, Vallavieille, Pope- C. de 2000. Break- down of the Yr17 resistance to yellow rust of wheat in northern Europe- study by the yellow rust sub group of COST 817. Agronomie ( in press). 3- Chen, X. M, Soria, M. A, Yan. G. P, Son, J, Dubcovsky, J 2003. evelopment of Sequence Tagged Site and Cleaved Amplified Polymorphic Sequence Marker of Wheat Stripe Rust Resistance Gene Yr5. Crop Science,2003 in press 55-60. 4- Chen, X. M. 2005. Epidemiology control of stripe rust Puccinia striiformis West f. sp. tritici on wheat. Plantpathalogy (2005) 27: 314-337 5- Gerechter-Amitai, Z. K, Van Silfhout, C. H, Grama, A, and Kleitman, F., 1989. Yr15 A new gene for resistance to Puccinia striiformis Tritium dicoccoides sel. G-25. Euphytica (1989) 43: 187-190. 6- Hovmøller, M. S., 2001. Disease severity and pathotypes dynamics of Puccinia striiformis West f. sp. Tritici in Denmark. Plantpathalogy (2001) 50: 181-189 7- Hovmøller, M. S, Justesen, A. F., 2007. Appearance of atypical Puccinia striiformis West f. sp. tritici phenotypes in north- western Europe Australian Journal of Agricultural Research (2007) 58; 518-524 8- Jianxin, M. A, Ronghua, Z, Yushen, D, Lonfen, W, Xiaoming, W, Jizeng, J., 2001. Molecular mapping and delectation of the yellow rust resistance gene Yr26 in wheat transferred from-turgidum L. using Microsatellite. Euphytica ( 2001 ) 120: 219-226 9- Johnson, R., Stubbs, R. W., Fuchs E and C. H. M. Berlin, N.H 1972. Nomenclature for physiologic races of Puccinia striiformis infecting wheat. Trans. Br. Mycol. Soc (1972) 8., 475-480 10- Johnson, R. 1992. Past, present and future opportunities in breeding for disease resistance with examples from wheat. Euphytica,(1992) 63:3-22 11- Jones and Clifford.,1983. Cereal Diseases.John Wiley and Scotsltd. England (1983)18.298-.309 12- Ketata, H., 2002. The importance of yellow rust in rain filed wheat areas of Central and West Asia and North Africa (CWANA). meeting the challenge of yellow rust in cereal : 217-222 13- Lupton, F. G. H. and Macer, R. C. F. 1962. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. and Henn in seven varieties of wheat. Trans. Br. Mycol. Soc. (1962) 45: 21-45 382

14- McNeal,E. H., C. F. Knozak, E. P. Smith, W. S. Tate and T.S. Russel 1971. A uniform system for recording and processing cereal research data Agr, Res, Ser,pub ARS.34-121 U.S. Dept. of Agriculture,Washington 15- McIntosh. R. A., 1988. Catalogue of gene symbols for wheat in proceedings of the 7th international wheat genetics symposium. Euphytica (1988) 120: 219-229. 16- McIntosh, R. A., C. R. Welling s & R. F. Park. 1995. Wheat Rusts: An Atlas of Rust Genes. CSIRO. Melbourne, Australia. 17- McIntosh. R. A, Silk. J, the TT 1996. Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene Yr15 for resistance to stripe rust. Euphytica ( 1996 ) 89: 395-399 [ abstract ]. 18- McIntosh, R. A, BarianaA, H. S, Hayden, M. J, Ahmed N. U,, Bell, J. A, Sharp, P. J., 2001. Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Australian Journal of Agricultural Research ( 2001) 52: 1247 1255 19- Peterson, R. F, Campbell, A. B,and Hannah, A. E.,1948. A diagrammatic scale of estimating rust intensity on leaves and stems of cereals. Can. J,Res (1948).26 :496-500 20- Pope- Vallavieille, C. de, Picord, H. F, Radulovic, S, Johnson, R., 1989 Specific resistance factors to yellow rust in seedlings of some Francs wheat varieties and races of Puccinia striiformis West f. sp. Tritici in France. Plantpathalogy (1989) 45: 201-212 21- Singh, R. P. 1992. Genetic association of leaf rust resistance gene Lr34 with adult- plant resistance to stripe rust in bread wheat. Plantpathalogyogy (1992) 82: 835-838 22- Stubbs, R.W., 1985. Stripe rust. Pages 61-101 in: The Cereal Rusts. Vol II. A. P. Roelfs and W. R. Bushnell, eds. Academic Press, London 23- Stubbs, R. w., 1988. Pathogeneticity analysis of yellow (stripe) rust of wheat and it is significances globa context p: 23 38. Breeding strategies for resistance to the rust of wheat., Simmonds, N. W. and Rajaram, S. (eds.) CIMMYT. 151 p " +,,: 0! " " %& * C.(1992). 6B.1 3 116 160 :A B * &; EB & 6)*. < J..&! )* I,.(1995).Q! WH, 60,.2.8276 :(2)13 :., ; Received 2008/11/ 06 C. PN Accepted for Publ. 2009/12/ 14, C..; 383