Liquid-Liquid Equilibrium for Extraction of Benzene from 1-Hexene Using Two Different Solvents

Similar documents
Extraction of Phenol from Industrial Water Using Different Solvents

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

This is an author-deposited version published in: Eprints ID: 12000

Reprinted from February Hydrocarbon

Cracking. 191 minutes. 186 marks. Page 1 of 27

Liquid liquid equilibria of aqueous mixtures containing selected dibasic esters and/or methanol

EXTRACTION OF DECANE AND HEXANE WITH SUPERCRITICAL PROPANE: EXPERIMENTS AND MODELING

Chlorinated Compounds in Hydrocarbon Streams Using a Halogen Specific Detector (XSD)

Liquid-liquid equilibrium for the quaternary system of o-xylene(1)+water(2) +butyric acid(3)+ethyl acetate(4) at 25 o C and atmospheric pressure

PETE 203: Properties of oil

Simulation of Methanol Production Process and Determination of Optimum Conditions

Phase equilibria properties of binary and ternary systems containing isopropyl ether + isobutanol + benzene at K.

LIQUID-LIQUID EQUILIBRIUM IN BINARY MIXTURES OF 1-ETHYL-3-METHYLIMIDAZOLIUM ETHYLSULFATE AND HYDROCARBONS

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

Phase equilibrium data for aqueous solutions of formic acid with 2-ethyl-1-hexanol at T=(298.2, 308.2, 318.2, and 328.2) K

A model to predict physical properties for light. lubricating oils and its application to the

CHAPTER 3 EXPERIMENTAL SET UP AND PROCEDURE

2Fe 2 O 3 +3H 2 S FeS+FeS x +S+3H 2 O

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation

Isobaric Vapour-Liquid Equilibrium of Binary Mixture of 1, 2-Di-chloroethane with 1-Heptanol at Kpa

Module: 7. Lecture: 36

Liquid-liquid Equilibrium Extraction of Aromatic Compounds from Model Hydrocarbon Mixtures for Separation of Cracked Oils

Module: 7. Lecture: 36

Separation of Aromatics using Benign Solvents

CORRELATION OF (LIQUID + LIQUID) EQUILIBRIUM OF SYSTEMS INCLUDING IONIC LIQUIDS

Supplementary Information for Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon based solid acid

Badger Licensing LLC. Through Reformate Alkylation Catalytic Technology. Dr. El-Mekki El-Malki ExxonMobil Research & Engineering Company (EMRE)

Vapor-hydrate phases equilibrium of (CH 4 +C 2 H 6 ) and (CH 4 +C 2 H 4 ) systems

POLYSTYRENE (General purpose)(gpps)

Catalytic Aromatization of Methane

Kolmetz Handbook of Process Equipment Design BTX EXTRACTION UNIT DESIGN, SIZING AND TROUBLESHOOTING (ENGINEERING DESIGN GUIDELINE)

Boiling points for five binary systems of sulfolane with aromatic hydrocarbons at kpa

Isobaric vapor-liquid equilibrium for methanol+benzene+1-octyl-3-methylimidazolium tetrafluoroborate

GCSE CHEMISTRY REVISION LIST

Improved hydrogen yield in catalytic reforming

Recovery of Aromatics from Pyrolysis Gasoline by Conventional and Energy-Integrated Extractive Distillation

Investigation of benzene and cycloparaffin containing hexane fractions skeletal isomerization on Pt/sulphated metal-oxide catalyst

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as:

Separation Benzene and Toluene from BTX using Zeolite 13X

1 What is used in the production of ethanol from ethene? hydrogen and oxygen. oxygen only. steam. yeast

Simulation of pilot-plant extraction experiments

Organic Chemistry Worksheets

Chemical Technology Prof. Indra D. Mall Department of Chemical Engineering Indian Institute of Technology, Roorkee

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds.

PROCESS ECONOMICS PROGRAM

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Influence of the Temperature on the Liquid-Liquid- Solid Equilibria of the Water + Ethanol + 1-

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization

Simulation of 1,3-butadiene extractive distillation process using N-methyl-2-pyrrolidone solvent

Alkylation process, Feedstocks, reactions, products, catalysts and effect of process variables.

Vapor liquid equilibria for the binary system 2,2 dimethylbutane + 1,1 dimethylpropyl methyl ether (TAME) at , , and 338.

Lecture 25: Manufacture of Maleic Anhydride and DDT

Synthesis of condensed polynuclear aromatic resin from furfural extract oil of reduced-pressure route II

Application Note S/SL

Isobaric Vapor Liquid Equilibria of Systems containing N-Alkanes and Alkoxyethanols

Research and Development of Novel Heavy Oil Catalytic Cracking Catalyst RCC-1

EXPERIMENTAL SETUP AND PROCEDURE

TRITIUM RECOVERY FROM WASTE USING A PALLADIUM MEMBRANE REACTOR

Method for Characterization of Gum Rosin by Capillary Gas Chromatography

Isobaric Vapor-Liquid Equilibria of Mesitylene + 1- Heptanol and Mesitylene +1-Octanol at 97.3 kpa

Mechanism and Kinetics of the Synthesis of 1,7-Dibromoheptane

The School For Excellence 2018 Unit 3 & 4 Chemistry Topic Notes Page 1

Chapter 21: Hydrocarbons Section 21.3 Alkenes and Alkynes

Strategic Estimation of Kinetic Parameters in VGO Cracking

Agung Ari Wibowo, S.T, M.Sc THERMODYNAMICS MODEL

APPLICATION NOTE. A Capillary Approach to ASTM D3606: Test Method for Determination of Benzene and Toluene in Finished Motor and Aviation Gasoline

1. What is the letter of the alphabet in parentheses that follows EXAM I in the title above? a. a b. b c. c d. d e. e

Methanolysis of Poly(ethylene terephthalate) in Supercritical Phase

Improvement of separation process of synthesizing MIBK by the isopropanol one-step method

Solubility of N-chloro succinimide in different pure solvents in the temperature range from K to K

Le Lycee Mauricien. Proposed Syllabus Chemistry (5070) - Form 5

Agilent J&W PoraBOND Q PT Analyzes Oxygenates in Mixed C4 Hydrocarbon Streams by GC/FID and GC/MSD

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

Fast Analysis of Aromatic Solvent with 0.18 mm ID GC column. Application. Authors. Introduction. Abstract. Gas Chromatography

Measurement and Correlation for Solubility of Dimethyl-2,6-naphthalene Dicarboxylate in Organic Solvents

3.2 Alkanes. Refining crude oil. N Goalby chemrevise.org 40 C 110 C 180 C. 250 C fuel oil 300 C 340 C. Fractional Distillation: Industrially

Group contribution methodsðideal tools for the synthesis and design of separation processes*

Report Abstract Benzene/Toluene PERP06/07-6 January 2009

Aviation Fuel Production from Lipids by a Single-Step Route using

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate

Edexcel Chemistry Checklist

Abstract Process Economics Program Report 37B ACETIC ACID AND ACETIC ANHYDRIDE (November 1994)

SINOPEC MTP and MTX technologies

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

Crude Oil, Fractional Distillation and Hydrocarbons

Computational Fluid Dynamics Modeling of High Density Poly Ethylene Catalytic Cracking Reactor

DEVELOPMENT OF CATALYSTS FOR ETHANE EPOXIDATION REACTION. Keywords: Ethylene oxide, Partial oxidation, Ethane epoxidation, Second metal.

High Pressure Phase Equilibria of CO 2 with Limonene and Other Components Present in the Light Naphtha Cut of Tyre Derived Oil

Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1,3-propanediol

CHEMISTRY HIGHER LEVEL

LABoratory Nanomaterials

The Effects of Temperature and Hydrogen Partial Pressure on Hydrocracking of Phenanthrene

Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol

Firewood? Chapter 22. Formulas and Models for Methane and Ethane. One carbon atom can form a single covalent bond with four hydrogen atoms.

OCR Chemistry Checklist

Operation and Control of Reactive Distillation for Synthesis of Methyl Formate

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

~ K 에서 2- 브로모프로판 - 메탄올이성분혼합물의밀도, 점성도, 여분성질

Solvent Free Synthesis Of N,N-Diethyl Hydroxyl Amine Using Glycerol-Stabilized Nano TiO2 As An Efficient Catalyst

Selective Hydrogenation of 1-Hexyne Using Pd-Cu and Pd- W Supported on Alumina Catalysts

Transcription:

Scientific Research China Petroleum Processing and Petrochemical Technology 2018, Vol. 20, No. 1, pp 61-66 March 30, 2018 Liquid-Liquid Equilibrium for Extraction of Benzene from 1-Hexene Using Two Different Solvents Lü Yan 1 ; Li Songyuan 1 ; Xin Kun 2 ; Lin yun 1 (1. The State Key Lab of Chemical Engineering, College of Chemical Engineering, East China University of Science and Technology, Shanghai 200237; 2. Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, De Zaale, Eindhoven, the Netherlands) Abstract: Two different solvents had been used to separate benzene from 1-hexene under atmosphere pressure by employing one of the following two solvents, viz.: dimethyl sulfoxide () at K and 318.15 K, and furfural at K. A series of liquid-liquid equilibrium (LLE) data had been obtained and the distribution coefficient together with the separation factor were calculated from them. Both the NRTL and the UNIQUAC models could fit in with the experimental data quite well. Key words: Liquid-liquid equilibria; benzene; 1-hexene; furfural; dimethyl sulfoxide 1 Introduction Aromatic hydrocarbons are of great importance as industrial raw materials, the demand for which is ever increasing in recent years. In petrochemical industry, the fluid catalytic cracking (FCC) unit is still a main unit to transform heavy oil fractions into gases, gasoline or diesel. However, the light cycle oil (LCO) obtained from FCC unit contains nearly 80% of aromatics including 20% of monoaromatics [1] but has a low cetane number. Hydrogenation process are always necessary to convert aromatics to naphthenes before blending it into the diesel pool. Nevertheless, to improve the property of diesel fuel, high pressure and high temperature are needed which increase the energy consumption [2]. On the other hand, extraction process is widely used at refineries to separate aromatics, such as the extraction process adopted for separating benzene and toluene from the reformate. However, the traditional solvents used in the extraction process has some limitations, because sulpholane [3] is only suitable if the content of aromatic components are more than 20%, and 1-cyclohexyl-2-pyrrolidone [11] has a high capacity but low selectivity for aromatics. Dimethyl sulfoxide () is considered to be superior in extracting aromatics from olefins owing to its high solubility and selectivity of olefins, low extraction temperature, less equipment corrosion and low toxicity. It would be desirable to separate aromatics from LCO by extraction in an attempt to bypass the hydrogenation process. Besides, furfural is a selective solvent for separating the saturated compounds from unsaturated compounds used in refining gas, reformate, and diesel fractions [4], featuring high selectivity towards aromatic compounds [5]. Thus, and furfural come into our consideration to serve as alternative extractants for obtaining aromatics from olefins. To sum up, the experimental liquid-liquid equilibrium data were determined under 101.3 kpa for three systems, including the 1-hexene+benzene+ system operating at K and 318.15 K, and the 1-hexene +benzene+furfural system operating at K. The separation efficiency was evaluated by two factors, namely the distribution coefficient (K) and the separation factor (S). The Non-Random Two Liquids (NRTL) [6] and the Universal Quasi-Chemical (UNIQUAC) [7] activity coefficient models were used to correlate the experimental data. To the best of our knowledge, the ternary LLE data of 1-hexene+ benzene+ /furfural systems were rarely reported up to now. Received date: 2017-09-15; Accepted date: 2017-11-19. Corresponding Author: Lü Yan, E-mail:fen-xi@hotmail.com. 61

2 Experimental 2.1 Chemicals The detailed information of reagents used in this work are shown in Table 1. Benzene and dimethyl sulfoxide were purchased from MACLIN (Shanghai, China), while 1-hexene and furfural were provided by ALADDIN (Shanghai, China). Gas chromatography (GC) was employed to confirm the purity of all chemicals and no peaks of impurity were detected. No further purification of these chemical reagents was adopted as well. Table 1 Details of chemical reagents used in this work Chemical Reported GC GC purity, CAS Supplier name purity, % % Benzene 71-43-2 MACLIN 99.0 99.0 Dimethyl 67-68-5 MACLIN 99.0 99.0 sulfoxide 1-Hexene 592-41-6 ALADDIN 99.0 99.0 Furfural 98-01-1 ALADDIN 99.0 99.0 Methanol 67-56-1 SINOPHARM 99.5 99.5 2.2 Experimental setup and methods The LLE measurements for ternary systems {1-hexene+benzene+}, and {1-hexnen+ benzene+ furfural} were carried out at T = K and 318.15 K and at p = 101.3 kpa. To establish the phase equilibrium, a 100 ml glass equilibrium still was employed, which had been presented in the previous work and its reliability had been proven [10]. A magnetic stirrer and a circulating water bath were used. The mixtures were well stirred for at least 1 h prior to being subject to settling for at least 3 h. The settling time had been investigated, showing that 3 h were sufficient for the ternary mixture to reach the phase equilibrium. The mixture was separated into two clear phases after the equilibrium was established, viz.: a 1-hexene rich phase in the upper layer, and a solvent rich phase in the lower layer. The liquid samples from both phases were carefully withdrawn by syringes, respectively, and were detected by gas chromatograph (SHIMADZU GC2014) equipped with a capillary column Rxi-5ms (0.32 mm 30 m) and a flame ionization detector. The carrier gas consisting of helium was introduced at a rate of 89.1 ml/min. The injector temperature was set at 503.15 K, and the detector temperature was set at 513.15 K. During a GC analysis, the column temperature at first was maintained at 323.15 K for 1.75 min, and then raised to 423.15 K at a temperature increase rate of 30 K/min. The sampling analysis was repeated for at least 3 times, and the mean value was used in this work. The internal standard method was used and methanol was chosen as the internal standard in order to obtain quantitative results during analysis. The feed composition was varied at different desired temperature to obtain a series of LLE data. 2.3 Uncertainty calculation BIPM [8] had introduced two categories of uncertainty calculation: A and B. To assess the uncertainty of each quantity q, Type A had been chosen in this work, with the corresponding equations listed below: (1) (2) (3) The experimental standard deviation (s(q k )), which explains the dispersion of the observed values q k to their mean q can be calculated from Equation 1. For a quantity X i, the estimate x i =X i, and the standard uncertainty u(x i ) = s(x i). 2.4 Separation efficiency calculation The distribution coefficient (K) and the separation factor (S), which are calculated from the tie-line data, can describe the separation efficiency of solvents [10]. They are defined as follows: (4) (5) where, α and β represent the 1-hexene rich phase and the solvent rich phase, respectively, while 1 and 2 denote the diluent (1-hexene in this research) and the solute (benzene in this research), respectively. 2.5 Reliability of the data The Othmer-Tobias equation [12] (Equation 6) and the Bachman equation [13] (Equation 7) are used to evaluate the reliability of LLE tie-line data in this paper. The equations are listed below: 62

(6) (7) where A and B, m and n are the parameters of Othmer-Tobias equation and Bachman equation, respectively, and they can be determined by using the linear least-square method. Hence x 1α is the mass fraction of 1-hexene in the 1-hexene rich phase, and x 3β is the mass fraction of solvent in the solvent rich phase. The correlation factors R 2 reflects the reliability and consistency of the related experimental data. 3 Results and Discussion 3.1 Experimental data The LLE data of the ternary systems {1-hexene+benzene+} at T = K and 318.15 K, and {1-hexnen+benzene+furfural} at T = K are listed in Table 2 with all concentrations expressed in mass fraction. The bimodal curves of these three ternary mixtures together with their feed compositions are presented in Figure 1-3. As shown in these graphs, the feed points agreed with the tie lines perfectly, indicating that in the process of experiment, the mass balance had been satisfied and the experimental data were reliable. Meanwhile, the parameters of the Othmer-Tobias and the Bachman equations are reported in Table 3. The linear correlation indicates a good satisfactory quality of the experimental data. Figure 2 Ternary phase diagram for 1-hexene+benzene+ system at 318.15 K Experimental data; NTRL model; UNIQUAC model; Feed composition Figure 3 Ternary phase diagram for 1-hexene+benzene+furfural system at K Experimental data; NTRL model; UNIQUAC model; Feed composition Figure 1 Ternary phase diagram for 1-hexene+benzene+ system at K Experimental data; NTRL model; UNIQUAC model; Feed composition The ternary LLE of the {1-hexene + benzene + solvents} systems behave as Type 1 according to Sørensen [9], which means that the mixtures consist of two miscible systems {1-hexene + benzene} and {benzene + solvents}, and one immiscible/partially miscible system {1-hexene +/ furfural}. As shown in Figures 1 and 2, when the temperature increased from K to 318.15 K, the bimodal curve of {1-hexene+benzene+} system moved to the chart axes, which means that the biphasic area decreased. The same phenomenon occurred extremely noticeable in the furfural solvent system: when the tem- 63

Table 2 Experimental LLE data (mass fraction) for 1-hexene (1) + benzene (2) + solvent (3) system at K and 318.15 K and atmosphere pressure Solvent T(K) 1-Hexene rich phase Solvent rich phase K S x 1 x 2 x 3 x 1 x 2 x 3 0.9602 0.0179 0.0179 0.0454 0.0125 0.9421 0.5705 12.0734 0.9075 0.0665 0.0260 0.0589 0.0444 0.8968 0.6671 10.2872 0.8426 0.1187 0.0388 0.07863 0.0868 0.8346 0.7312 7.8358 0.7422 0.2044 0.0567 0.1007 0.1581 0.7412 0.7864 5.7967 0.7021 0.2295 0.0683 0.1102 0.1810 0.7088 0.7884 5.0230 0.6044 0.2858 0.1098 0.1437 0.2362 0.6201 0.8266 3.4774 0.9464 0.0132 0.0405 0.0727 0.0097 0.9176 0.7383 9.6121 0.9083 0.0420 0.0497 0.0827 0.0302 0.8871 0.7204 7.9120 318.15 0.8585 0.0765 0.0650 0.1014 0.0581 0.8404 0.7603 6.4340 0.7703 0.1380 0.0917 0.1279 0.1095 0.7625 0.7937 4.7792 0.6560 0.1927 0.1513 0.1798 0.1687 0.6515 0.8758 3.1953 0.4566 0.2484 0.2950 0.2563 0.2351 0.5086 0.9464 1.6859 0.8564 0.0082 0.1354 0.2034 0.0069 0.7897 0.8385 3.5294 0.8425 0.0168 0.1407 0.2095 0.0155 0.7750 0.9228 3.7111 Furfural 0.8243 0.0270 0.1487 0.2195 0.0236 0.7568 0.8745 3.2835 0.7641 0.0492 0.1867 0.2618 0.0481 0.6901 0.9785 2.8564 0.7426 0.0548 0.2026 0.2784 0.0543 0.6673 0.9904 2.6414 0.6540 0.0805 0.2654 0.3355 0.0760 0.5885 0.9432 1.8386 Note: Standard uncertainties u are u(t) = 0.1 K, u(p) =0.5 kpa, u(x 1 ) = 0.0004, u(x 2 ) = 0.0002, u(x 3 ) = 0.0004. Table 3 Parameters of the Othmer-Tobias and the Bachman equations for 1-hexene (1) + benzene (2) + solvent (3) system at desired temperature system Othmer-Tobias Bachman A B R 2 m n R 2 1-Hexene (1) + Benzene (2) + (3) at K -0.5242 1.4994 0.9960-0.0832 0.2493 0.9954 1-Hexene (1) + Benzene (2) + (3) at 318.15 K -0.6666 1.5187 0.9949-0.2134 0.4378 0.9953 1-Hexene (1) + Benzene (2) + Furfural (3) at K 0.1984 1.2178 0.9990-0.5573 1.0416 0.9992 perature increased to 318.15 K, the biphasic area shrank to disappear. The K and S values calculated from the LLE data are listed in Tables 2. The S values decreased generally as the concentration of benzene increased. This is because when the concentration of benzene increased, the two-phase region shrank, denoting that the separation capacity of solvent was reduced. However, the S value was not perfectly in an inverse proportion of benzene concentration. There was a variation of S values as the benzene concentration increased from 0.0069 to 0.0155 (mass fraction) when furfural was used as the solvent, and a relatively high mutual solubility of furfural and 1-hexene might be the cause. The experimental separation factors versus the mass fraction of benzene in the solvent rich phase at different temperatures are demonstrated in Figure 4. Obviously, had a preferential extraction ability, bacause the S values of were greater than those of furfural. Moreover, the extraction process was possible, since the S values in all cases were more than one. 64

Figure 4 Experimental separation factor (S) versus the benzene mass fraction (x 2β ) in the solvent rich phase for the ternary system: 1-hexene (1) + benzene (2) +solvent (3) at K; Furfural at K; at 318.15K The distribution coefficient is relevant to the solubility of solutes, which has an impact on the slope of tie lines [10]. Generally, K values in this work were on the rise with an increasing concentration of benzene and the changing trend of the slope factors of tie lines showed the same ten- dency. However, upon adopting the similar concentration of benzene, a higher value of K was achieved when furfural was used as the solvent, which meant that furfural had a better separation capability than. This is because furfural has a relatively high solubility with 1-hexene than. But for the ternary LLE systems, the greater the size of the two-phase region, the larger the final concentration of benzene would be. To sum up, was more suitable than furfural for extracting benzene from 1-hexene. 4.2 Data correlation In this work, the LLE data of {1-hexene + benzene + solvents} systems were correlated by NRTL and UNIQUAC models, with the data regression results presented in Table 4. The calculated LLE data from both models are plotted in Figures 1-3. In general, all the RMSD values were less than 1.0%, denoting that both models fit in with the experimental data quite well. Table 4 Binary energy parameters of NRTL and UNIQUAC models for the system 1-hexene (1) + benzene (2) + solvents (3) Solvents T, K i-j NRTL parameters UNIQUAC parameters RMSD g ij -g jj, J/mol g ji -g ii, J/mol α u ij -u jj, J/mol u ji -u ii, J/mol RMSD 1-2 -5 547.62 12 006.06 0.20 7 779.77-1 891.48 1-3 8 308.49 3 974.73 0.20 0.63 2 541.05-3 032.23 0.28 2-3 -1 088.05 2 236.74 0.20 1 483.22-2 428.84 1-2 -1 404.10 9 354.71 0.20 905.40-254.20 318.15 1-3 8 581.67 5 386.52 0.20 0.34 5 058.45-1 655.79 0.29 2-3 219 376.10-91 155.71 0.20 2 470.72-1 751.11 1-2 3 852.69-7 809.17 0.30-5 096.91-9 121.66 Furfural 1-3 -1537.95-2891.07 0.30 0.13 2030.04-994.02 0.19 2-3 4994.93 18098.38 0.30 8426.90 4759.48 5 Conclusions The LLE systems {1-hexene+benzene+} at K and 318.15 K, together with {1-hexene+benzene+furfural} at K under a pressure 101.3 kpa were investigated in this paper. Results indicated that benzene had a relatively high solubility in or furfural than in 1-hexene. It should be noted that all of the separation factors were greater than one, implying that it was feasible to extract benzene from 1-hexene by or furfural. Moreover, whith an rising benzene concentration, the distribution coefficients tended to increase, yet the separation factors tended to decrease. To sum up, owning to a low mutual solubility with 1-hexene, coupled with large separation factors, and larger two-phase region, was more ideal for benzene separation. Furthermore, both the Othmer-Tobias equation and the Bachman equation confirmed the reliability of the obtained experimental tie-line data. According to correlation outcome for the NRTL and the UNIQUAC models, all the experimental data were successfully correlated, and the corresponding optimum interaction parameters of both models were also obtained. Acknowledgement: The authors are graceful to the financial 65

supports provided by the National Natural Science Foundation of China (No.21177038). References [1] Mao Anguo, Gong Jianhong. Molecular-based study on FCC LCO to light aromatics [J]. Petroleum Processing and Petrochemicals, 2014, 45(7): 1 5 (in Chinese) [2] Đukanović Z, Sandra B G, Vesna J Č, et al. Hydrotreating of straight-run gas oil blended with FCC naphtha and light cycle oil[j]. Fuel Processing Technology, 2013, 106(2): 160 165 [3] Bahadur I, Singh P, Kumar S, et al. Separation of aromatic solvents from the reformate fraction of an oil refining process using extraction by a designed ionic liquid [J]. Separation Science & Technology, 2014, 49(12): 1883 1888 [4] Sangarunlert W, Piumsomboon P, Ngamprasertsith S. Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk [J]. Korean Journal of Chemical Engineering, 2007, 24(6): 936 941 [5] Antonio D L, Rodríguez L, Sánchez P, et al. Extraction of aromatic compounds from heavy neutral distillate lubricating oils by using furfural [J]. Separation Science and Technology, 1993, 28(15/16): 2465 2477 [6] Renon H, and Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures [J]. AIChE Journal, 1968, 14(1): 135 144 [7] Abrams D S, Prausnitz J M. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems [J]. AIChE Journal, 1975, 21(1): 116 128 [8] BIPM, IFCC, IUPAC, et al. Evaluation of measurement data guide for the expression of uncertainty in measurement: JCGM 100: 2008 [S] [9] Sørensen J M, Magnussen T, Rasmussen, P, et al. Liquidliquid equilibrium data: Their retrieval, correlation and prediction Part I: Retrieval [J]. Fluid Phase Equilibria, 1979, 2(4): 297 309 [10] Xin Kun, Song Yuhe, Dai Fangfang, et al. Liquid liquid equilibria for the extraction of furfural from aqueous solution using different solvents [J]. Fluid Phase Equilibria, 2016, 425: 393 401 [11] Fazlali A, Askari-Mehrabadi M, Mohammadi A H. Extraction of aromatics from petroleum naphtha reformate by solvent: UNIFAC modelling and optimization of solvent consumption [J]. Journal of Chemical Thermodynamics, 2012, 53(10): 30 35 [12] Othmer D, Tobias P. Liquid-liquid extraction data - The line correlation [J]. Industrial & Engineering Chemistry, 1942, 34(6): 693 696 [13] Bachman I. Tie lines in ternary liquid systems [J]. Industrial & Engineering Chemistry, 1940, 14(1): 38 39 First Commercial Application of Technology for Manufacture of Butadiene via Oxydehydrogenation of Butene The two-stage syngas methanation process in isothermal reactors independently developed by the China Huaneng Clean Energy Research Institute and constructed in the Coal-based Methanol Branch Company of Huating Coal Group in Gansu province has passed the 72-hour onsite performance inspection by an expert group of the China Coal Industry Association. The commercial side-line test unit of the two-stage syngas methanation process based on isothermal reactors has been operating smoothly coupled with correct measurement and control outcome. The first-stage isothermal reactor has shown that the temperature of hot spots is lower than 400 ºC, which can protect catalyst from coke buildup at high temperature to extend its cycle length to more than three years and to double its spacetime yield. The two-stage syngas methanation process features shorter process flow scheme, less equipment needed, lower reaction temperature, longer cycle length of catalysts, higher space-time yield, and higher output of co-produced steam, which can reduce the investment in the operating equipment and decrease the operating cost. The Clean Energy Research Institute has constructed in April 2017 a two-stage isothermal methanation sideline unit rated at 100 standard m 3 /hour in the Coal-based Methanol Branch Company of Huating Coal Group in Gansu province. This unit was put on stream at the first attempt on June 6, 2017 and has been operating smoothly for 1080 hours by July 26, 2017. 66