Non-equilibrium molecular dynamics simulation study of the behavior of hydrocarbon-isomers in silicalite

Similar documents
Permeation of Hexane Isomers across ZSM-5 Zeolite Membranes

CARBON 2004 Providence, Rhode Island. Adsorption of Flexible n-butane and n-hexane on Graphitized Thermal Carbon Black and in Slit Pores

Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite

Molecular Dynamics Simulation on Permeation of Acetone/Nitrogen Mixed Gas

UB association bias algorithm applied to the simulation of hydrogen fluoride

Structural transition and solid-like behavior of alkane films confined in nano-spacing

Separation of Alkane Isomers by Exploiting Entropy Effects during Adsorption on Silicalite-1: A Configurational-Bias Monte Carlo Simulation Study

Multiscale Materials Modeling

Supporting Information

Chain Length Effects of Linear Alkanes in Zeolite Ferrierite. 2. Molecular Simulations 1

Simulation of Alkane Adsorption in the Aluminophosphate Molecular Sieve AlPO 4-5

Verification of the Maxwell Stefan theory for diffusion of three-component mixtures in zeolites

Modelling of Adsorption and Diffusion in Dual-Porosity Materials: Applications to Shale Gas

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

Molecular Dynamics Study of Carbon Dioxide Storage in Carbon-Based Organic Nanopores

A Nonequilibrium Molecular Dynamics Study of. the Rheology of Alkanes. S.A. Gupta, S. T. Cui, P. T. Cummings and H. D. Cochran

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

Effect of surfactant structure on interfacial properties

Nanorheology of liquid alkanes

Monte Carlo simulations in zeolites

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane

PORE SIZE DISTRIBUTION OF CARBON WITH DIFFERENT PROBE MOLECULES

Chain length effects on aqueous alkane solubility near the solvent s critical point

Chemical Potential of Benzene Fluid from Monte Carlo Simulation with Anisotropic United Atom Model

Oleg A. Mazyar, Guoai Pan and Clare McCabe*

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures

Diffusion of isobutane in silicalite studied by transition path sampling Vlugt, T.J.H.; Dellago, C.; Smit, B.

Thermodynamics at Small Scales. Signe Kjelstrup, Sondre Kvalvåg Schnell, Jean-Marc Simon, Thijs Vlugt, Dick Bedeaux

Thermal Diffusion and Partial Molar Enthalpy Variations of n-butane in Silicalite-1

Simulation of adsorption and di usion of hydrocarbons in zeolites

Ion-Gated Gas Separation through Porous Graphene

Schwarzites for Natural Gas Storage: A Grand- Canonical Monte Carlo Study

Thermodynamics of Three-phase Equilibrium in Lennard Jones System with a Simplified Equation of State

NON-EQUILIBRIUM MOLECULAR DYNAMICS CALCULATION OF THE

An Introduction to Two Phase Molecular Dynamics Simulation

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

Multiple time step Monte Carlo

Isothermal Phase Equilibria and Cage Occupancies for CH 4 + CHF 3

Atomistic molecular simulations for engineering applications: methods, tools and results. Jadran Vrabec

This paper was prepared for presentation at the SPE Western Regional Meeting held in Anchorage, Alaska, USA, May 2016.

United Atom Force Field for Alkanes in Nanoporous Materials

Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry

Binary Hard-Sphere Mixtures Within Spherical Pores

STATE-OF-THE-ART ZEOLITE CHARACTERIZATION: ARGON ADSORPTION AT 87.3 K AND NONLOCAL DENSITY FUNCTIONAL THEORY (NLDFT)

On the Calculation of the Chemical Potential. Using the Particle Deletion Scheme

Adsorption and Diffusion in Zeolites: A Computational Study

Introduction. Monday, January 6, 14

MONTE CARLO METHOD. Reference1: Smit Frenkel, Understanding molecular simulation, second edition, Academic press, 2002.

Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering

r sat,l T sr sat,l T rf rh Ž 4.

CE 530 Molecular Simulation

Gaurav Arya, Hsueh-Chia Chang, and Edward J. Maginn a) Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

Introduction to molecular dynamics

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Efficient viscosity estimation from molecular dynamics simulation via momentum impulse relaxation

Brief Review of Statistical Mechanics

Molecular simulation of adsorption from dilute solutions

Monte Carlo Methods. Ensembles (Chapter 5) Biased Sampling (Chapter 14) Practical Aspects

Adsorption of Lennard-Jones Fluids in Carbon Slit Pores of a Finite Length. AComputer Simulation Study

Modeling the Adsorption of Carbon Monoxide on Zeolites. Eric Feise

Synthesis of Zeolite Composite Membranes for CO2 Separation

MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE

Author's personal copy

Effect of Adsorption in Flow of Gases in Organic Nanopores: A Molecular Dynamics Study. Mohammad Kazemi Ali Takbiri-Borujeni West Virginia University

On the application of consistency criteria to. calculate BET areas of micro- and mesoporous. metal-organic frameworks

Supporting Information

Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks. Supporting Information

Available online at ScienceDirect. Procedia Engineering 79 (2014 )

Gibbs Ensemble Computer Simulations of Vapor Liquid Equilibrium of Hydrazine

Diffusion and vibrational relaxation of a diatomic molecule in the pore network of a pure silica zeolite: A molecular dynamics study

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Gibbs ensemble simulation of phase equilibrium in the hard core two-yukawa fluid model for the Lennard-Jones fluid

Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory

Nonequilibrium Molecular Dynamics Simulations of Shear Viscosity: Isoamyl Alcohol, n-butyl Acetate and Their Mixtures

Supplementary information for

Molecular Simulation of Adsorption and Diffusion in a Microporous Carbon Membrane

Part I.

Monte Carlo Simulation of Long-Range Self-Diffusion in Model Porous Membranes and Catalysts

Scientific Computing II

Elasticity Constants of Clay Minerals Using Molecular Mechanics Simulations

MD simulation of methane in nanochannels

Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-alkanes

for investigating Lars Heinke Fritz-Haber-Institute of the Max-Planck-Society, Berlin Jörg Kärger University Leipzig

1 Introduction. S. Calero, B. Smit and R. Krishna*

Molecular Dynamics Simulation of Methanol-Water Mixture

Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: Evaluation of intermolecular potential models

Molecular Dynamics Simulation of a Nanoconfined Water Film

Storage of Hydrogen, Methane and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications

Simulating Microwave-Heated Open Systems: Tuning Competitive Sorption in Zeolites

Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study

CE 530 Molecular Simulation

Molecular dynamics simulation of nanofluidics and nanomachining

Introduction Statistical Thermodynamics. Monday, January 6, 14

A comparative molecular dynamics study of diffusion of n-decane and 3-methyl pentane in Y zeolite

MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF LIQUID DROPLET ON SOLID SURFACE

Mechanical Properties of Tetra-Polyethylene and Tetra-Polyethylene Oxide Diamond Networks via Molecular Dynamics Simulations

Introduction to Mass Transfer

Transcription:

Fluid Phase Equilibria 194 197 (2002) 309 317 Non-equilibrium molecular dynamics simulation study of the behavior of hydrocarbon-isomers in silicalite S. Furukawa a,b,, C. McCabe a,c, T. Nitta b, P.T. Cummings a,c a Department of Chemical Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA b Department of Chemical Science and Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan c Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Received 15 March 2001; accepted 20 August 2002 Abstract Molecular dynamics simulations have been carried out in order to investigate the adsorption and permeation phenomena of butane isomers through ZSM-5 membranes. Using the VT ensemble configurational-bias Monte Carlo technique, we are able to determine the preferred locations of the butane isomers in the ZSM-5 channels. In permeation simulations, using the VT ensemble non-equilibrium molecular dynamics method, the permeate fluxes of the butane isomers are obtained. We find that the permeabilities of the n-butane calculated from the permeate fluxes increase with increasing temperature. The density of n-butane in the ZSM-5 decreases in the permeation direction with a similar pressure density relationship to that measured by the equilibrium adsorption isotherm of the n-butane. 2002 Elsevier Science B.V. All rights reserved. Keywords: Configurational-bias Monte Carlo; Non-equilibrium molecular dynamics; Silicalite; Butane isomers; Inorganic membrane 1. Introduction Understanding transport properties in porous media at the molecular level is important in chemical engineering fields, such as adsorption and membrane separation processes. Among these fields, inorganic membranes with pores at the nanoscale have captured much attention, since inorganic membranes, such as zeolite and silica gel, are known to have several advantages over their organic counterparts specifically, stability to high temperature and pressure, stability to organic chemicals and high resistance to erosion [1 3]. Molecular simulation techniques, which consist of the Monte Carlo (MC) and molecular dynamics (MD) methods, have become powerful tools with which to study the static and dynamic properties of Corresponding author. Tel.: +1-865-974-0553; fax: +1-865-974-4910. E-mail address: furukawa@cheng.es.osaka-u.ac.jp (S. Furukawa). 0378-3812/02/$ see front matter 2002 Elsevier Science B.V. All rights reserved. PII: S0378-3812(01)00670-7

310 S. Furukawa et al. / Fluid Phase Equilibria 194 197 (2002) 309 317 molecular systems, respectively [4,5]. Non-equilibrium MD (NEMD) simulations permit the simulation of steady-state systems away from equilibrium and have been successfully used to predict and understand transport properties at the molecular level. In particular, the boundary-driven NEMD (BD-NEMD) method, which was first proposed by Hafskjold et al. [6], has been developed to simulate transport phenomena under gradients of temperature, chemical potential or density. Two versions of the BD-NEMD method, the dual control volume grand canonical MD (DCV-GCMD) method [7] and the VT ensemble NEMD ( VT-NEMD) method [8], have been successfully applied to investigate permeation phenomena and separation mechanisms of inorganic membranes. In previous work [8 12], simulations of the gas permeation through nanoporous carbon membranes were carried out by using the VT-NEMD method. Our latest results [12] suggested that the selectivity for permeation depends on the differences in permeation resistance and relative adsorption power for each component: high selective adsorption followed by selective diffusion rate through the membrane. In this paper, we attempt to investigate the permeation phenomena of butane isomers in a ZSM-5 silicalite membrane through molecular simulation. Hydrocarbon isomers have almost the same thermodynamic properties, though the minimum molecular diameter of branched hydrocarbons is slightly larger than that of normal hydrocarbons. Hence, using molecular sieve membranes such as silicalite, which have a controlled pore size, is one way to separate mixtures composed of hydrocarbon isomers. However, the permeation mechanism for hydrocarbons in silicalite membranes is not clear. 2. Model The transferable potentials for phase equilibria (TraPPE) model [14,15] is used to model the butane isomers. In the TraPPE model, the geometry of a butane molecule is described by using a united-atom model where each CH 3 and CH 2 group is considered as a single spherical interaction site in the model. Inter-molecular interactions between the sites of butane molecules are calculated by the 12-6 Lennard Jones (LJ) potential, [ (σij ) 12 ( ) ] 6 σij u LJ (r ij ) = 4ε ij (1) r ij r ij where r ij, σ ij and ε ij are the distance, the size and energy parameters of the 12-6 LJ potential, for the pair of sites i and j, respectively. The cross parameters are calculated from the Lorentz Bertherot combining rule. For intramolecular interactions, motions of the bond bending angles (θ) and the dihedral angles (φ) in the butane molecule are governed by the harmonic and torsional potentials as follows: u bend (θ) = k θ(θ θ 0 ) 2 (2) 2 where k θ, and θ 0 are the bond bending force constant and equilibrium bond angle, respectively, and u torsion (φ) = c 0 + c 1 [1 + cosφ] + c 2 [1 + cos(2φ)] + c 3 [1 + cos(3φ)] (3) with c 0 = 0, c 1 = 335.03 J/mol, c 2 = 68.19 J/mol and c 3 = 791.32 J/mol. In our simulations, a bond stretching motion is also taken into consideration, using a simple harmonic potential. u stretch (r ij ) = k r(r ij r 0 ) 2 (4) 2

Table 1 Potential parameters used in this work (from [14,15,17]) S. Furukawa et al. / Fluid Phase Equilibria 194 197 (2002) 309 317 311 Site Mass (kg/mol) σ (nm) ε (J/mol) CH 3 15.04 10 3 0.375 814.8 CH 2 14.03 10 3 0.395 382.4 CH 3 O (ZSM-5) 0.360 665.1 CH 2 O (ZSM-5) 0.360 482.2 Bond bending θ 0 ( ) k θ (J/mol) CH x CH 2 CH x 114 519625 CH x CH CH x 112 519625 where k r is the bond stretching force constant (=3.766 10 26 J/mol) and r 0 is the equilibrium bond length (=0.154 nm) [16]. The ZSM-5 zeolite is known from experimental studies to have straight and zigzag channels with channel intersections [13]. Pore sizes for the straight channel (0.54 nm 0.56 nm) and the zigzag channel (0.51 nm 0.54 nm) are almost the same as the smallest diameter of the butane isomers: 0.54 nm for the n-butane molecule and 0.63 nm for the iso-butane molecule under the optimized geometry. The structure of the model ZSM-5 in our simulations is a rigid crystal based on experimental geometry data. For interactions between butane molecules and the ZSM-5, only pairs of sites in butane molecules and oxygen atoms in the ZSM-5 are considered. The potential model parameters used to model both the butane isomers and ZSM-5 membrane are summarized in Table 1. 3. Simulation methods 3.1. µvt-cbmc method The VT-MC simulation technique is a popular method with which to investigate adsorption equilibrium in porous materials. However, with the conventional VT-MC technique it is difficult to obtain reasonable fractions of acceptances for molecular displacements or insertions at high adsorption densities, especially for complex fluids. As a technique to solve these problems, in particular, to perform simulations of chain molecules in porous materials, the VT-CBMC technique [5] has been developed. In this technique, instead of the random displacement or insertion of a molecule, a molecule is grown atom by atom while interacting with other molecules in the system. As the molecule is grown, the acceptance probability of the molecular geometry and that of the conformation are calculated from the intra- and inter-molecular potential energies, respectively. In brief, the VT-CBMC method involves four moves as follows. 1. random displacement of a molecule based on the center of mass; 2. random rotation of a molecule around the center of mass; 3. re-growth of a part of the molecule selected randomly; 4. insertion or deletion of a molecule; the conformation for an inserted molecule and the choice of a deleted molecule are selected randomly.

312 S. Furukawa et al. / Fluid Phase Equilibria 194 197 (2002) 309 317 Fig. 1. A schematic diagram of a simulation cell for the VT-NEMD method. During the simulations, the distribution of these four operations attempted in a MC block, is 30% displacements, 30% rotations, 10% chain re-growths and 30% insertions or deletions. All the simulations were run for 4000 MC blocks, with 1000 cycles per MC block. The ensemble averages of the macroscopic properties were calculated from the simulation results for the last 1000 MC blocks. 3.2. µvt-nemd method Fig. 1 shows a schematic diagram of a simulation cell for the VT-NEMD method. The cell consists of two mirror-image symmetric boxes in order to satisfy the periodic boundary condition in the permeating (x-) direction. Each symmetric box has three regions: the H-region (high density) and L-region (low density) which are both density-controlling, and the M-region located between the H-region and the L-region which is free of control. The ZSM-5 membrane exists throughout the whole simulation cell. During a simulation run, the densities in the H- and L-regions are kept constant at specified values using the insertion and deletion algorithms of the VT-CBMC method. The specified densities, which are in equilibrium with bulk gases at specified pressures, P H and P L, are pre-determined by the VT-CBMC method. The velocities of the inserted molecules are assigned values around the average velocity corresponding to the specified temperature by using random numbers on the Gaussian distribution. The insertion and deletion operations are carried out each 20 MD steps. Molecular translation velocities are rescaled independently after insertion and deletion operations in order to maintain a constant temperature. Molecules move from the H-region to the L-region through a multiple time step molecular dynamics algorithm [18], and a non-equilibrium stationary state is obtained in the M-region. The MD time steps we adopted are 1.0 fs for the large time step and 0.4 fs for the small time step. To calculate ensemble averages, simulation results for the last 3,000,000 time steps of a 5,000,000 time step run are used. 4. Results and discussion 4.1. Adsorption phenomena of butane isomers in ZSM-5 Fig. 2 shows adsorption isotherms for pure n- and iso-butanes in the ZSM-5 at 300 K compared with experimental data [19]. From the figure we see that the adsorption density for the butane isomers increase with increasing pressure, exhibiting Langmuir-type behavior. At each pressure, the density of n-butane is always larger than that of iso-butane, which we attribute to the difference in the molecular geometry of the two molecules. The simulation results are in excellent agreement with the experimental data for

S. Furukawa et al. / Fluid Phase Equilibria 194 197 (2002) 309 317 313 Fig. 2. Adsorption isotherms for pure n-butane (circles) and iso-butane (squares) at 300 K. n-butane at all pressures and at low pressures for isobutane. The simulation results for isobutane over predicts the adsorption density at higher pressures. In order to gain more insight into the local density in the ZSM-5 pores, the probability distributions of each butane isomer in the straight and zigzag channels and their intersection are calculated from the results of VT-CBMC simulations (Fig. 3). In the case of n-butane, we find there is a greater probability of finding the molecules in the straight and zigzag channels compared to the intersections. In addition, the probabilities in the straight and zigzag channels are almost the same. However, in the case of iso-butane, most molecules are located at intersections, with only a small fraction being found in the zigzag and straight channels. The probability of finding an iso-butane molecule in the straight channel is considerably smaller than that in the zigzag channel. With increasing pressure, the probability of finding an iso-butane Fig. 3. Probability distributions of n-butane (closed symbols) and iso-butane (open symbols) at 300 K.

314 S. Furukawa et al. / Fluid Phase Equilibria 194 197 (2002) 309 317 Table 2 Equilibrium densities (kmol/m 3 ) in the H- and L-regions 300 K 400 K 1.0 kpa (ρ L ) 100 kpa (ρ H ) 1.0 kpa (ρ L ) 100 kpa (ρ H ) n-butane 2.57 2.91 0.10 2.07 iso-butane 1.21 1.66 0.10 1.12 molecule in the intersection decreases, while that in the zigzag channel increases. These findings for the packing of the butane isomers in the ZSM-5 are in agreement with the suggestions of [20,21] based on experimental analysis. 4.2. Permeation phenomena of butane isomers in ZSM-5 Permeation simulations of pure butane isomers through the ZSM-5 are carried out at the following conditions: 300 and 400 K, P H = 100 kpa and P L = 1.0 kpa, and membrane thickness L m = 5.976 nm. The (0 1 0) surface is set as a permeation surface, namely there are straight channels toward the permeation direction and zigzag channels perpendicular to the permeation direction. Equilibrium densities calculated by the VT-CBMC simulations are used to determine the densities in the H- and L-regions (Table 2). Fig. 4 shows a snapshot of pure n-butane in ZSM-5 at 400 K. The snapshot is a view of the (0 0 1) surface, and the permeation direction is from left to right. We see that the n-butane molecules locate in both the straight (x-direction) and zigzag channels (z-direction). Fig. 5 shows density profiles for the n-butane at 300 and 400 K. In both figures, there are two peaks; the high peaks correspond to the locations of zigzag channels and intersections and the much lower peaks to the straight channels. The higher and lower peaks decrease toward the permeation direction, particularly at the higher temperature studied. In the case at 400 K, the higher peaks decrease rapidly toward the permeation direction showing a similar pressure density relationship to that measured by the equilibrium adsorption isotherm. The membrane permeabilities ( P ˆ) are calculated from permeate fluxes using the relation ˆ P = JL m P (5) Fig. 4. Snapshot of pure n-butane in ZSM-5 at 400 K.

S. Furukawa et al. / Fluid Phase Equilibria 194 197 (2002) 309 317 315 Fig. 5. Density profiles of pure n-butane permeation at (a) 300 and (b) 400 K. Table 3 Permeabilities from simulation and experiment [20] for n-butane Temperature (K) Permeability (mol m/m 2 Pa) Simulation Experiment 300 3.44 10 10 2.50 10 12 400 3.95 10 10 5.00 10 12 where J is the permeate flux, L m is the membrane thickness and P is the pressure difference across the membrane. The permeabilities are summarized in Table 3 along with experimental data [20]. The permeability of n-butane at 400 K is larger than that at 300 K. This is because, as the temperature goes from 300 to 400 K, the increase in the mobility is larger than the decrease in the adsorption power. Compared to the experimental data, the permeabilities obtained from the simulations are much larger. However, it is encouraging to observe that the increase in the permeability with increasing temperature is in agreement with the experimental trend. In the cases of the iso-butane permeation at T = 300 and 400 K, simulation results at stationary states could not be obtained. Takaba et al. [22] also reported similar results by MD simulations. 5. Conclusion A series of VT-CBMC and VT-NEMD simulations were carried out in order to investigate permeation phenomena of butane isomers through ZSM-5 membranes. From the results of the VT-CBMC simulations, it has been found that the n-butane molecules prefer to locate in the straight and zigzag chan-

316 S. Furukawa et al. / Fluid Phase Equilibria 194 197 (2002) 309 317 nels of the ZSM-5 with almost the same probabilities, while most of the iso-butane molecules locate at the intersection of the channels. In permeate simulations of the n-butane using the VT-NEMD method, the densities in the ZSM-5 decreased exhibiting a similar pressure density relationship to that measured by the equilibrium adsorption isotherm. In the case of the iso-butane permeation, density profiles and permeate fluxes at stationary states for the iso-butane were not obtained. For studying transport properties of the iso-butane, it may be necessary to adopt a more detailed potential model for the atoms of the ZSM-5 which includes motion of the atoms in the membrane. List of symbols c i parameter of torsion potential k r, k θ parameters of bond stretching and bending L m membrane thickness Pˆ permeability P H, P L pressures at H- and L-regions r distance T temperature u potential energy Greek letters ε, σ LJ size and energy parameters φ dihedral angle θ, θ 0 bond angle and equilibrium bond angle ρ H, ρ L densities at H- and L-regions Acknowledgements The research was partly supported by the Research Fellowships of the Japan Society for Promotion of Science for Young Scientists, Japan. References [1] R.R. Bhave (Ed.), Inorganic Membranes, Synthesis, Characterization, and Application, Van Nostrand Reinhold, New York, USA, 1991. [2] H.P. Hsieh, Inorganic Membranes for Separation and Reaction, Elsevier, Amsterdam, 1996. [3] A.J. Burggraaf, L. Cot (Eds.), Fundamentals of Inorganic Membrane Science and Technology, Elsevier, Amsterdam, 1996. [4] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987. [5] D. Frenkel, B. Smit, Understanding Molecular Simulation, From Algorithm to Applications, Academic Press, San Diego, 1996. [6] B. Hafskjold, T. Ikeshoji, S.K. Ratkje, Mol. Phys. 80 (1993) 1389 1412. [7] G.S. Heffelfinger, F. van Swol, J. Chem. Phys. 101 (1994) 7548 7552. [8] S. Furukawa, T. Shigeta, T. Nitta, J. Chem. Eng. Jpn. 29 (1996) 725 728. [9] S. Furukawa, T. Nitta, J. Chem. Eng. Jpn. 30 (1997) 116 122. [10] S. Furukawa, K. Hayashi, T. Nitta, J. Chem. Eng. Jpn. 30 (1997) 1107 1112. [11] S. Furukawa, T. Sugahara, T. Nitta, J. Chem. Eng. Jpn. 32 (1999) 223 228. [12] S. Furukawa, T. Nitta, J. Membr. Sci. 178 (2000) 107 119.

S. Furukawa et al. / Fluid Phase Equilibria 194 197 (2002) 309 317 317 [13] C.R.A. Catlow, Modeling of Structure and Reactivity in Zeolites, Academic Press, London, 1992. [14] M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 102 (1998) 2569 2577. [15] M.G. Martin, J.I. Siepmann, J. Phys. Chem. B 103 (1999) 4508 4517. [16] C.J. Mundy, J.I. Siepmann, M.L. Klein, J. Chem. Phys. 102 (1995) 3376. [17] T.J.H. Vlugt, R. Krishna, B. Smit, J. Phys. Chem. B 103 (1999) 1102 1118. [18] M.E. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 102 (1992) 1990 2001. [19] M.S. Sun, O. Talu, D.B. Shah, J. Phys. Chem. 100 (1996) 17276 17280. [20] W. Zhu, J.M. van de Graaf, L.J.P. van den Broeke, F. Kapteijn, J.A. Moulijn, Ind. Eng. Chem. Res. 37 (1998) 1934 1942. [21] R.E. Richards, L.V.C. Rees, Langmuir 3 (1987) 335 340. [22] H. Takaba, R. Koshita, K. Mizukami, Y. Oumi, N. Ito, M. Kubo, A. Fahmi, A. Miyamoto, J. Membr. Sci. 134 (1997) 127 139.