Meson-baryon interaction in the meson exchange picture

Similar documents
Coupled channel dynamics in Λ and Σ production

Pion photoproduction in a gauge invariant approach

Satoshi Nakamura (EBAC, JLab)

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab)

πn scattering and π photoproduction in a dynamical coupled-channels model

Dynamical coupled-channels channels study of meson production reactions from

arxiv: v2 [nucl-th] 18 Sep 2009

Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Valence quark contributions for the γn P 11 (1440) transition

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

Dynamical understanding of baryon resonances

MESON PRODUCTION IN NN COLLISIONS

Report on NSTAR 2005 Workshop

Overview of N* Physics

Light Baryon Spectroscopy What have we learned about excited baryons?

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U

Exotic baryon resonances in the chiral dynamics

Photoexcitation of N* Resonances

The Fascinating Structure of Hadrons: What have we learned about excited protons?

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Dynamical coupled channel calculation of pion and omega meson production

Covariant quark-diquark model for the N N electromagnetic transitions

Cornelius Bennhold George Washington University

Compositeness for the N* and Δ* resonances from the πn scattering amplitude

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

Electroexcitation of Nucleon Resonances BARYONS 02

Coupled-channel Bethe-Salpeter

Resonance properties from finite volume energy spectrum

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

theory of pion production for nu-d - Neutrino induced pion production reaction on deuteron -

Structure of near-threshold s-wave resonances

Electroexcitation of Nucleon Resonances BARYONS 02

Hunting for the Nucleon Resonances by Using Kaon Photoproduction

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

arxiv: v2 [hep-ph] 1 Feb 2018

Baryon Spectroscopy: what do we learn, what do we need?

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Hadronic Cross Section Measurements for New Aspects of Hadron Spectroscopy. K. Hicks (Ohio U.) and H. Sako (JAEA) J-PARC PAC July 14, 2012

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

Neutrino-induced meson productions in resonance region

The search for missing baryon resonances

Analyticity and crossing symmetry in the K-matrix formalism.

Nucleon resonances from coupled channel reaction model

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

One of the foundational cornerstones of the physics program in Hall B with CLAS is the N* program. πn, ωn, φn, ρn, ηn, η N, ππn KΛ, KΣ, K Y, KY

Photoproduction of mesons off light nuclei

Wave functions and compositeness for hadron resonances from the scattering amplitude

Light Baryon Spectroscopy using the CLAS Spectrometer at Jefferson Laboratory

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

Introducing Pietarinen expansion method into single-channel (!) pole extraction problem

A Case for Narrow Nucleon Excitation N*(1685) PWA of MAMI data on eta photoproduction off free proton: an evidence for narrow N*

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

Phenomenological aspects of kaon photoproduction on the nucleon

Extracting Resonance Parameters from γ p nπ + at CLAS. Kijun Park

Facilities and Detectors for Baryon Physics

Understanding the basic features of Cascade Photoproduction

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

8 September Dear Paul...

Chiral dynamics and baryon resonances

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

arxiv: v1 [nucl-th] 14 Aug 2012

Nucleon Spectroscopy with CLAS

Pseudovector versus pseudoscalar coupling. in kaon photoproduction revisited. Abstract

arxiv: v1 [nucl-th] 6 Aug 2008

πn scattering in relativistic BChPT revisited

Pion-nucleon scattering around the delta-isobar resonance

Isospin-breaking corrections to the pion nucleon scattering lengths

Exploratory study of possible resonances in heavy meson - heavy baryon coupled-channel interactions

arxiv: v1 [hep-ex] 22 Jun 2009

Cascade Production in K- and Photon-induced Reactions. Collaboration: Benjamin Jackson (UGA) Helmut Haberzettl (GWU) Yongseok Oh (KNU) K. N.

arxiv:nucl-th/ v1 22 Nov 1994

Pole structure from energy-dependent and single-energy fits to GWU-SAID πn elastic scattering data

Compositeness of Dynamically Generated Resonances

arxiv: v1 [nucl-th] 29 Nov 2012

DYNAMICAL BARYON RESONANCES FROM CHIRAL UNITARITY

Extracting Resonance Parameters from Exclusive Electroproduction off Protons at CLAS. Kijun Park. August 23, 2017

arxiv:nucl-th/ v1 28 Aug 2001

Production and Searches for Cascade Baryons with CLAS

Study of η N interaction from η/η production data and in-medium η properties. Shuntaro Sakai (Institute of Theoretical Physics, CAS (Beijing,China))

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

Measurement of Double-Polarization

Meson-baryon interactions and baryon resonances

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

arxiv: v1 [nucl-th] 1 Oct 2007

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab

PoS(CD15)086. Analysis of πn ππn in Chiral Perturbation Theory. Dmitrij Siemens. Ruhr-Universität Bochum

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

Vector-Meson Photoproduction

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

arxiv: v1 [nucl-th] 13 Apr 2011

Coulomb effects in pionless effective field theory

Kaon Photoproduction Results from CLAS

Modern Theory of Nuclear Forces

Clebsch-Gordan Coefficients

S-wave exotic resonances induced by chiral interaction

Transcription:

Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn Nucl. Phys. A 829, 7 (29), Phys. Lett. B 68, 26 (29)

The scattering equation Poles and Residues The Jülich model of pion-nucleon interaction Motivation Hadronic reactions provide insight to QCD in the non-perturbative region. Intense experimental effort at JLab (Clas), ELSA, MAMI,... Theoretical data analysis required (e.g. EBAC/JLab). Chiral Lagrangian of Wess and Zumino. Channels πn, ηn; effective ππn channels σn, ρn, π. Baryonic resonances up to J = 3/2 with derivative couplings as required by chiral symmetry. New: KY channels, J = 5/2, 7/2 resonances, chiral unitary σ meson. Other non-k-matrix meson exchange models: DMT, Surya, Gross, PRC 53 (996); EBAC Juliá Díaz et al., PRC 76 (27); Suzuki, Sato, Lee, PRC 79 (29); Kamano et al., PRC 79 (29).

The scattering equation Poles and Residues Scattering equation in the JLS basis L S k T IJ µν LSk = L S k V IJ µν LSk + γ,l S k 2 dk L S k V IJ µγ L S k T: Amplitude V: Pseudopotential G: Propagator Z E γ(k )+iǫ L S k T IJ γν LSk J: total angular momentum L: orbital angular momentum S: total Spin of MB system I: isospin k(k, k ): incoming(outgoing, intermediate) momentum, on- or off-shell µ(ν, γ): incoming(outgoing, intermediate) channel [πn, ηn, π, ρn, σn]

The scattering equation Poles and Residues Scattering equation in the JLS basis L S k T IJ µν LSk = L S k V IJ µν LSk + γ,l S k 2 dk L S k V IJ µγ L S k Z E γ(k )+iǫ L S k T IJ γν LSk

The scattering equation Poles and Residues Scattering equation in the JLS basis L S k T IJ µν LSk = L S k V IJ µν LSk + Features γ,l S k 2 dk L S k V IJ µγ L S k Z E γ(k )+iǫ L S k T IJ γν LSk Meson exchange provides the correct and relevant degrees of freedom in the second and third resonance region (no contact terms). No on-shell factorization. Full analyticity (dispersive parts). Meson exchange puts strong constraints as all partial waves are linked. Dynamical generation of resonances is possible, but not easy (strong constraints!) Topic of missing resonances: no need to model background with resonances.

The scattering equation Poles and Residues Partial waves in πn πn (Solution 22) - -.8.6.8.6 2 4 6 8 Re S Im S - - Re P Im P 2 4 6 8 W [MeV] Data : GWU/SAID analysis, single energy solution 2 4 6 8 2 4 6 8 2 4 6 8 Re S3 Im S3 Re P3 Im P3 2 4 6 8 W [MeV] Re P3 Im P3 Re D3 Im D3 2 4 6 8 W [MeV] Re D33 Im D33 Re P33 Im P33 2 4 6 8 W [MeV] - -.8.6 - -.8.6

The scattering equation Poles and Residues Partial waves in πn πn (Solution 22) - -.8.6.8.6 2 4 6 8 Re S Im S - - Re P Im P 2 4 6 8 W [MeV] Data : GWU/SAID analysis, single energy solution 2 4 6 8 2 4 6 8 2 4 6 8 Re S3 Im S3 Re P3 Im P3 2 4 6 8 W [MeV] Re P3 Im P3 Re D3 Im D3 2 4 6 8 W [MeV] Re D33 Im D33 Re P33 Im P33 2 4 6 8 W [MeV] - -.8.6 - -.8.6

The scattering equation Poles and Residues Poles and residues on the unphysical sheets, given by the analytic continuation. Re z -2 Im z R θ [deg] [MeV] [MeV] [MeV] [ ] N (44) P 387 47 48-64 ARN 359 62 38-98 HOE 385 64 4 CUT 375±3 8±4 52±5 -±35 N (52) D 3 55 95 32-8 ARN 55 3 38-5 HOE 5 2 32-8 CUT 5±5 4± 35±2-2±5 Re z -2 Im z R θ [deg] [MeV] [MeV] [MeV] [ ] N (535) S 59 29 3-3 ARN 52 95 6-6 HOE 487 CUT 5±5 26±8 2±4 +5±45 N (65) S 669 36 54-44 ARN 648 8 4-69 HOE 67 63 39-37 CUT 64±2 5±3 6± -75±25 N (72) P 3 663 22 4-82 ARN 666 355 25-94 HOE 686 87 5 CUT 68±3 2±4 8±2-6±3 (232) P 33 28 9 47-37 ARN 2 99 52-47 HOE 29 5-48 CUT 2± ±2 53±2-47± (62) S 3 593 72 2-8 ARN 595 35 5-92 HOE 68 6 9-95 CUT 6±5 2±2 5±2 -±2 (7) D 33 637 236 6-38 ARN 632 253 8-4 HOE 65 59 CUT 675±25 22±4 3±3-2±25 (9) P 3 84 22 2-53 ARN 77 479 45 +72 HOE 874 283 38 CUT 88±3 2±4 2±4-9±3 [ARN]: Arndt et al., PRC 74 (26), [HOE]: Höhler, πn Newsl. 9 (993), [CUT]: Cutkowski et al., PRD 2 (979). Analytic continuation, residues to ηn, σn, ρn, π. Zeros. Branching ratios to πn, ηn.

The scattering equation Poles and Residues An additional state in P * New pole in P found at z=62 + 297 i MeV. full (T P + T NP ) Roper: a _ / (z-z ) + a N(62): a _ / (z-z ) - - -.5 * Very weak branching to πn. -. * Very large branching to π. -.5 * Resonance transition amplitude πn --> π : Manley (πn --> ππn): -.5 here: -5 * Roper: generated from σn. * N(62): generated from π..5 Re τ πn P --> πn P πn P --> π P πn P --> σn S -.5 * Dynamics of the nucleon pole: Pole repulsion N <--> Roper -.5 2 5 8 2 2 5 8 2 z [MeV] Im τ.8.6 -.5 -. -.5 -.5

The scattering equation Poles and Residues The analytic structure of the P partial wave

The chiral unitary σ meson Inclusion of KΛ and KΣ Chiral unitary approach to ππ scattering

The chiral unitary σ meson Inclusion of KΛ and KΣ Implementation of the chiral σ

The chiral unitary σ meson Inclusion of KΛ and KΣ Result for the Roper resonance Readjustment of cut-offs and g σσσ coupling Red lines: Chiral σ Blue lines: Fit Gasparyan 22 Re P Im P.6 Analytic structure of the amplitude exactly the same as before (3 branchpoints from σn) Dynamical generation of Roper and second P does not depend on details of the model Chiral σ provides better description. 2 4 6 z [MeV]

The chiral unitary σ meson Inclusion of KΛ and KΣ The reaction π + p K + Σ + Pure isospin 3/2; relatively few resonances. Strong constraints on the amplitude of the Jülich model! Good, simple data situation (Candlin 983-988). Simultaneous fit to πn πn partial waves plus π + p K + Σ + observables. Requires extended fitting efforts: Parallelization of the code in energies, implementation of Minuit done. Code runs on Juropa@Jülich. First tasks: Inclusion of KY in t and u channel exchange processes. Inclusion of Spin 5/2 and Spin 7/2 resonances.

The chiral unitary σ meson Inclusion of KΛ and KΣ Inclusion of the KY channels Inclusion via SU(3) symmetry [no additional freedom]

The chiral unitary σ meson Inclusion of KΛ and KΣ Differential cross section of π + p K + Σ + 8 Candlin et al., NPB 226, (983) Final 3 Z=822 MeV 845 MeV 87 MeV 89 MeV 6 dσ/dω [ µb / cosθ ] 4 2 8 926 MeV 939 MeV 97 MeV 985 MeV 6 4 2 - -.5.5 -.5.5 -.5.5 -.5.5 cosθ

The chiral unitary σ meson Inclusion of KΛ and KΣ Total cross section of π + p K + Σ + σ [mb].8.6 Final 3 7 8 9 2

The chiral unitary σ meson Inclusion of KΛ and KΣ Polarization of π + p K + Σ +.5 Candlin et al., NPB 226, (983) Final 3 Z=822 MeV 845 MeV 87 MeV 89 MeV.5 polarization -.5 - -.5 926 MeV 939 MeV 97 MeV 985 MeV.5 -.5 - -.5 - -.5.5 -.5.5 -.5.5 - -.5.5 cosθ

The chiral unitary σ meson Inclusion of KΛ and KΣ Spin rotation parameter β of π + p K + Σ + Definitions Observabbles 2 Final 3 z = 22 MeV β [rad] -2 2 z = 27 MeV β [rad] -2 Data: Candlin NPB 3, 63 (988) -.8 -.6 - -.6.8 cos θ

The chiral unitary σ meson Inclusion of KΛ and KΣ πn πn phase shifts Simultaneous fit to π + p K + Σ + Re τ.8 Im τ -. - -.3 - S 3.6 Gasparyan 22 This fit -. - -.3 - P 3 -.5 2 4 6 8 2 s /2 [MeV] 2 4 6 8 2 s /2 [MeV]

The chiral unitary σ meson Inclusion of KΛ and KΣ πn πn phase shifts Simultaneous fit to π + p K + Σ + - - P 33 Re τ.8.6 Fit 22 This fit P 33 Im τ D 33.3 D 33 -. -. 2 4 6 8 2 z [MeV] 2 4 6 8 2 z [MeV]

The chiral unitary σ meson Inclusion of KΛ and KΣ πn πn phase shifts (higher partial waves; selection) Simultaneous fit to π + p K + Σ + Re τ.5 Im τ. -. F 37.3.. SAID solution This fit including π + p --> K + Σ +. G 7 -. 2 4 6 8 2 z [MeV] 2 4 6 8 2 z [MeV]

The chiral unitary σ meson Inclusion of KΛ and KΣ The π + p K + Σ + partial wave amplitudes of Candlin 984 (Comparable quality of the fit) Black solid lines: partial waves π + p --> K + Σ +, Candlin et al., NPB 238, 477 (984) Final 3 Re S3 Re P3 Re P33 Re D33 Re, Im τ Im S3 Re D35 Re F35 Im P3 Im P33 Re F37 Re G37 Im D33 Very different partial wave content! Additional constraints from πn πn indeed necessary. Im D35 Im F37 Im G37 Im F35 8 2 8 2 8 2 8 2 z [MeV]

The chiral unitary σ meson Inclusion of KΛ and KΣ New results on photoproduction (Talk of Fei Huang, S. Krewald) Full gauge invariance respected! p) ( b/sr) d /d ( p 52 39 26 3 2 4 7 6 4 2 6 4 2 (245, 58) (597, 44) (652, 45) (75, 484) (758, 57) (88, 548) (859, 579) (99, 68) (957, 636) 6 2 (278, 84) (32, 27) (4, 277) (45, 33) (5, 356) (555, 386) 6 2 6 2 (deg.) Differential cross section for γp π p (36, 247) 6 2 8 ( p p).6.8. -.8.6.8. -.8.6.8. -.8.6.8. -.8 (244, 57) (275, 82) (322, 29) (35, 24) (4, 277) (45, 33) (5, 349) (55, 384) (65, 426) (666, 459) (73, 483) (769, 524) (8, 544) (862, 58) (895, 6) (96, 638) 6 2 6 2 6 2 (deg.) Photon spin asymmetry for γp π p 6 2 8

The chiral unitary σ meson Inclusion of KΛ and KΣ Conclusions Lagrangian based, field theoretical description of meson-baryon interaction. (Some) chiral constraints are fulfilled (σ meson). Unitarity and full analyticity are ensured. Analytic continuation: precise, model independent determination of resonance parameters (poles). Roper dynamically generated; hints for additionally generated structures. Examples: P(7) (π ), D3(7) (ρn from hidden gauge). Meson and baryon exchange are the relevant degrees of freedom in the 2 nd and 3 rd resonance region. Exchange provides heavy constraints, because all partial waves are linked. With this background, only a few bare states are needed (so far). Coupled channel formalism links different reactions in one combined description: πn πn, π + p K + Σ +,..., γn πn,...

Analytic continuation via Contour deformation...enables access to all Riemann sheets Π σ(z) = q 2 (v σππ (q)) 2 dq z E E 2 + iǫ z E E 2 = q = q c.m. q c.m. = 2z [z2 (m m 2) 2 ][z 2 (m + m 2) 2 ] back Plot q c.m.(z) in the q plane of integration (X: Pole positions). case (a), Im z > : straight integration from q = to q =. case (b), Im z = : Pole is on real q axis. case (c), Im z < : Deformation gives analytic continuation. Special case: Pole at q = branch point at z = m + m 2 (= threshold).

Effective ππn channels: Analytic structure back Three branch points and four sheets for each of the σn, ρn, and π propagators. The cut along Im z = is induced by the cut of the self energy of the unstable particle. The poles of the unstable particle (σ) induce branch points in the σn propagator at z b2 = m N + z, z b 2 = m N + z

Effective ππn channels: Analytic structure back Three branch points and four sheets for each of the σn, ρn, and π propagators. The cut along Im z = is induced by the cut of the self energy of the unstable particle. The poles of the unstable particle (σ) induce branch points in the σn propagator at z b2 = m N + z, z b 2 = m N + z

Couplings g = a to other channels back Nπ Nρ () (S = /2) Nρ (2) (S = 3/2) Nρ (3) (S = 3/2) N (535) S S 8. +.5i S 2.2 5.4i D.5.3i N (65) S S 8.6 2.8i S.9 9.i D.3 2.i N (44) P P.2 5.i P.3 + 3.2i P 3.6 2.6i (62) S 3 S 3 2.9 3.7i S 3..i D 3. +.5i (9) P 3 P 3.2 3.5i P 3 i P 3 i N (72) P 3 P 3 3.7 2.6i P 3. +.8i P 3.+.i F 3. + i N (52) D 3 D 3 8.4.8i D 3.6 +.7i D 3.9 2.i S 3 2.5 22.8i (232) P 33 P 33 7.9 3.2i P 33.3.8i P 33.9 3.i F 33..i (7) D 33 D 33 4.9.i D 33 +.9i D 33 i S 33..9i Nη π () π (2) Nσ N (535) S S.9 2.3i D 5.9 + 4.8i P.4.2i N (65) S S 3. +.5i D 4.3 + i P 2..i N (44) P P. +.i P 4.6.7i S 8.3 27.7i (62) S 3 D 3. 4.i (9) P 3 P 3 5..3i N (72) P 3 P 3 7.7 + 5.5i P 3 4. + 3.i F 3..3i D 3.8 + i N (52) D 3 D 3.6.6i D 3. + i S 3 2.9.7i P 3.6.6i (232) P 33 P 33 (4 to 5) + i( to.5) F 33 (7) D 33 D 33.7.3i S 33 9.7 + 4.5i Resonance couplings g i [ 3 MeV /2 ] to the coupled channels i. Also, the LJS type of each coupling is indicated. For the ρn channels, the total spin S is also indicated.

Zeros and branching ratio to πn, ηn back first sheet second sheet [FA2] P 235 i S 587 45 i 578 38 i D 33 396 78 i S 3 585 7 i 58 36 i P 3 848 83 i 826 97 i P 3 67 38 i 585 5 i P 33 72 64 i D 3 72 64 i 759 64 i Position of zeros of the full amplitude T in [MeV]. [FA2]: Arndt et al., PRC 69 (24). Γ πn /Γ Tot [%] Γ ηn /Γ Tot [%] N (535) S 48 [33 to 55] 38 [45 to 6] N (65) S 79 [6 to 95] 6 [3 to ] N (44) P 64 [55 to 75] [±] (62) S 3 34 [2 to 3] (9) P 3 [5 to 3] N (72) P 3 3 [ to 2] 38 [4±] N (52) D 3 67 [55 to 65]. [3±.4] (232) P 33 [] (7) D 33 3 [ to 2] Branching ratios into πn and ηn. The values in brackets are from the PDG, [Amsler et al., PLB 667 (28)].

Couplings and dressed vertices Residue a vs. dressed vertex Γ vs. bare vertex γ. back Γ ( ) D Σ S D = = = T P = γ ( ) B γ ( ) B G S B + + Γ D γ ( ) B S B Σ Γ D S D Γ ( ) D G S D T NP a = g r Γd Γ( ) d Z Σ = a = (Γ D γ B)/Γ D, r = Σ, Dressed Γ depends on T NP. a Γ γ γ C Γ C r [%] r [%] N (52) D 3 6.4.6i 3.2+.2i 53 6 N (72) P 3.+5.4i.9+4.8i 24 45 (232) P 33.3+3.i 2.8+22.2i 45 4 (62) S 3.+4.3i 5.+5.7i 3 66 (7) D 33 5.4.8i 6.7+.i 33 54 (9) P 3 9.4+.3i.9 3.2i 222 22

Pole repulsion in P 33 back Re P 33.6 - - T NP a + a - /(z-z ) Poles in T NP may occur pole repulsion in T = T NP + T P! Im P 33.8.6 T NP a + a - /(z-z ) 2 3 4 5 z [MeV]

The D 3 partial wave back The N (52) and a dynamically generated pole in T NP. Re D 3 - - Im D 3.8.6 2 4 6 8 z [MeV] T NP : no s-channel N (52). Pole in T NP on 3rd ρn sheet. On physical axis visible through branch point b 2. Pole invisible in full solution. We do not identify it with a dynamically generated N (7). [Ramos, Oset, arxiv:95.973 [hep-ph]]

Observables back g fi und h fi in JLS-Basis: g fi = 2 [ (2j+)d j (θ) k f k i 2 2 j + 2 [ (2j+)d j k f k i 2 2(θ) j τ j(j 2 ) 2 +τ j(j+ 2 ) 2 τ j(j 2 ) 2 τ j(j+ 2 ) 2 ] cos θ 2 ] sin θ 2 h fi = i 2 [ (2j+)d j (θ) k f k i 2 2 j + i 2 [ (2j+)d j k f k i 2 2(θ) j τ j(j 2 ) 2 +τ j(j+ 2 ) 2 τ j(j 2 ) 2 τ j(j+ 2 ) 2 ] sin θ 2 ] cos θ 2

Observables back dσ dω = kf ( g fi 2 + h fi 2 ) k i ( = 2ki 2 2 (2j+)(τ j(j 2 ) 2 +τ j(j+ 2 ) 2) d j (Θ) 2 2 j 2) + (2j+)(τ j(j 2 ) 2 τ j(j+ 2 ) 2) d j 2 2(Θ) j 2 P f = 2Re(gfih fi) g fi 2 + h fi 2 ˆn ( 2Im(h ) fi g fi) β = arctan g fi 2 h fi 2