πn scattering and π photoproduction in a dynamical coupled-channels model

Similar documents
Pion photoproduction in a gauge invariant approach

Meson-baryon interaction in the meson exchange picture

Coupled channel dynamics in Λ and Σ production

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Understanding Excited Baryon Resonances: Results from polarization experiments at CLAS

Light Baryon Spectroscopy What have we learned about excited baryons?

Report on NSTAR 2005 Workshop

Understanding the basic features of Cascade Photoproduction

What do we learn from the inclusion of photoproduction data into the multichannel excited baryon analysis?

Photoexcitation of N* Resonances

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

Electroexcitation of Nucleon Resonances BARYONS 02

Measurement of Double-Polarization

Baryon Resonances in a Coupled Analysis of Meson and Photon induced Reactions

Electroexcitation of Nucleon Resonances BARYONS 02

Overview of N* Physics

MESON PRODUCTION IN NN COLLISIONS

Phenomenological aspects of kaon photoproduction on the nucleon

Dynamical coupled channel calculation of pion and omega meson production

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

Dynamical coupled-channels channels study of meson production reactions from

Exciting Baryons. with MAMI and MAID. Lothar Tiator (Mainz)

A Dyson-Schwinger equation study of the baryon-photon interaction.

The Fascinating Structure of Hadrons: What have we learned about excited protons?

Covariant quark-diquark model for the N N electromagnetic transitions

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Facilities and Detectors for Baryon Physics

Highlights on hadron physics at CLAS. K. Hicks (Ohio U.) Hadron 2011 Conference June 16, 2011

Cornelius Bennhold George Washington University

Coupled-channel Bethe-Salpeter

A NEW RESONANCE IN K + Λ ELECTROPRODUCTION: THE D 13 (1895) AND ITS ELECTROMAGNETIC FORM FACTORS. 1 Introduction

The search for missing baryon resonances

Baryon Spectroscopy: what do we learn, what do we need?

Pion-nucleon scattering around the delta-isobar resonance

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

Pion-Nucleon P 11 Partial Wave

Analyticity and crossing symmetry in the K-matrix formalism.

arxiv:nucl-th/ v1 19 Nov 2000

HLbl from a Dyson Schwinger Approach

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary

arxiv: v1 [nucl-th] 13 Apr 2011

Stability of P 11 Resonances Extracted from πn data. Satoshi Nakamura. [Phys. Rev. C 81, (2010)] (Excited Baryon Analysis Center, JLab)

Introduction to Quantum Chromodynamics (QCD)

The Regge-plus-Resonance (RPR) model for Kaon Production on the Proton and the Neutron

Baryon Spectroscopy: Recent Results from the CBELSA/TAPS Experiment

arxiv: v2 [nucl-th] 18 Sep 2009

Bethe Salpeter studies of mesons beyond rainbow-ladder

Nucleon resonances from dynamical coupled channel approach of meson production reactions T. Sato Osaka U

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

Faddeev equations: a view of baryon properties

Baroion CHIRAL DYNAMICS

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

Dynamical understanding of baryon resonances

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Hunting for the Nucleon Resonances by Using Kaon Photoproduction

LEPS Physics HOTTA, Tomoaki (RCNP, Osaka University) on behalf of the LEPS&LEPS2 collaboration

Measurement of Polarization Observables Pz, P s z and P c z in Double-Pion Photoproduction off the Proton

Quarks and the Baryons

Pseudovector versus pseudoscalar coupling. in kaon photoproduction revisited. Abstract

Quantum Field Theory. Ling-Fong Li. (Institute) Quark Model 1 / 14

Open questions in hadron physics Spectroscopy with the Crystal Barrel Detector Volker Credé

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

Medium Modifications of Hadrons and Electromagnetic Probe

Production and Searches for Cascade Baryons with CLAS

Hadron Spectrospopy & Primakoff Reactions at COMPASS

Gian Gopal Particle Attributes Quantum Numbers 1

The MAID Legacy and Future

Hadron Spectroscopy: Results and Ideas.

SU(3) systematization of baryons. Vadim Guzey. Theory Center, Jefferson Lab

Valence quark contributions for the γn P 11 (1440) transition

arxiv: v2 [nucl-th] 25 Oct 2018

Compositeness of the Δ(1232) resonance in πn scatterings

Isospin-breaking corrections to the pion nucleon scattering lengths

Effective field theory estimates of the hadronic contribution to g 2

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

Sitting in the Interphase: Connecting Experiment and Theory in Nuclear and Hadronic Physics

Exotic baryon resonances in the chiral dynamics

Impact of γ ν NN* Electrocuplings at High Q 2 and Preliminary Cross Sections off the Neutron

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

Excited Nucleons Spectrum and Structure

Lecture 8. CPT theorem and CP violation

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

arxiv: v1 [nucl-th] 14 Aug 2012

Nucleon Resonance Physics

Chiral dynamics and baryon resonances

Introduction to Quantum Chromodynamics (QCD)

Proton Structure and Prediction of Elastic Scattering at LHC at Center-of-Mass Energy 7 TeV

A final state interaction model of resonance photoproduction

Hadron structure with photon and antiproton induced reactions - QCD in the non-perturbative range -

arxiv: v1 [nucl-th] 29 Nov 2012

arxiv:hep-ph/ v2 28 Jul 1995

Discovery of Pions and Kaons in Cosmic Rays in 1947

Richard Williams. Hèlios Sanchis-Alepuz

TETRAQUARKS AND PENTAQUARK(S)

One of the foundational cornerstones of the physics program in Hall B with CLAS is the N* program. πn, ωn, φn, ρn, ηn, η N, ππn KΛ, KΣ, K Y, KY

Transcription:

π scattering and π photoproduction in a dynamical coupled-channels model Fei Huang Department of Physics and Astronomy, The University of Georgia, USA Collaborators: K. akayama (UGA), H. Haberzettl (GWU) M. Döring (Bonn U.), S. Krewald (FZ-Jülich) April 25, 211 JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 1 / 31

Outline Introduction Why s The current status of s Methodology for study Dynamical coupled-channels model Features of Jülich π hadron exchange model Partial wave amplitudes of π π ew developments: inclusion of KY channel & π photoproduction π + p Σ + K + cross sections & polarizations Improvements on π π amplitudes Gauge invariance Cross sections & spin asymmetries for π photoproduction Summary & perspectives JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 2 / 31

Why s. Isgur, Excited ucleons and Hadron Structure (STAR2), ewport ews, 2: There are three main reasons (one for each quark) why I believe that s deserve the special attention they get from the series of Workshops to which 2 belongs: The first is that nucleons are the stuff of which our world is made. As such they must be at the center of any discussion of why the world we actually experience has the character it does. I am convinced that completing this chapter in the history of science will be one of the most interesting and fruitful areas of physics for at least the next thirty years. My second reason is that they are the simplest system in which the quintessentially nonabelian character of QCD is manifest. There are, after all, c quarks in a proton because there are c colors. The third reason is that history has taught us that, while relatively simple, baryons are sufficiently complex to reveal physics hidden from us in the mesons. There are many experiences of this, but one famous example should suffice: Gell-Mann and Zweig were forced to the quarks by 3 3 3 giving the octet and decuplet, while mesons admitted of many possible solutions. JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 3 / 31

s from Particle Data Book 21 Particle Status as seen in L 2I 2J Overall status π η ΛK ΣK π ρ γ (939) P11 (144) P11 (152) D13 (1535) S11 (165) S11 (1675) D15 (168) F15 (17) D13 (171) P11 (172) P13 (19) P13 (199) F17 (2) F15 (28) D13 (29) S11 (21) P11 (219) G17 (22) D15 (222) H19 (225) G19 (26) I1 11 (27) K113 (1232) P33 F (16) P33 o (162) S31 r (17) D33 b (175) P31 i (19) S31 d (195) F35 d (191) P31 e (192) P33 n (193) D35 (194) D33 F (195) F37 o (2) F35 r (215) S31 b (22) G37 i (23) H39 d (235) D35 d (239) F37 e (24) G39 n (242) H311 (275) I3 13 (295) K315 17 (well established) P 33(1232) P 11(144) D 13(152) S 11(1535) S 31(162) S 11(165) D 15(1675) F 15(168) D 33(17) P 13(172) F 35(195) P 31(191) F 37(195) G 17(219) H 19(222) G 19(225) H 311(242) 6 (no evidence from SAID) P 33(16) D 13(17) P 11(171) P 33(192) D 35(193) I 111(26) 12 (exist?) S 31(19) P 13(19) F 17(199) F 35(2) F 15(2) D 13(28) D 15(22) H 39(23) G 39(24) K 113(27) I 313(275) K 315(295) 8 (exist?) P 31(175) D 33(194) S 11(29) P 11(21) S 31(215) G 37(22) D 35(235) F 37(239) PWA s from Karlsruhe-Helsinki (Höhler 79) & Carnegie-Mellon (Cutkosky 8). Only 4-star s confirmed by GWU-SAID (Arndt 6). JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 4 / 31

Some specific questions of study Do the 1-star, 2-star & 3-star s exist? How many resonances in total? The symmetry of baryon spectrum? SU(6)? Where are the missing resonances? The structures of states? Excited qqq states or baryon-meson states? Mass reverse of S 11 (1535) and P 11 (144)? Quark-diquark configuration? Pentaquark? Dominant interactions among constituent quarks? OGE? GBE? Instanton? JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 5 / 31

Methodology for study complete set of data for γ KY There are lots of high precision data from JLab, MIT-Bates, BL-LEGS, Mainz-MAMI, Bonn-ELSA, GRAAL, Spring-8, et al. s are unstable and couple strongly to baryon-meson states Build coupled-channels meson-baryon reaction models to analyze the meson production data extract parameters understand the reaction mechanisms understand the structures and dynamical origins of Most widely used models: K matrix approximation, chiral unitary approach, dynamical coupled-channels model, et al. JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 6 / 31

Theoretical approaches T = V + V T T = V + V G T T: amplitude V: pseudo-potential G : free propagator Sum over all channels and partial waves, and integrate over intermediate momenta. 1 K matrix approximation G = E H +iǫ = P iπδ(e H E H ) iπδ(e H ) Principle-value part of the loop integral neglected off-shell intermediate states omitted integral equation reduced to algebraic equation Unitarity satisfied but analyticity violated Chiral unitary approach V C ū(p )γ µ u(p)(k µ + k µ) C(k + k ) V: contact interaction, momentum-dependent terms neglected S-wave Resonances are dynamically generated Dynamical coupled-channels model On-shell & off-shell effects considered Resonance dynamical generation allowed Unitarity&analyticity respected Examples: Jülich model, EBAC model JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 7 / 31

Dynamical model ingredients T = + X (a) T = V + V T X (b) = U + U X (d) V = + U U (c) = + (e) (a) T = F S F +X (b) T = V + V G T (c) V = f S f +U (d) X = U + U G X T: full amplitude X: non-pole amplitude U: driving term of X V: driving term of T S: dressed res. propagator S : bare res. propagator F : dressed res. vertex f : bare res. vertex = + = + X (a) (b) (a) S = S + S F G f S }{{} self energy Σ (b) F = f +XG f JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 8 / 31

Main features of Jülich dynamical π model (version 22) Channel-space: π η π ρ σ Two-body unitarity guaranteed by scattering equation Full analyticity (no on-shell factorization); resonance dynamical generation allowed Different channels & partial waves correlated through t- & u-channel interactions dynamical generation not easy; no need to model background with resonances Effective interaction based on chiral Lagrangians of Wess & Zumino, supplemented by additional terms for including, ω, η, a, σ σ & ρ fitted by ππ scattering; fitted by π scattering Renormalization of the nucleon pole: Roper: dynamically generated S 1 = S 1 Σ m = m Σ Genuine resonances: S 11 (1535), S 11 (165), S 31 (162), P 31 (191), P 13 (172), D 13 (152), P 33 (1232), D 33 (17) (all are 4-star s) JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 9 / 31

Partial wave amplitudes of π π (Solution 22) π η π ρ σ S 11(1535), S 11(165), S 31(162), P 31(191), P 13(172), D 13(152), P 33(1232), D 33(17) (all are 4-star s).4.2 -.2 -.4 1.8.6.4.2.4.2.8.6.4.2 12 14 16 18 Re S11 Im S11 -.2 -.4 Re P11 1 Im P11 12 14 16 18 W [MeV] 12 14 16 18 12 14 16 18 12 14 16 18 Re S31 Im S31 Re P31 Im P31 12 14 16 18 W [MeV] Re P13 Im P13 Re D13 Im D13 12 14 16 18 W [MeV] Re D33 Im D33 12 14 16 18 W [MeV] JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 1 / 31 Re P33 Im P33.4.2 -.2 -.4 1.8.6.4.2.4.2 -.2 -.4 1.8.6.4.2

ew developments: inclusion of ΛK & ΣK channels K Λ, Σ Λ, Σ K Σ K Search for missing resonances t- & u-channel: SU(3) symmetry K Σ, Σ Λ Strong constraints from simultaneous fit of π π & π KY π π π Start from π + p Σ + K + : pure isospin 3/2 High spin resonances: J = 5/2, 7/2 K σ, ω, φ Λ K ρ Σ K σ, ω φ, ρ Σ K Λ K Λ K Σ JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 11 / 31

Differential cross sections of π + p Σ + K + 1 8 z = 1822 MeV 1845 MeV 187 MeV 1891 MeV 6 4 dσ/dω [ µb / sr ] 2 1 8 1926 MeV 1939 MeV 197 MeV 1985 MeV 6 4 2-1 -.5.5 1 -.5.5 1 -.5.5 1 -.5.5 1 cosθ 4-star F 35(195) & F 37(195), & 3-star P 33(192) & D 35(193) needed JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 12 / 31

Polarizations of π + p Σ + K + 1.5 z = 1822 MeV 1845 MeV 187 MeV 1891 MeV 1.5 -.5-1 P -1.5 1 1926 MeV 1939 MeV 197 MeV 1985 MeV.5 -.5-1 -1.5-1 -.5.5 1 -.5.5 1 -.5.5-11 -.5.5 1 cosθ 4-star F 35(195) & F 37(195), & 3-star P 33(192) & D 35(193) needed JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 13 / 31

Total cross sections of π + p Σ + K + S31 σ [mb].1 P33 F37.1 D33 P31 F35 D35 17 18 19 2 21 z [MeV] 4-star F 35(195) & F 37(195), & 3-star P 33(192) & D 35(193) needed JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 14 / 31

π π amplitudes (simultaneous fit to π + p Σ + K + ).4.2 -.2 -.4 Re P33 Re D33 1.8.6.4.2.2 Im D33 Im P33 Inclusion Σ + K + moderate improvements on π π P 33 (192) ( ): important for π + p Σ + K +, limited contributions to π π -.1 -.2.1 D 35 (193) ( ): similar to P 33 (192) 12 14 16 18 2 z [MeV] 12 14 16 18 2 z [MeV] non-polar part full result solution 22 ΣK is needed for identifying P 33 (192) & D 35 (193) P 33(1232) (1216,96) D 33(17) (1644, 252) P 33(16) (1455,694) P 33(192) (1884, 229) JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 15 / 31

ew developments: π photoproduction To get M µ & J µ, attach a photon everywhere to ; M = + + + M µ = M µ s + M µ u + M µ t + M µ int = + U + X + + + U = + + + + + U U = + + + JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 16 / 31

ecessity of gauge invariance Gauge invariance is a fundamental symmetry for electromagnetic interaction. Local gauge invariance for charged Dirac fields L = ψ(id/ m)ψ 1 4 Fµν F µν, where D µ is the gauge covariant derivative, D µ µ + iea µ(x). L is invariant under ψ(x) e iα(x) ψ(x), A µ A µ 1 e µα(x). The electromagnetic field is a consequence of the local gauge invariance of the Lagrangian for charged Dirac fields Local gauge invariance is a basic principle to introduce the interactions of charged particles and the electromagnetic fields Gauge invariance must be satisfied for photo-& electro-production JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 17 / 31

Ward-Takahashi Identity & current conservation Equivalent expressions for gauge invariance: GCD, WTI, GWTI Gauge invariance current conservation Gauge covariant derivative (GCD) minimum coupling µ D µ µ + iea µ(x) Ward-Takahashi Identity (WTI) for Γ µ & Γµ π k µγ µ (p, p) = S 1 p Q Q Sp 1 k µγ µ π(q, q) = 1 q Q π Q π 1 q Generalized Ward-Takahashi Identity (GWTI) for π production current k µm µ = F sτ S p+kq is 1 p + S 1 p Q f S p k F uτ + 1 p p +k Qπ p p Ftτ on shell Current conservation k µm µ = JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 18 / 31

Gauge invariance violation In a full theory (no form factors & truncations), gauge invariance is respected (minimum coupling, µ D µ µ + iea µ(x)) Real-world calculations require form factors & truncations M = + + + U = + + + = + + U X + + + U Inclusion sideways form factors will destroy gauge invariance, since form factors are usually functions of the momenta of exchanged particles Truncations usually also destroy gauge invariance Prescriptions are needed to restore gauge invariance The vast majority of existing models does not satisfy gauge invariance Our model is gauge invariant (amplitudes constructed to satisfy the GWTI) JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 19 / 31

Prescription to restore gauge invariance M = + + + M µ = M µ s + M µ u + M µ t + M µ int Generalized Ward-Takahashi Identity (GWTI) for M µ k µm µ = F sτ S p+kq is 1 p + S 1 p Q f S p k F uτ + 1 p p +k Qπ p p Ftτ Constraints on interaction current M µ int k µm µ int = Fsτ Qi + Qf Fuτ +Qπ Ftτ = + U + X + + + U M µ int = M µ c + X G (M µ u + Mµ t + M µ c ) T Constraints on generalized contact current M µ c k µm µ c = F sτ Q i + Q f F uτ +Q π F tτ JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 2 / 31

Choosing the generalized contact current M µ c Constraints: gauge invariance; contact term; crossing symmetry Choosing the generalized contact current M c µ as {[ M c µ = g πγ 5 λ+(1 λ) q/ ] } C µ +(1 λ) γµ 2m 2m eπft C µ (2q k) µ ( (2p = e π t q 2 f t ˆF )+e k) µ f u p 2 ( ˆF = 1 ĥ(1 δs fs)(1 δu fu)(1 δt ft) (2p+k) f u ˆF )+e µ ( ) i s p 2 f s ˆF k, p, q, p : 4-momenta for incoming γ, & outgoing π, ĥ: fit parameter f x: form factors for corresponding channels Check gauge invariance: M µ c satisfies k µm µ c = F s e i + F u e f + F t e π If no form factors, i.e. f x = 1, C µ =, M c µ g πγ 5 (1 λ) γµ eπ (Kroll-Ruderman term) 2m JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 21 / 31

Photoproduction amplitudes: summary M = + B + X B T (a) M µ = F S J µ + B µ + X G B µ T M = + B + T B T (b) M µ = F S J µ s + Bµ + T G B µ T B = + + (c) B µ = M µ u + M µ t + M µ c = + T + T + T (a) J µ = J µ s + F G B µ T = + + L + L + L J µ s (b) = J µ + mµ KR G F + f G B µ L For details about J µ s, see: H. Haberzettl, F. Huang, and K. akayama, arxiv:113.265 JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 22 / 31

Channels & interaction diagrams π γ π,,r γ +, π (a) γ π,ρ,ω,a 1 (b) (a): s-channel for γ π S 11(1535) S 11(165) S 31(162) P 31(191) P 13(172) D 13(152) P 33(1232) D 33(17) (b): u- and t-channel for γ π η γ + η ρ,ω γ (c) (c): u- and t-channel for γ η (d): u- and t-channel for γ π π γ +, π π,ρ γ (d) Diagrams (c) and (d) only contribute within the FSI loop integral. JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 23 / 31

Results: dσ/dω & Σ γ for γ + p π + + n + n) ( b/sr) d /d ( p 36 27 18 9 24 16 8 24 16 8 18 12 6 (25, 1162) 6 12 (28, 1186) (32, 1217) (6, 1416) (65, 1449) (725, 1497) (775, 1528) (825, 1558) (875, 1588) (925, 1617) (975, 1646) 6 12 6 12 (deg.) (36, 1247) (4, 1277) (45, 1313) (5, 1349) (55, 1383) 6 12 18 + n) ( p 1.6.8. -.8 1.6.8. -.8 1.6.8. -.8 1.6.8. -.8 (244, 1157) 6 12 (275, 1182) (322, 1219) (6, 1416) (65, 1449) (688, 1474) (75, 1513) (8, 1543) (848, 1572) (9, 163) (952, 1633) 6 12 6 12 (deg.) (35, 124) (4, 1277) (45, 1313) (5, 1349) (55, 1383) 6 12 18 Differential cross sections for γ+ p π + + n Photon spin asymmetries for γ+ p π + + n S 11 (1535), S 11 (165), S 31 (162), P 31 (191), P 13 (172), D 13 (152), P 33 (1232), D 33 (17) JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 24 / 31

Results: dσ/dω & Σ γ for γ + p π + p p) ( b/sr) d /d ( p 52 39 26 13 21 14 7 6 4 2 6 4 2 (245, 1158) (597, 1414) (652, 145) (75, 1484) (758, 1517) (88, 1548) (859, 1579) (99, 168) (957, 1636) 6 12 (278, 1184) (32, 1217) 6 12 6 12 (deg.) (36, 1247) (4, 1277) (45, 1313) (51, 1356) (555, 1386) 6 12 18 p) ( p 1.6.8. -.8 1.6.8. -.8 1.6.8. -.8 1.6.8. -.8 (244, 1157) 6 12 (275, 1182) (322, 1219) (615, 1426) (666, 1459) (73, 1483) (769, 1524) (81, 1544) (862, 158) (895, 16) (961, 1638) 6 12 6 12 (deg.) (35, 124) (4, 1277) (45, 1313) (5, 1349) (551, 1384) 6 12 18 Differential cross sections for γ + p π + p Photon spin asymmetries for γ + p π + p S 11 (1535), S 11 (165), S 31 (162), P 31 (191), P 13 (172), D 13 (152), P 33 (1232), D 33 (17) JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 25 / 31

- Results: dσ/dω & Σ γ for γ + n π + p - p) ( b/sr) d /d ( n 48 36 24 12 27 18 9 27 18 9 18 12 6 (24, 1155) 6 12 (27, 1179) (313, 1213) (39, 1271) (436, 135) (51, 1351) (6, 1418) (64, 1444) 6 12 (36, 1249) (54, 1378) (7, 1483) (748, 1513) (8, 1545) (85, 1575) (9, 164) (95, 1633) 6 12 6 12 18 (deg.) p) ( n 1.6.8. -.8 1.6.8. -.8 1.6.8. -.8 1.6.8. -.8 (25, 1163) 6 12 (3, 123) (33, 1226) (67, 1463) (71, 1489) (75, 1514) (79, 1539) (819, 1557) (85, 1575) (9, 164) (947, 1632) 6 12 6 12 (deg.) (35, 1241) (4, 1278) (45, 1315) (5, 135) (63, 1438) 6 12 18 Differential cross sections for γ+ n π + p Photon spin asymmetries for γ+ n π + p S 11 (1535), S 11 (165), S 31 (162), P 31 (191), P 13 (172), D 13 (152), P 33 (1232), D 33 (17) JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 26 / 31

Low-energy predictions - + d /d ( p n) ( b/sr) 9 6 3 14 7 W = 18 W = 1112 p) ( b/sr) d /d ( p.3.2.1. 2 1 W = 184 W = 1112 p) ( b/sr) d /d ( n 15 1 5 18 9 W = 185 W = 1112 M π th = 177 M π+ n th = 179 M π p th = 173 M π p th = 178 6 12 18 (deg.) 6 12 18 (deg.) 6 12 18 (deg.) Close to threshold: ChPT constraints for theoretical models We use Wess & Zumino chiral Lagrangians, but have form factors : isospin basis overall agreement reasonable - - - - : particle basis remarkable agreement Apart from isospin symmetry violation effects, our model works quite well at low energies A closer comparison with low-energy data requires a calculation in fully particle basis JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 27 / 31

- Contributions from loop integral & M µ c 36 24 (28, 1186) 3 2 (278, 1184) 42 28 (27, 1179) + n) ( b/sr) 12 2 (6, 1416) p) ( b/sr) 1 4 (597, 1414) p) ( b/sr) 14 24 (6, 1418) M µ = F S J s µ + M u µ + Mµ t + M c µ ( + T G M µ u + M t µ + M c µ ) T d /d ( p 1 2 (825, 1558) d /d ( p 2 4 (88, 1548) d /d ( n 12 2 (8, 1545) : full calculation : no loop integral - - - - : no M c µ apart from K.R. 1 2 1 6 12 18 (deg.) 6 12 18 (deg.) 6 12 18 (deg.) Contribution from the loop integral is important The terms apart from the Kroll-Ruderman term in M c µ keeping gauge invariance is important give significant effects JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 28 / 31

Results: γ π total cross sections (mb).4.3.2.1..3.2.1..3.2.1. 1.1 1.2 1.3 1.4 1.5 1.6 p p n W (GeV) n p p : full calculation : no loop integral - - - - : no M µ c apart from Kroll-Ruderman term Data not included in the fit Contribution from the loop integral is important Effect of the terms apart from Kroll-Ruderman term in M c µ is significant for γp π + n For γp π p, the effect of M c µ on dσ/dω is largely suppressed at backward angles by sin θ JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 29 / 31

Summary & perspectives Jülich dynamical coupled-channel model π η π ρ σ; analyticity&unitarity respected Wess & Zumino chiral Lagrangian+, ω, η, a, σ ucleon pole & dynamically generated Roper S 11 (1535), S 11 (165), S 31 (162), P 31 (191), P 13 (172), D 13 (152), P 33 (1232), D 33 (17) ew developments: π + p K + Σ + SU(3) for t- & u-channel interactions Simultaneous fit of π π & π + p Σ + K + 4-star F 35(195) & F 37(195), & 3-star P 33(192) & D 35(193) needed dσ/dω & P described quite well ew developments: π photoproduction Gauge invariance strictly respected dσ/dω & Σ γ described quite well Good low energy predictions Loop integral& M c µ (apart from K.R.) are important ext step work: ΛK & ΣK (I = 1/2) channels,ω channel Photoproduction of η, K, ω & electroproduction of π Electromagnetic couplings JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 3 / 31

Covariance & 3-D integral equation Jülich π model TOPT T TO (p, p; s) = V TO (p, p; s) + d 3 p V TO (p, p ; s) G TO (p, s)t TO (p, p; s) G TO (p, s) = 1 s E(p ) ω(p )+i Converting to a covariant 3-D reduction like equation V(p, p; s) (2π) 3 2E(p ) 2ω(p ) 2E(p) 2ω(p) V TO (p, p; s) T(p, p; s) (2π) 3 2E(p ) 2ω(p ) 2E(p) 2ω(p) T TO (p, p; s) T(p, p; s) = V(p, p; d 3 p s) + (2π) 3 V(p, p ; s) G (p, s) T(p, p; s) G (p, s) 1 1 2E(p ) 2ω(p ) s E(p ) ω(p )+i Similarly, make 3-D reduction of the covariant photoproduction equation JLab, ewport ews, Virginia, USA π scattering& π photoproduction April 25, 211 31 / 31