Neutrinos in Supernova Evolution and Nucleosynthesis

Similar documents
Neutrino Oscillations in Core-Collapse Supernovae

Analysis of Neutrino Oscillation experiments

Neutrinos in supernova evolution and nucleosynthesis

Sterile Neutrinos in July 2010

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Status of Light Sterile Neutrinos Carlo Giunti

Neutrinos and explosive nucleosynthesis

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Phenomenology of neutrino mixing in vacuum and matter

Solar neutrinos and the MSW effect

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Status of Light Sterile Neutrinos Carlo Giunti

Identifying the neutrino mass hierarchy with supernova neutrinos

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

Neutrinos from Black Hole Accretion Disks

Impact of light sterile!s in LBL experiments "

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Solar and atmospheric ν s

Overview of Reactor Neutrino

Sterile Neutrinos. Carlo Giunti

Neutrino Masses in Cosmology, Neutrinoless Double-Beta Decay and Direct Neutrino Masses Carlo Giunti

Neutrino Physics: an Introduction

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Collective Neutrino Oscillations in Supernovae. Huaiyu Duan

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Short baseline neutrino oscillation experiments at nuclear reactors

C. Giunti Sterile Neutrino Mixing NOW Sep /25

Sterile Neutrino Searches: Experiment and Theory Carlo Giunti INFN, Sezione di Torino

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

Sterile neutrinos: to be or not to be?

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Nuclear physics input for the r-process

Status of the Sterile Neutrino(s) Carlo Giunti

Neutrino phenomenology Lecture 2: Precision physics with neutrinos

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

Recent Discoveries in Neutrino Physics

Outline. (1) Physics motivations. (2) Project status

Diffuse Supernova Neutrino Background (DSNB): status and updates

Neutrino Anomalies & CEνNS

Supernova neutrinos for neutrino mixing and SN astrophysics

Overview of mass hierarchy, CP violation and leptogenesis.

Galactic Supernova for neutrino mixing and SN astrophysics

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Oscillations Beyond Three-Neutrino Mixing. Carlo Giunti

Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech

arxiv: v1 [hep-ex] 22 Jan 2009

Solar Neutrino Oscillations

Li in a WbLS Detector

Neutrino Oscillations

Neutrino Pendulum. A mechanical model for 3-flavor Neutrino Oscillations. Michael Kobel (TU Dresden) PSI,

Is nonstandard interaction a solution to the three neutrino tensions?

Prospects of Reactor ν Oscillation Experiments

Neutrinos and Astrophysics

Recent results from Super-Kamiokande

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

1. Neutrino Oscillations

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

The reactor antineutrino anomaly & experimental status of anomalies beyond 3 flavors

Neutrino Oscillations and the Matter Effect

Particle Physics WS 2012/13 ( )

The Solar Neutrino Day-Night Effect. Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH

The KTY formalism and the neutrino oscillation probability including nonadiabatic contributions. Tokyo Metropolitan University.

Probing Extra-Dimensions with Neutrinos Oscillations

The Reactor Antineutrino Anomaly

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

Neutrinos as a Unique Probe: cm

Diffuse Supernova Neutrinos

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Why neutrinos? Patrick Huber. Center for Neutrino Physics at Virginia Tech. KURF Users Meeting June 7, 2013, Virginia Tech. P. Huber VT-CNP p.

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

- Future Prospects in Oscillation Physics -

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

Neutrino oscillation experiments: Recent results and implications

Nuclear robustness of the r process in neutron-star mergers

An overview of neutrino physics

Available online at ScienceDirect. Physics Procedia 61 (2015 ) K. Okumura

Searching for Physics Beyond the Standard Model. IceCube Neutrino Observatory. with the. John Kelley for the IceCube Collaboration

Inferring the state of matter at neutron star interiors from simulations of core-collapse supernovae?

Neutrino Physics: Lecture 1

Two hot issues in neutrino physics

Neutrino Physics: Lecture 12

Andrey Formozov The University of Milan INFN Milan

Non oscillation flavor physics at future neutrino oscillation facilities

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Neutrino mixing. Outline: description/review of mixing phenomenology possible experimental signatures short review of existing experimental results

arxiv: v3 [hep-ph] 23 Jan 2017

The Daya Bay Reactor Neutrino Experiment

Probing Neutrinos by DSNB(Diffuse Supernova Neutrino Background) Observation

Reactor anomaly and searches of sterile neutrinos in experiments at very short baseline

L int = 1. V MSW =2 1/2 G F ρ e. (2) V W (r) =2 1/2 G F ρ ν (r), (5)

hep-ph/ Oct 1994

Neutrino Physics: an Introduction

Flavor oscillations of solar neutrinos

Transcription:

Neutrinos in Supernova Evolution and Nucleosynthesis Gabriel Martínez Pinedo The origin of cosmic elements: Past and Present Achievements, Future Challenges, Barcelona, June 12 15, 2013 M.-R. Wu, T. Fischer, GMP, Y.-Z. Qian, arxiv:1305.2382 [astro-ph.he] Nuclear Astrophysics Virtual Institute

Introduction Sterile neutrinos and Supernova Summary Core-collapse supernova "! H.-Th. Janka, et al, PTEP 01A309 (2012)

Multidimensional simulations M. Liebendörfer et al. (2012) B. Müller, H.-Th. Janka & Marek, ApJ 756, 84 (2012) 3D supernova models with ELEPHANT 500 450 400 350 Radius [km] 300 250 200 150 15Ms, 432, LS EOS 15Ms, 600, LS EOS 100 11Ms, 600, LS EOS 40Ms, 432, LS EOS 50 15Ms, 432, TM1 EOS 15Ms, 432, DD2 EOS 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Time After Bounce [s] Lνe [1052 erg/s] 3.0 2.5 2.0 1.5 1.0 400 600 800 11.2-1D 15.0-1D 15.0-2D 11.2-2D 11.2-3D 15.0-3D 3 o 2 o 1.5 o 1 o 0.5 o Lνe [1052 erg/s] 3.0 2.5 2.0 1.5 1.0 15.0-3D 11.2-2D 11.2-1D 11.2-3D 15.0-1D 15.0-2D 400 600 800 3 o 2 o 1.5 o 1 o 0.5 o 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 200 400 600 800 1000 Ṁ[M /s] texp [ms] F. Hanke, A. Marek, B. Müller & H.-Th. Janka, ApJ 755, 138 (2012)

Three-flavor neutrino parameters ν e ν µ ν τ 1 0 0 c 13 0 s 13 e iδ c 12 s 12 e iλ 2 0 = 0 c 23 s 23 0 1 0 s 12 c 12 e iλ 2 0 0 s 23 c 23 s 13 e iδ 0 c 13 0 0 e iλ 3 ν 1 ν 2 ν 3 U e1 U e2 U e3 = U µ1 U µ2 U µ3 U τ1 U τ2 U τ3 ν 1 ν 2 ν 3 normal hierarchy (m 3 ) 2 (m 2 ) 2 inverted hierarchy (m 1 ) 2 ( m 2 ) sol ( m 2 ) atm ν e ν µ ν τ ( m 2 ) atm m 2 sol = m 2 21 = (7.50 ± 0.20) 10 5 ev 2 m 2 atm = m 2 32 = (2.43 ± 0.13) 10 3 ev 2 θ 12 = 34.4 ± 1.3 θ 23 = 45 ± 4 θ 13 = 8.8 ± 0.8 ( m 2 ) sol (m 2 ) 2 (m 1 ) 2 (m 3 ) 2 At least two massive neutrinos: m 2 > 8.7 10 3 ev (Normal hierarchy) m 1 > 0.05 ev (Inverted hierarchy) Tritium decay m β = ( k U ek 2 m 2 k) 1/2 < 2 ev

Vacuum Oscillations As m 2 21 m2 32 the 3-flavor oscillation problem can be reduced to a two-flavor problem. In this case the probability that a ν e of energy E is observed as ν e after traveling a distance L is: P(ν e ν e ) = 1 sin 2 (2θ) sin 2 m2 21 L 4E For solar neutrinos (E νe 10 MeV) the oscillation length becomes: λ osc = 4πE m 2 21 300 km As the distance Sun-Earth and the radius of Earth are much larger than the oscillation length we can average the oscillation probability to get: P(ν e ν e ) = 1 1 2 sin2 (2θ) 0.57 around 40% (independently of energy) of Solar neutrinos should oscillate to other flavors.

Observations neutrinos Sun W. C. Haxton, R. G. Hamish Robertson & A. Serenelli, arxiv:1208.5723 [astro-ph.sr] Different detectors are sensitive to different neutrino energies Oscillation probability depends on neutrino energy

Matter effects As neutrinos travel through the Sun they scatter mainly with electrons. ν e have a much larger cross section that ν µ,τ. The evolution is governed by a combination of matter and vacuum hamiltonians (Mikheyev & Smirnov 1985, 1986; Wolfenstein 1978): H = H vac + H matter with H matter in the flavor basis: ( ) 2GF n H matter = e 0, n e Electron number density 0 0 The neutrino effective mass and mixing angle depends on the local value of the electron density.

MSW mechanism W. C. Haxton, R. G. Hamish Robertson & A. Serenelli, arxiv:1208.5723 [astro-ph.sr] (x) /2 H> e> (x) v H> > m i 2 2E The density at the resonance is: L> > L> e> ρ r = m u m 2 21 cos 2θ 2 2G F E (x c ) 0 that has to be smaller than the sun core density: ρ core 160 g cm 3. Hence, only neutrinos with: E m u m 2 21 cos 2θ 2 1.5 MeV 2G F ρ core will be affected by the MSW mechanism.

Solar Neutrinos and MSW mechanism Neutrinos with E 1.5 MeV will be affected by the MSW mechanism: P(ν e ν e ) = 1 2 1 cos(2θ) 0.32 2 Neutrinos with E 1.5 MeV will follow vacuum oscillations P(ν e ν e ) = 1 1 2 sin2 (2θ) 0.57 Bellini et al, Phys. Rev. Lett 108, 051302 (2012)

What about sterile neutrinos? For active-sterile neutrino oscillations m 2 as 1 ev and the resonances appear at densities relevant for supernova physics [Nunokawa, Peltoniemi, Rossi & Valle, PRD 56, 1704 (1997)]

Evidence for sterile neutrinos m 2 = 0.44 ev 2, sin 2 2θ 14 = 0.13 Short baseline reactor neutrino oscillation experiments show a dissappearance of neutrinos at distances 10 100 m (Reactor anomaly). observed / no osc. expected 1.1 1 0.9 0.8 0.7 ILL m 2 = 1.75 ev 2, sin 2 2θ 14 = 0.10 m 2 = 0.9 ev 2, sin 2 2θ 14 = 0.057 Bugey3,4 Rovno, SRP SRP Rovno Krasn Gosgen Bugey3 Gosgen Krasn Gosgen Krasn Bugey3 10 100 distance from reactor [m] Gallium solar neutrino experiments have been tested with radioactive 51 Cr or 37 Ar sources resulting in a deficit with respect to theoretically expected value 10 0 (Gallium anomaly) θ 14 9 Kopp, Machado, Maltoni, Schwertz, JHEP05 10 1 95 CL (2013) 050 10 3 10 2 10 1 ev 2 m 41 2 10 1 SBL reactors All Ν e disapp U e4 2 LBL reactors Solar KamL C 12 Gallium

MSW mechanism For the case of active (electron neutrinos)-sterille neutrinos. The ν e -ν e entry of the hamiltonian matrix is: Hmatter ee = 2G F n b (c e vy e + cv p Y p + c n vy n ) = 3 ( 2G F n b Y e 1 ) 3 And the MSW resonance for neutrinos will appear when: m 2 cos 2θ = 3 ( 2 2E ν 2 G Fn b Y e 1 ) = Vν eff 3 e, and for antineutrinos: m 2 cos 2θ = 3 2 2E ν 2 G Fn b ( Y e 1 ) = V ν eff 3 e,

Supernova profiles Y e 0.6 0.5 0.4 0.3 0.2 0.1 0.0 R νe R sh (a) 10 6 10 5 10 4 10 3 10 2 10 1 10 0 10-1 100 1000 10-2 r (km) 2 2G F n b E ν / δm 2 V eff ν e (b) δm 2 cos2θ 2E ν 0 R νe R IR R sh R OR r

Neutrino conversion at the resonance For neutrinos we have: ν L = ν e, ν H = ν s (Before res.), ν L = ν s, ν H = ν e (After res.) For antineutrinos we have: ν L = ν s, ν H = ν e (Before res.), ν L = ν e, ν H = ν s (After res.) Both ν e and ν e can be converted to sterile neutrinos as they cross the resonance at Y e 1/3.

Survival probability Survival Probability P ee 1 0.8 0.6 0.4 0.2 0 L-Z formula Numerical integration 0 10 20 30 40 50 E(MeV) We define E 0.5 as the energy for which the probability is 0.5. Neutrinos with lower energies are converted to sterile neutrinos

Evolution resonance radius and E 0.5 r (km) 200 150 100 50 (a) R IR R sh R νe (b) E 0.5 (MeV) 0 40 30 20 10 0 (c) 10 100 t pb (ms) (d) 0 100 200 300 t pb (ms) 8.8 M (left) 11.0 M (right)

8.8 M (left) 11.0 M (right) Consequences q' νn / q νn 1 0.8 0.6 0.4 0.2 0 (a) ν e ν e (b) L ν (10 51 erg/s) E ν (MeV) 40 30 20 10 0 20 15 10 5 (c) (e) (d) (f) λ νe p / λ ν e n 1.5 1 0.5 0 10 100 t pb (ms) (g) (h) 0 100 200 300 t pb (ms)

Dependence mixing angle and δm 2 Countours of ratios of heating rates. 10 10-4 δm 2 (ev 2 ) 1 0.9 0.5 0.05 0.99 0.1 0.01 0.1 1 sin 2 2θ Supernova can help to constrain the mixing parameters

Summary There is growing evidence for the existence of sterile neutrinos with masses in the ev range If confirmed, active-sterile oscillations due to the MSW mechanism will occur in the region between neutrinosphere and supernova shock. The oscillations will affect supernova dynamics (reducing heating rates) and nucleosynthesis (affecting the Y e profile of matter). It is necessary to include a self-consistent treatment of oscillations in supernova simulations. They will help to constrain the allowed parameter space.