High-Energy Neutrinos from Gamma-Ray Burst Fireballs

Similar documents
Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

Multi-messenger light curves from gamma-ray bursts

Search for high-energy neutrinos from GRB130427A with the ANTARES neutrino telescope

Magnetic field and flavor effects on the neutrino fluxes from cosmic accelerators

Neutrinos from GRBs, and the connection to gamma- and cosmic-rays

High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection

Gamma-ray bursts: high-energy neutrino predictions in the IceCube era

IceCube neutrinos and the origin of cosmic-rays. E. Waxman Weizmann Institute of Science

How bright can the brightest neutrino source be?

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

Neutrinos from charm production: atmospheric and astrophysical applications

Difficulties of Star-forming Galaxies as the Source of IceCube Neutrinos. Takahiro Sudoh (UTokyo)

arxiv: v1 [astro-ph.he] 4 Jan 2018

Citation PHYSICAL REVIEW LETTERS (2006), 97( RightCopyright 2006 American Physical So

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

The Secondary Universe

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration

A search for neutrinos from Gamma Ray Bursts with the IceCube Neutrino Detector

Understanding High Energy Neutrinos

Particle Physics Beyond Laboratory Energies

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

neutrino astronomy francis halzen university of wisconsin

Very high energy photons and neutrinos: Implications for UHECR

Milagro A TeV Observatory for Gamma Ray Bursts

Tidal Disruption of Stars as a possible origin of ultra-high energy cosmic ray and neutrinos

On The Nature of High Energy Correlations

Neutrino Astronomy fast-forward

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

PoS(NEUTEL2017)079. Blazar origin of some IceCube events

Galactic diffuse neutrino component in the astrophysical excess measured by the IceCube experiment

Cosmic Neutrinos in IceCube. Naoko Kurahashi Neilson University of Wisconsin, Madison IceCube Collaboration

Using Gamma Ray Bursts to Estimate Luminosity Distances. Shanel Deal

Probing New Physics with Astrophysical Neutrinos

arxiv:astro-ph/ v1 7 Jul 1999

Neutrino Astronomy. Ph 135 Scott Wilbur

Cosmic IceCube Neutrino Observatory Elisa Resconi

High Energy Neutrino Astrophysics Latest results and future prospects

Possible Multi-Messenger Sources of Gravitational Waves and Particle Radiation

IceCube Results & PINGU Perspectives

GRB : Modeling of Multiwavelength Data

Follow-up of high energy neutrinos detected by the ANTARES telescope

Cherenkov Telescope Array ELINA LINDFORS, TUORLA OBSERVATORY ON BEHALF OF CTA CONSORTIUM, TAUP

Investigation of Obscured Flat Spectrum Radio AGN with the IceCube Neutrino Observatory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

Ultra-high energy astrophysical cosmic rays and neutrinos: a half-century mystery. Mauricio Bustamante

IceCube: Ultra-high Energy Neutrinos

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

in multimessenger astrophysics.

A Search for Astrophysical Neutrinos in Coincidence with Gamma Ray Bursts

Radio, γ-ray, and Neutrino Emission from Star- Forming Galaxies

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

GW from GRBs Gravitational Radiation from Gamma-Ray Bursts

Gamma-rays, neutrinos and AGILE. Fabrizio Lucarelli (ASI-SSDC & INAF-OAR)

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Astroparticle Physics with IceCube

A Summary of recent Updates in the Search for Cosmic Ray Sources using the IceCube Detector

High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova

A few grams of matter in a bright world

Antonio Capone Univ. La Sapienza INFN - Roma

Searches for astrophysical sources of neutrinos using cascade events in IceCube

High Energy Emission. Brenda Dingus, LANL HAWC

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

High energy neutrinos from astrophysical sources: An upper bound

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB C

Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

Neutrinos from GRB. Péter Mészáros Pennsylvania State University

High-energy neutrinos

Neutrino phenomenology Lecture 3: Aspects of neutrino astrophysics

News from Fermi LAT on the observation of GRBs at high energies

On the GCR/EGCR transition and UHECR origin

Ultra-high energy cosmic rays: gamma-ray bursts messengers?

Possible sources of very energetic neutrinos. Active Galactic Nuclei

EeV Neutrinos in UHECR Surface Detector Arrays:

Probing Lorentz Invariance Violation

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Multiwavelength Search for Transient Neutrino Sources with IceCube's Follow-up Program

Results from the ANTARES neutrino telescope with six years of data

Neutrino Astronomy with AMANDA

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

VERS UNE ASTRONOMIE NEUTRINO AVEC IceCube+ANTARES+KM3NeT

arxiv: v3 [astro-ph.he] 21 Jun 2011

UHE NEUTRINOS AND THE GLASHOW RESONANCE

High Energy Neutrinos and Cosmic-Rays from Low-Luminosity Gamma-Ray Bursts?

STRUCTURED JETS IN BL LAC OBJECTS: EFFICIENT PEV NEUTRINO FACTORIES?

Gamma-Ray Bursts. Felix Aharonian Fest, Barcelona, Peter Mészáros, Pennsylvania State University. Recent results

High energy neutrino signals from NS-NS mergers

UHECRs sources and the Auger data

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Probing the Structure of Jet Driven Core-Collapse Supernova and Long Gamma Ray Burst Progenitors with High Energy Neutrinos

Transcription:

High-Energy Neutrinos from Gamma-Ray Burst Fireballs Irene Tamborra GRAPPA Center of Excellence, University of Amsterdam TAUP 2015 Turin, September 9, 2015

Outline IceCube detection of high-energy neutrinos Neutrinos from gamma-ray burst fireballs Diffuse emission from gamma-ray bursts Conclusions This talk is based on work in collaboration with Shin ichiro Ando, arxiv: 1504.00107, JCAP (2015, in press).

High-energy neutrino astronomy is happening! 34 year year ~7 2015 > 5σ% sigma talk by Karle IceCube observed 54 events over four years in the 25 TeV-2.8 PeV range. Zenith Distribution compatible with isotropic flux. Flavor distribution consistent with e : µ : =1:1:1. 7 evidence for astrophysical flux * IceCube Collaboration, Science 342 (2013) 6161, PRL 113 (2014) 101101, PRD 91 (2015) 2, 022001. F. Halzen @ INvISIBLES 2015. See also: IceCube Collaboration, ApJ 809 (2015) 1, 98, PRL 115 (2015) 8, 081102.

Where are these neutrinos coming from? New physics? Galactic origin [sub-dominant contribution or new unknown sources?] Extragalactic origin [flux compatible with Waxman&Bahcall bound] Star-forming galaxies Active galactic nuclei Gamma-ray bursts Warning: More statistics needed! No strong preference so far. * Anchordoqui et al., JHEAp 1-2 (2014) 1.

Neutrinos from gamma-ray bursts Sizable emission of high-energy neutrinos from gamma-ray bursts expected. * Waxman & Bahcall, PRL 78 (1997) 2292, PRD 64 (2001) 023002. Guetta et al., Astropart. Phys. 20 (2004) 429.

Neutrinos from gamma-ray bursts sec -1 sr -1 ] -2 Φ [GeV cm 2 E -2 10 10 10-3 -5 10-7 GRB dedicated searches Quasi-diffuse Flux from 57 GRBs with NeuCosmA ARA Testbed Limit ARA37 3yrs expected ANTARES NeuCosmA x3 IceCube IC40+59 x3-9 10-11 10 4 6 8 10 Neutrino energy [log (E/GeV)] 10 Dedicated stacking searches on GRBs unsuccessful up to now. Existing detectors are achieving relevant sensitivity. Does the diffuse emission from ALL GRB families contribute to the IceCube flux? * Allison et al., arxiv: 1507.00100. IceCube Collaboration, ApJ 805 (2015) 1, L5. ANTARES Collaboration, A&A 559 (2013) A9.

Neutrino emission from gamma-ray bursts High energy neutrinos are produced through the following reactions: p + γ n + π +,p+ π 0 p + γ K + + Λ/Σ. * Image credit: Gomboc, Contemp. Phys. 53 (2012) 339. * Kelner, Aharonian, PRD 78 (2008) 034013. π + µ + ν µ, µ + ν µ + ν e + e + π µ ν µ, µ ν µ + ν e + e K + µ + + ν µ, n p + e + ν e.

Neutrinos emission from gamma-ray bursts Short-duration bursts (t < 2s) L iso = 1051 erg/s, = 650, tv = 0.01s. Long-duration bursts (t > 2s) High-luminosity GRBs L iso = 1052 erg/s, = 500, tv = 0.1s. * Meszaros, Rept. Prog. Phys. 69 (2006) 2259. Low-luminosity GRBs = 5, tv = 100s. L iso = 1048 erg/s, Image credit: NASA web-site.

Neutrino emission ( ) ( from ) ( gamma-ray ) ( ) bursts We revisited the analytical modeling of prompt emission from fireballs, including pion and kaon decays as well as adiabatic, radiative and hadronic cooling processes. Neutrino spectrum normalized in terms of the photon fluence: 0 ( ) dnν h p,i de ν E ν = N i [1 (1 χ p ) τpγ ] de ν inj,i h γp 0 ( ) dnγ de γ E γ de γ inj Example of predicted HL-GRB flux w/o flavor oscillations at z=1.!"!" $ resonance cooling processes )! * +,! -)!.+/012+34 * 5!" %!" $ (!! (, # -2 3, 4-./+0-56 # 1!" %! +!" #!" #!" $!" %, -./+01!" (!" )!" *!"!"!" (!" #!" $!" %, -./+01!" (!" )!" *!"!" * Tamborra, Ando, JCAP (2015). See also Guetta et al., Astropart. Phys. (2004). Huemmer, Baerwald, Winter, PRL (2012). Li, PRD (2012).

Diffuse background ingredients time z =0 z =1 neutrinos, photons neutrinos, photons Gamma and neutrino energy fluxes Distribution of sources with redshift Comoving volume (cosmology) z =5

Diffuse emission from gamma-ray bursts I X (E ν )= zmax z min Lmax ( ) c 1 dnνµ dz d L iso R X (z)φ X ( L iso ) L min 4 H H 0 Γ 0 ΩM (1 + z) 3 + Ω Λ de ν osc GRB redshift distribution luminosity function neutrino flux Recent work based on BATSE, Fermi and Swift data. Analytical modeling of the prompt emission from fireballs. * Tamborra & Ando, JCAP (2015).

Diffuse emission from gamma-ray bursts!" ( 1234563 7 # 81 <7 =89,3:82> # 8+! 8+?! ;!" )!" *!"!"!"!!!"!#!"!$ 14,-. +,-. /0,-. 00,-.!"!%!"!&!" #!" $!" % 7 89,3:;!" (!" )!" *!"!" GRBs can make up to few % of the high-energy IceCube flux in the sub-pev region. LL-GRBs can be main sources of the IceCube flux in the PeV range. * Tamborra & Ando, JCAP (2015). See also: Liu & Wang (2013), Murase & Ioka (2013), Razzaque & Yang (2015), Baerwald, Bustamante, Winter (2015).

Diffuse emission from gamma-ray bursts!" ) ;! % <5! =;! ><?07@<6* % </! </A! B!" (!"!"!"!!!"!% 56789:7 *-. *+, 34 012 44 012 Γ min Γ Γ max t v,min t v t v,max HL-GRB 100 500 1000 10 3 0.1 1 LL-GRB 2 5 20 10 100 200 sgrb 100 650 1000 10 3 10 2 0.05!"!$!"!# /012 Conclusions robust with respect to variation of model parameters. +,-./01!" ( :;<=>?< +, @ #.: D@ E.A5<B.;/ #.4!.4F! C!" )!" * 99 567!"!"!"!!!"!# +,-./23 89 567 GRBs cannot explain the IceCube flux for sub-pev energies, but could contribute around PeV energies for certain choices of the model parameters.!"!$ 4567!"!%!" #!" $!" % @.A5<BC!" (!" )!" *!"!" * Tamborra & Ando, JCAP (2015).

Conclusions Gamma-ray bursts account up to few % of the observed IceCube flux for E< 1 PeV. Low-luminosity gamma-ray bursts dominate the diffuse emission in the PeV range. High-luminosity and low-luminosity GRBs have comparable intensities, while the contribution from the short-duration component is small. Our findings confirm the most-recent IceCube results on GRB searches. Larger exposure is mandatory to detect neutrinos from high-luminosity GRBs.

Thank you for your attention!

Back-up slides

Neutrino emission from gamma-ray bursts +,-./ 2!,-31!"!"!" *!" )!" (!" #!" $!" %!"!!" "!"!!" %!" $!" #!"!"!" *!" )!" (!" %!" $!" #!"!!" "!"!!" #!" $!" % +!032 2!!587 2! 97 4",#5! + 62 :",#;! 2! 4587 4",#5! :",#; 4 +!012 +!032 78 9:;!" #!" $!" % +,-./01!" (!" )!" *!"!" 2! 4567 Cooling times in the jet comoving frame for HL-GRBs. * Tamborra, Ando,JCAP (2015).

Neutrino emission from gamma-ray bursts )! * +,! -)!.+/012+34 * 5!" %!" $ (!! (!" #!" $ Predicted GRB flux for HL-GRB at z=1 and without flavor oscillations.!" %!, # -2 3, 4-./+0-56 # 1 +!" (!" #!" $!" %, -./+01!" (!" )!" *!"!" * Tamborra, Ando,JCAP (2015).

Neutrino emission from gamma-ray bursts!" $ +, -./ Predicted GRB flux with flavor oscillations at z=1.!" % 1 # 27 81 923-452:; # 6!" (,, -./!" ) 0-./!" *!" #!" $!" % 1 23-456!" (!" )!" *!"!" * Tamborra, Ando, JCAP (2015). See also Guetta et al., Astropart. Phys. (2004). Huemmer, Baerwald, Winter, PRL (2012). Li, PRD (2012).