TDK Lambda INSTRUCTION MANUAL. TDK Lambda A B 1/40

Similar documents
HWS150A RELIABILITY DATA 信頼性データ

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

DRL10-1 RELIABILITY DATA

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

RQ1A070AP. V DSS -12V R DS(on) (Max.) 14mW I D -7A P D 1.5W. Pch -12V -7A Power MOSFET. Datasheet 外観図 内部回路図 特長 1) 低オン抵抗 2) ゲート保護ダイオード内蔵

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

SAFETY STANDARD APPROVED METALLIZED POLYPROPYLENE CAPACITOR 海外規格メタライズドポリプロピレンコンデンサ TYPE ECQUA

SML-811x/812x/813x Series

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

The unification of gravity and electromagnetism.

Thermal Safety Software (TSS) series

Product Specification

京都 ATLAS meeting 田代. Friday, June 28, 13

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

Nichia STS-DA <Cat.No > SPECIFICATIONS FOR NICHIA LUMINOUS FLUX WHITE STANDARD LED MODEL : NLHW01S02 NICHIA CORPORATION

NSPA510BS RoHS Compliant

XENON SHORT ARC LAMPS キセノンショートアークランプ

2011/12/25

757G-V2 Series. For General Lighting Application. NF2x757G-F1, NFSx757G COB Series. Ra 90. Ra 80 Cove Light. Surface Mount Type

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

NSPW500DS RoHS Compliant

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

NSPR546HS RoHS Compliant

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

ATLAS 実験における荷電ヒッグス粒子の探索

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

NEPE510JS RoHS Compliant

NSPW315DS RoHS Compliant

Estimation of Gravel Size Distribution using Contact Time

ランプブラケット モールドタイプランプブラケット品番説明

NSPA310S RoHS Compliant

CUS100ME RELIABILITY DATA

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

NSPWR70CSS-K1 Built-in ESD Protection Device RoHS Compliant

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

高度バッテリ温度監視 デュアル入力リニアチャージャ Smart Power Selector

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Taking an advantage of innovations in science and technology to develop MHEWS

観光の視点から見た民泊の現状 課題 展望

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

TA78033AS, TA7804AS, TA7805AS, TA7807AS, TA7808AS, TA7809AS

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

NSSLT02AT Pb-free Reflow Soldering Application RoHS Compliant

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

October 7, Shinichiro Mori, Associate Professor

GRASS 入門 Introduction to GRASS GIS

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

Trends of the National Spatial Data Infrastructure

Analysis of shale gas production performance by SGPE

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Technical report Approaches to Life Estimation of Electronic Circuits

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

Lead Zirconate Titanate Thick Films Fabricated by the Aerosol Deposition Method

日本政府 ( 文部科学省 ) 奨学金留学生申請書

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

1993 : Single-Walled Carbon Nanotubes

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

Network of Evolutionary Trends and Maturity assessment through contradiction analysis 進化トレンドのネットワークと矛盾解析による成熟度評価

Video Archive Contents Browsing Method based on News Structure Patterns

SPECIFICATION. Power Integrated Module. Device Name : Type Name : Spec. No. : Fuji Electric Co.,Ltd. Matsumoto Factory H MBR25UA120

Development of Advanced Simulation Methods for Solid Earth Simulations

Stress-strain behaviour of compacted soils related to seismic earth-fill dam stability

高エネルギーニュートリノ : 理論的な理解 の現状

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

工業用ゴム材料の非線形粘弾性シミュレーションに関する研究 ( Text_ 全文 )

Method for making high-quality thin sections of native sulfur

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

Transcription:

A273 57 01B 1/40

INDEX PAGE 1. MTBF 計算値 Calculated Values of MTBF 3~4 2. 部品ディレーティング Component Derating 5~9 3. 主要部品温度上昇値 Main Components Temperature Rise ΔT List 10~11 4. 電解コンデンサ推定寿命計算値 Electrolytic Capacitor Lifetime 12~14 5. アブノーマル試験 Abnormal Test 15~17 6. 振動試験 Vibration Test 18 7. ノイズシミュレート試験 Noise Simulate Test 19 8. 熱衝撃試験 Thermal Shock Test 20 9. FAN 期待寿命 Fan Life Expectancy 21 /RF 10. MTBF 計算値 Calculated Values of MTBF 22~23 11. 部品ディレーティング Component Derating 24~28 12. 主要部品温度上昇値 Main Components Temperature Rise ΔT List 29~30 13. 電解コンデンサ推定寿命計算値 Electrolytic Capacitor Lifetime 31~33 14. FAN 期待寿命 Fan Life Expectancy 34 /S 15. MTBF 計算値 Calculated Values of MTBF 35~36 16. 部品ディレーティング Component Derating 37~38 17. 主要部品温度上昇値 Main Components Temperature Rise ΔT List 39 18. アブノーマル試験 Abnormal Test 40 * 試験結果は 代表データでありますが 全ての製品はほぼ同等な特性を示します 従いまして 以下の結果は参考値とお考え願います Test results are typical data. Nevertheless the following results are considered to be reference data because all units have nearly the same characteristics. 2/40

1. MTBF Calculated Values of MTBF (1) MTBF Parts stress reliability prediction MTBF MODEL : 24 Calculating Method Telcordiaの部品ストレス解析法 (*1) で算出されています 故障率 λssは それぞれの部品ごとに電気ストレスと動作温度によって決定されます Calculated based on parts stress reliability prediction of Telcordia (*1). Individual failure rate λss is calculated by the electric stress and temperature rise of the each part. *1: Telcordia document Reliability Prediction Procedure for Electronic Equipment (Document number SR 332,Issue3) < 算出式 > 1 MTBF = λ equip = p E i= 1 l = l p p p ssi Gi Qi Si m å Ti 1 ( N i l ssi 10 ) 9 時間 (Hours) λ equip : 全機器故障率 (FITs) Total equipment failure rate (FITs = Failures in10 9 hours) λ Gi : i 番目の部品に対する基礎故障率 Generic failure rate for the ith part π Qi : i 番目の部品に対する品質ファクタ Quality factor for the ith part π Si : i 番目の部品に対するストレスファクタ Stress factor for the ith part π Ti : i 番目の部品に対する温度ファクタ Temperature factor for the ith part m : 異なる部品の数 Number of different part types N i : i 番目の部品の個数 Quantity of ith part type π E : 機器の環境ファクタ Equipment environmental factor MTBF MTBF Values 条件 Conditions 入力電圧 : 230VAC 出力電圧 電流 : 24VDC, 42A(100%) Input voltage Output voltage & current 環境ファクタ : GB (Ground, Benign) 取付方法 : 標準取付 A Environmental factor Mounting method : Standard mounting A SR 332, Issue3 MTBF(Ta=25 ) 1,834,313 時間 (Hours) MTBF(Ta=40 ) 936,356 時間 (Hours) 3/40

(2) MTBF Part count reliability prediction MTBF MODEL : 24 Calculating Method JEITA (RCR 9102B) の部品点数法で算出されています それぞれの部品ごとに 部品故障率 λ G が与えられ 各々の点数によって決定されます Calculated based on part count reliability prediction of JEITA (RCR 9102B). Individual failure rates λ G is given to each part and MTBF is calculated by the count of each part. < 算出式 > 1 MTBF = λ equip 10 6 = n å i= 1 n i 1 ( l p ) G Q i 10 6 時間 (Hours) λ equip : 全機器故障率 ( 故障数 / 10 6 時間 ) Total equipment failure rate (Failure / 10 6 Hours) λ G : i 番目の同属部品に対する故障率 ( 故障数 / 10 6 時間 ) Generic failure rate for the ith generic part (Failure / 10 6 Hours) n i : i 番目の同属部品の個数 Quantity of ith generic part n : 異なった同属部品のカテゴリーの数 Number of different generic part categories π : i 番目の同属部品に対する品質ファクタ (π Q =1) Generic quality factor for the ith generic part (π Q =1) MTBF MTBF Values G F : 地上 固定 (Ground, Fixed) RCR 9102B MTBF 47,276 時間 (Hours) 4/40

2. Components Derating MODEL : 12 (1) Calculating Method (a) 測定方法 Measuring method 取付方法 Mounting method : 標準取付 : A Standard mounting : A 周囲温度 Ambient temperature : 50 o C 入力電圧 Input voltage : 100, 200VAC 出力電圧 電流 Output voltage & current : 12V, 84A(100%) (b) 半導体 Semiconductors ケース温度 消費電力 熱抵抗より使用状態の接合点温度を求め最大定格接合点温度との比較を求めました Compared with maximum junction temperature and actual one which is calculated based on case temperature, power dissipation and thermal impedance. (c) IC 抵抗 コンデンサ等 IC, Resistors, Capacitors, etc. 周囲温度 使用状態 消費電力など 個々の値は設計基準内に入っています Ambient temperature, operating condition, power dissipation and so on are within derating criteria. (d) 熱抵抗算出方法 Calculating method of thermal impedance q j - c = Tj (max) - Tc Pj(max) q j - l = Tj (max) - Tl Pj(max) Tc : ディレーティングの始まるケース温度一般に 25 o C Case Temperature at Start Point of Derating;25 o C in General Tl : ディレーティングの始まるリード温度一般に 25 o C Lead Temperature at Start Point of Derating;25 o C in General Pj(max) (Pch(max)) : 最大接合点 ( チャネル ) 損失 Maximum Junction (channel) Dissipation Tj(max) (Tch(max)) : 最大接合点 ( チャネル ) 温度 Maximum Junction (channel) Temperature θj c (θch c) : 接合点 ( チャネル ) からケースまでの熱抵抗 Thermal Impedance between Junction (channel) and Case θj l (θch l) : 接合点 ( チャネル ) からリードまでの熱抵抗 Thermal Impedance between Junction (channel) and Lead 5/40

(2) Component Derating List 部品番号 Vin = 100VAC Load = 84A (100 %) Ta = 50 C Location No. Q1, Q2 Tch (max) = 150 C θch c = 0.26 C/W IPP65R074C6 Pch= 14.4 W ΔTc = 57 C Tc = 107 C INFINEON Tch = Tc + ((θch c) Pch) = 110.8 C D.F. = 73.9 % Q5 Tch (max) = 150 C θch c = 2.78 C/W TK31A60W Pch = 6.4 W ΔTc = 49 C Tc = 99 C TOSHIBA Tch = Tc + ((θch c) Pch ) = 116.8 C D.F. = 77.9 % Q6 Tch (max) = 150 C θch c = 2.78 C/W TK31A60W Pch= 7.0 W ΔTc = 48 C Tc = 98 C TOSHIBA Tch = Tc + ((θch c) Pch ) = 117.5 C D.F. = 78.4 % D1, D2 Tj (max) = 150 C θj c = 1.0 C/W D25XB60 Pd = 11.0 W ΔTc = 57 C Tc = 107 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 118.0 C D.F. = 78.8 % D3 Tj (max) = 175 C θj c = 6.5 C/W FDCA10S65 Pd = 6.8 W ΔTc = 63 C Tc = 113 C FUJI ELECTRIC Tj = Tc + ((θj c) Pd ) = 157.2 C D.F. = 89.9 % D51 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 79 C Tc = 129 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 139.1 C D.F. = 92.7 % D52 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 76 C Tc = 126 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 136.1 C D.F. = 90.7 % D53 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 73 C Tc = 123 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 133.1 C D.F. = 88.7 % SR1 Tj (max) = 150 C θj c = 3.2 C/W CR12PM 12B Pd = 5.3 W ΔTc = 52 C Tc = 102 C RENESAS Tj = Tc + ((θj c) Pd ) = 119.0 C D.F. = 79.4 % A51 Tj (max) = 150 C θj c = 3.0 C/W BA17812CP Pd = 4.4 W ΔTc = 26 C Tc = 76 C ROHM Tj = Tc + ((θj c) Pd ) = 89.2 C D.F. = 59.5 % 6/40

部品番号 Vin = 100VAC Load = 84A (100 %) Ta = 50 C Location No. D101 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 16 mw ΔTl = 27 C Tl = 77 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 77.5 C D.F. = 51.7 % D210 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 238 mw ΔTl = 29 C Tl = 79 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 86.2 C D.F. = 57.5 % D501 D504 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 234 mw ΔTl = 26 C Tl = 76 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 83.1 C D.F. = 55.4 % PC201 Tj (max) = 125 C θj c = 130.0 C/W TLP385 Pd = 18 mw ΔTc = 8 C Tc = 58 C (LED) Tj = Tc + ((θj c) Pd ) = 60.4 C TOSHIBA D.F. = 48.4 % PD801 SML A12M8T If = 4.5 ma ΔTc = 2 C Tc = 52 C ROHM Allowable If (max) = 25mA (at Ta=52 C) D.F. = 18.0% 7/40

部品番号 Vin = 200VAC Load = 84A (100 %) Ta = 50 C Location No. Q1, Q2 Tch (max) = 150 C θch c = 0.26 C/W IPP65R074C6 Pch = 5.5W ΔTc = 23 C Tc = 73 C INFINEON Tch = Tc + ((θch c) Pch ) = 74.5 C D.F. = 49.7 % Q5 Tch (max) = 150 C θch c = 2.78 C/W TK31A60W Pch = 6.4 W ΔTc = 48 C Tc = 98 C TOSHIBA Tch = Tc + ((θch c) Pch ) = 115.8 C D.F. = 77.2 % Q6 Tch (max) = 150 C θch c = 2.78 C/W TK31A60W Pch = 7.0 W ΔTc = 46 C Tc = 96 C TOSHIBA Tch = Tc + ((θch c) Pch ) = 115.5 C D.F. = 77.0 % D1, D2 Tj (max) = 150 C θj c = 1.0 C/W D25XB60 Pd = 5.5 W ΔTc = 27 C Tc = 77 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 82.5 C D.F. = 55.0 % D3 Tj (max) = 175 C θj c = 6.5 C/W FDCA10S65 Pd = 5.5 W ΔTc = 38 C Tc = 88 C FUJI ELECTRIC Tj = Tc + ((θj c) Pd ) = 123.8 C D.F. = 70.8 % D51 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 80 C Tc = 130 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 140.1 C D.F. = 93.4 % D52 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 76 C Tc = 126 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 136.1 C D.F. = 90.7 % D53 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 74 C Tc = 124 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 134.1 C D.F. = 89.4 % SR1 Tj (max) = 150 C θj c = 3.2 C/W CR12PM 12B Pd = 3.9 W ΔTc = 33 C Tc = 83 C RENESAS Tj = Tc + ((θj c) Pd ) = 95.5 C D.F. = 63.7 % A51 Tj (max) = 150 C θj c = 3.0 C/W BA17812CP Pd = 4.4 W ΔTc = 26 C Tc = 76 C ROHM Tj = Tc + ((θj c) Pd ) = 89.2 C D.F. = 59.5 % 8/40

部品番号 Vin = 200VAC Load = 84A (100 %) Ta = 50 C Location No. D101 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 16 mw ΔTl = 16 C Tl = 66 C TOSHIBA Tj = Tl + ((θj l) Pd) = 66.5 C D.F. = 44.4 % D210 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 238 mw ΔTl = 26 C Tl = 76 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 83.2 C D.F. = 55.5 % D501 D504 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 234 mw ΔTl = 24 C Tl = 74 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 81.1 C D.F. = 54.1 % PC201 Tj (max) = 125 C θj c = 130.0 C/W TLP385 Pd = 18 mw ΔTc = 7 C Tc = 57 C (LED) Tj = Tc + ((θj c) Pd ) = 59.4 C TOSHIBA D.F. = 47.6 % PD801 SML A12M8T If = 4.5 ma ΔTc = 2 C Tc = 52 C ROHM Allowable If (max) = 25mA (at Ta=52 C) D.F. = 18.0% 9/40

3. Main Components Temperature Rise T List MODEL : 12 (1) Measuring Conditions 取付方法 Mounting Method Mounting A ( 標準取付 : A) (Standard M ounting : A) TB51 CN83 CN84 TB1 入力電圧 Vin Input Voltage 100VAC 200VAC 出力電圧 Vout Output Voltage 12VDC 出力電流 Iout Output Current 84A (100%) (2) Measuring Results 入力電圧 Vin Input Voltage 100VAC 部品番号 部品名 取付方向 Location No. Part name M ounting A Q1 M OS FET 57 23 Q2 M OS FET 57 23 Q5 M OS FET 49 48 Q6 M OS FET 48 46 Q101 CHIP M OS FET 18 12 Q104 CHIP TRANSISTOR 24 16 Q105 CHIP TRANSISTOR 24 15 D1 BRIDGE DIODE 57 27 D2 BRIDGE DIODE 57 27 D3 DIODE 63 38 D51 S.B.D. 79 80 D52 S.B.D. 76 76 D53 S.B.D. 73 74 SR1 THYRISTOR 52 33 A51 IC 26 26 A103 CHIP IC 19 12 A201 CHIP IC 28 26 A301 CHIP IC 20 18 A302 CHIP IC 20 18 * 取付方向 B, C, D の値は取付方向 A と同様の値となります Value of Mounting B, C and D are similar to Mounting A. ΔT Temperature Rise ( C) 200VAC 10/40

入力電圧 Vin Input Voltage 100VAC 部品番号 部品名 取付方向 Location No. Part name M ounting A R4 RESISTOR 40 39 T2 CURRENT TRANS 24 24 T3 TRANS 52 52 T4 TRANS 27 26 L1 BALUN 63 23 L2 BALUN 36 19 L7 CHOKE COIL 46 22 L51 CHOKE COIL 27 27 C12 E.CAP. 13 8 C53 E.CAP. 10 10 C54 E.CAP. 5 6 C55 E.CAP. 7 7 C59 E.CAP. 9 9 C62 E.CAP. 7 7 PC201 PHOTO COUPLER 8 7 PD801 LED 2 2 * 取付方向 B, C, D の値は取付方向 A と同様の値となります Value of Mounting B, C and D are similar to Mounting A. ΔT Temperature Rise ( C) 200VAC 11/40

4. Electrolytic Capacitor Lifetime MODEL : : Cooling condition: Forced air cooling A Conditions Ta 40 C : TB51 CN83 CN84 Mounting A 50 C : 12V 60 C : Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 15.9 8.0 20% 20.0 16.1 8.1 40% 20.0 15.5 7.7 40% 20.0 15.7 7.8 60% 20.0 14.8 7.4 60% 20.0 15.4 7.7 80% 14.6 7.3 80% 20.0 12.9 100% 5.9 2.9 100% 14.9 7.5 TB1 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 15V Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 15.9 8.0 20% 20.0 16.1 8.1 40% 20.0 15.5 7.7 40% 20.0 15.7 7.8 60% 20.0 14.8 7.4 60% 20.0 15.4 7.7 80% 14.6 7.5 80% 20.0 13.0 100% 5.7 2.9 100% 15.0 7.5 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 上記推定寿命は 弊社計算方法により算出した値であり 封口コ ムの劣化等の影響を含めておりません The lifetime is calculated based on our method and doesn't include the seal rubber degradation effect etc. 取付方向 B, C, Dの寿命は取付方向 Aと同様の寿命となります Lifetime of Mounting B, C and D are similar to Mounting A. 12/40

Conditions Ta 40 C : 50 C : 60 C : 24V Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 15.9 8.0 20% 20.0 16.1 8.1 40% 20.0 15.5 7.7 40% 20.0 15.7 7.8 60% 20.0 14.8 7.4 60% 20.0 15.4 7.7 80% 16.3 8.1 80% 20.0 14.1 100% 6.9 3.5 100% 16.9 8.4 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 36V Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 15.9 8.0 20% 20.0 16.1 8.1 40% 20.0 15.5 7.7 40% 20.0 15.7 7.8 60% 20.0 14.8 7.4 60% 20.0 15.4 7.7 80% 15.8 7.9 80% 20.0 13.7 100% 6.6 3.3 100% 16.2 8.1 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 上記推定寿命は 弊社計算方法により算出した値であり 封口コ ムの劣化等の影響を含めておりません The lifetime is calculated based on our method and doesn't include the seal rubber degradation effect etc. 取付方向 B, C, Dの寿命は取付方向 Aと同様の寿命となります Lifetime of Mounting B, C and D are similar to Mounting A. 13/40

Conditions Ta 40 C : 50 C : 60 C : 48V Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 15.9 8.0 20% 20.0 16.1 8.1 40% 20.0 15.5 7.7 40% 20.0 15.7 7.8 60% 20.0 14.8 7.4 60% 20.0 15.4 7.7 80% 16.8 8.4 80% 20.0 14.3 100% 7.3 3.7 100% 20.0 12.6 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 上記推定寿命は 弊社計算方法により算出した値であり 封口コ ムの劣化等の影響を含めておりません The lifetime is calculated based on our method and doesn't include the seal rubber degradation effect etc. 取付方向 B, C, Dの寿命は取付方向 Aと同様の寿命となります Lifetime of Mounting B, C and D are similar to Mounting A. 14/40

5. Abnormal Test MODEL : 12 (1) Test Conditions Input : 265VAC Output : 12V, 84A (100%) Ta : 25 o C (2) Test Results Test position No. 部品 No. 試験端子 Test mode ショート オープン a b c d e f g h i j k l 発火 発煙 破裂 異臭 赤熱 破損 ヒューズ断 O V P O C P Test result 出力断 変化なし その他 (Da : Damaged) 記事 Location No. Test point Short Open Fire Smoke Burst Smell Red hot Damaged Fuse blown No output No change Others Note 1 Q1 D S Fuse : F1 2 D G Fuse : F1 Da : Q1 3 G S 4 D 入力電力増加 Input power increase 5 S 6 G 7 Q5 D S 8 D G 9 G S 10 D 11 S 12 G 13 Q6 D S 14 D G 15 G S 16 D 17 S 18 G 入力電力増加 Input power increase Fuse : F1 Da : Q1 Fuse : F2 Da : Q6 Fuse : F2 Da : A201, A301, A302, Q5, Q6, D309, D310 Fuse : F2 Da : Q5, Q6 Fuse : F2 Da : Q5 Fuse : F2 Da : A302, Q5, Q6 Fuse : F2 Da : Q5, Q6 15/40

Test position No. 部品 No. 試験端子 Test mode ショート オープン a b c d e f g h i j k l 発火 発煙 破裂 異臭 赤熱 破損 ヒューズ断 O V P O C P Test result 出力断 変化なし その他 (Da : Damaged) 記事 Location No. Test point Short Open Fire Smoke Burst Smell Red hot Damaged Fuse blown No output No change Others Note 19 D51 A K 20 A/K 21 D52 A K 22 A/K 入力電力増加 Input power increase 入力電力増加 Input power increase 23 D53 A K 24 A/K 入力電力増加 Input power increase C12 Fuse : F1 25 Da : A103, Q1, Q2, Q101, SR1, D103, D104 26 Fuse : F2 Da : Q5, Q6 27 C53 28 出力リプル増加 Output ripple increase 29 D1 AC AC Fuse : F1 30 DC DC Fuse : F1 31 AC DC Fuse : F1 32 AC 33 DC 34 D3 A K 35 A/K 36 SR1 A K 37 A G 38 K G 39 A/K 40 G 入力電力増加 Input power increase 入力電力増加 Input power increase Fuse : F1 Da : Q1, Q2, Q101, SR1 Fuse : F1 Da : Q1, Q2 Fuse : F1 Da : Q1, Q2, TFR1 Fuse : F1 Da : Q1, Q2, TFR1 16/40

Test position No. 部品 No. 試験端子 Test mode ショート オープン a b c d e f g h i j k l 発火 発煙 破裂 異臭 赤熱 破損 ヒューズ断 O V P O C P Test result 出力断 変化なし その他 (Da : Damaged) 記事 Location No. Test point Short Open Fire Smoke Burst Smell Red hot Damaged Fuse blown No output No change Others Note 41 T2 1 2 42 3 4 43 1/2 44 3/4 45 T3 3 6 46 8 10 47 8 12 48 10 12 49 15 16 50 3,4/6,7 51 8,9,17 52 10,11,18 53 12,14,19,20 Da : T3 FAN 停止後出力断 No output after fan stop 54 15/16 FAN 停止後出力断 No output after fan stop 55 T4 1 2 56 4 5 57 7 8 58 1/2 59 4/5 60 7/8 17/40

6. Vibration Test MODEL : 12 (1) Vibration Test Class 掃引振動数耐久試験 Frequency variable endurance test (2) Equipment Used エミック ( 株 ) 製 EMIC CORP. F 16000BDH/LA16AW (3) Test Conditions 周波数範囲 : 10 55Hz 振動方向 : X, Y, Z Sweep frequency Direction 掃引時間 : 1.0 分間 試験時間 : 各方向共 1 時間 Sweep time 1.0min Sweep count 1 hour each 加速度 : 一定 19.6m/s 2 (2G) Acceleration Constant (4) Test Method Y X 入出力端子 Input and output terminal 供試体 D.U.T. 取付台 Fitting stage 振動方向 Direction Z 振動試験機 Vibrator (5) Acceptable Conditions 1. 破損しない事 Not to be broken. 2. 試験後の出力に異常がない事 No abnormal output after test. (6) Test Results OK 18/40

7. Noise Simulate Test MODEL : 36 (1) Test Circuit and Equipment シミュレータ Simulator L 供試体 D.U.T. +V 負荷 Load FG N V シミュレータ :INS 4320(A) ( ノイズ研究所 ) Simulator (Noise Laboratory Co.,LTD) (2) Test Conditions 入力電圧 : 100 230VAC ノイズ電圧 : 0 2kV Input voltage Noise level 出力電圧 : 定格 位相 : 0 360 deg Output voltage Rated Phase 出力電流 : 0% 100% 極性 : + - Output current Polarity 周囲温度 : 25 o C 印加モード : コモン ノーマル Ambient temperature Mode Common, Normal パルス幅 : 50 1000ns トリガ選択 : Line Pulse width Trigger select (3) Acceptable Conditions 1. 試験中 5% を超える出力電圧の変動のない事 The regulation of output voltage must not exceed 5% of initial value during test. 2. 試験後の出力電圧は初期値から変動していない事 The output voltage must be within the regulation of specification after the test. 3. 発煙 発火のない事 Smoke and fire are not allowed. (4) Test Results OK 19/40

8. Thermal Shock Test MODEL : 24 (1) Equipment Used (Thermal Shock Chamber) ESPEC( 株 ) 製 ESPEC CORP. TSA 71H W (2) Test Conditions 1cycle 電源周囲温度 : 30 75 Ambient Temperature 試験時間 : 図参照 Test Time Refer to Dwg. 試験サイクル : 100 サイクル Test Cycle 100 Cycles 非動作 Not Operating (3) Test Method +75 30 35min 35min 初期測定の後 供試品を試験槽に入れ 上記サイクルで試験を行う 100サイクル後に 供試品を常温常湿下に1 時間放置し 出力に異常がない事を確認する Before testing, check if there is no abnormal output, then put the D.U.T. in testing chamber, and test it according to the above cycle. 100 cycles later, leave it for 1 hour at the room temperature, then check if there is no abnormal output. (4) Acceptable Conditions 試験後の出力に異常がない事 No abnormal output after test. (5) Test Results OK 20/40

9. FAN Fan Life Expectancy MODEL : (1) Part Name 9G0612H40021 (SANYO DENKI CORP.) (2) Life Expectancy メーカーによるファン単体の期待寿命データを示す ( 残存率 90%) また ファン排気温度測定箇所は Fig. 1に示す The data shows fan life expectancy for fan only by manufacture (90% survival rate). Fig. 1 shows measuring point of fan exhaust temperature. 100 ファン期待寿命 ( 年 ) Life expectancy (years) 10 1 40 50 60 70 ファン排気温度 ( ) Fan exhaust temperature( ) Air Flow 測定箇所 Measuring point P.S. 50mm Fig. 1 ファン排気温度測定箇所 Measuring point of fan exhaust temperature. * 電源の吸排気温度差は Io=100% で約 12 です The difference between the intake temperature and the exhaust temperature of the power supply is about ک 12 atio=100%. 21/40

10. MTBF Calculated Values of MTBF (1) MTBF Parts stress reliability prediction MTBF MODEL : 24 /RF Calculating Method Telcordiaの部品ストレス解析法 (*1) で算出されています 故障率 λssは それぞれの部品ごとに電気ストレスと動作温度によって決定されます Calculated based on parts stress reliability prediction of Telcordia (*1). Individual failure rate λss is calculated by the electric stress and temperature rise of the each part. *1: Telcordia document Reliability Prediction Procedure for Electronic Equipment (Document number SR 332,Issue3) < 算出式 > 1 MTBF = λ equip = p E i= 1 l = l p p p ssi Gi Qi Si m å Ti 1 ( N i l ssi 10 ) 9 時間 (Hours) λ equip : 全機器故障率 (FITs) Total equipment failure rate (FITs = Failures in10 9 hours) λ Gi : i 番目の部品に対する基礎故障率 Generic failure rate for the ith part π Qi : i 番目の部品に対する品質ファクタ Quality factor for the ith part π Si : i 番目の部品に対するストレスファクタ Stress factor for the ith part π Ti : i 番目の部品に対する温度ファクタ Temperature factor for the ith part m : 異なる部品の数 Number of different part types N i : i 番目の部品の個数 Quantity of ith part type π E : 機器の環境ファクタ Equipment environmental factor MTBF MTBF Values 条件 Conditions 入力電圧 : 230VAC 出力電圧 電流 : 24VDC, 42A(100%) Input voltage Output voltage & current 環境ファクタ : GB (Ground, Benign) 取付方法 : 標準取付 A Environmental factor Mounting method : Standard mounting A SR 332, Issue3 MTBF(Ta=25 ) 1,943,633 時間 (Hours) MTBF(Ta=40 ) 968,633 時間 (Hours) 22/40

(2) MTBF Part count reliability prediction MTBF MODEL : 24 /RF Calculating Method JEITA (RCR 9102B) の部品点数法で算出されています それぞれの部品ごとに 部品故障率 λ G が与えられ 各々の点数によって決定されます Calculated based on part count reliability prediction of JEITA (RCR 9102B). Individual failure rates λ G is given to each part and MTBF is calculated by the count of each part. < 算出式 > 1 MTBF = λ equip 10 6 = n å i= 1 n i 1 ( l p ) G Q i 10 6 時間 (Hours) λ equip : 全機器故障率 ( 故障数 / 10 6 時間 ) Total equipment failure rate (Failure / 10 6 Hours) λ G : i 番目の同属部品に対する故障率 ( 故障数 / 10 6 時間 ) Generic failure rate for the ith generic part (Failure / 10 6 Hours) n i : i 番目の同属部品の個数 Quantity of ith generic part n : 異なった同属部品のカテゴリーの数 Number of different generic part categories π : i 番目の同属部品に対する品質ファクタ (π Q =1) Generic quality factor for the ith generic part (π Q =1) MTBF MTBF Values G F : 地上 固定 (Ground, Fixed) RCR 9102B MTBF 47,276 時間 (Hours) 23/40

11. Components Derating MODEL : 12 /RF (1) Calculating Method (a) 測定方法 Measuring method 取付方法 Mounting method : 標準取付 : A Standard mounting : A 周囲温度 Ambient temperature : 50 o C 入力電圧 Input voltage : 100, 200VAC 出力電圧 電流 Output voltage & current : 12V, 84A(100%) (b) 半導体 Semiconductors ケース温度 消費電力 熱抵抗より使用状態の接合点温度を求め最大定格接合点温度との比較を求めました Compared with maximum junction temperature and actual one which is calculated based on case temperature, power dissipation and thermal impedance. (c) IC 抵抗 コンデンサ等 IC, Resistors, Capacitors, etc. 周囲温度 使用状態 消費電力など 個々の値は設計基準内に入っています Ambient temperature, operating condition, power dissipation and so on are within derating criteria. (d) 熱抵抗算出方法 Calculating method of thermal impedance q j - c = Tj (max) - Tc Pj(max) q j - l = Tj (max) - Tl Pj(max) Tc : ディレーティングの始まるケース温度一般に 25 o C Case Temperature at Start Point of Derating;25 o C in General Tl : ディレーティングの始まるリード温度一般に 25 o C Lead Temperature at Start Point of Derating;25 o C in General Pj(max) (Pch(max)) : 最大接合点 ( チャネル ) 損失 Maximum Junction (channel) Dissipation Tj(max) (Tch(max)) : 最大接合点 ( チャネル ) 温度 Maximum Junction (channel) Temperature θj c (θch c) : 接合点 ( チャネル ) からケースまでの熱抵抗 Thermal Impedance between Junction (channel) and Case θj l (θch l) : 接合点 ( チャネル ) からリードまでの熱抵抗 Thermal Impedance between Junction (channel) and Lead 24/40

(2) Component Derating List 部品番号 Vin = 100VAC Load = 84A (100 %) Ta = 50 C Location No. Q1, Q2 Tch (max) = 150 C θch c = 0.26 C/W IPP65R074C6 Pch= 14.4 W ΔTc = 54 C Tc = 104 C INFINEON Tch = Tc + ((θch c) Pch) = 107.8 C D.F. = 71.9 % Q5 Tch (max) = 150 C θch c = 2.78 C/W TK31A60W Pch = 6.4 W ΔTc = 45 C Tc = 95 C TOSHIBA Tch = Tc + ((θch c) Pch ) = 112.8 C D.F. = 75.2 % Q6 Tch (max) = 150 C θch c = 2.78 C/W TK31A60W Pch= 7.0 W ΔTc = 46 C Tc = 96 C TOSHIBA Tch = Tc + ((θch c) Pch ) = 115.5 C D.F. = 77.0 % D1, D2 Tj (max) = 150 C θj c = 1.0 C/W D25XB60 Pd = 11.0 W ΔTc = 46 C Tc = 96 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 107.0 C D.F. = 71.4 % D3 Tj (max) = 175 C θj c = 6.5 C/W FDCA10S65 Pd = 6.8 W ΔTc = 47 C Tc = 97 C FUJI ELECTRIC Tj = Tc + ((θj c) Pd ) = 141.2 C D.F. = 80.7 % D51 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 62 C Tc = 112 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 122.1 C D.F. = 81.4 % D52 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 62 C Tc = 112 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 122.1 C D.F. = 81.4 % D53 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 62 C Tc = 112 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 122.1 C D.F. = 81.4 % SR1 Tj (max) = 150 C θj c = 3.2 C/W CR12PM 12B Pd = 5.3 W ΔTc = 39 C Tc = 89 C RENESAS Tj = Tc + ((θj c) Pd ) = 106.0 C D.F. = 70.7 % A51 Tj (max) = 150 C θj c = 3.0 C/W BA17812CP Pd = 4.4 W ΔTc = 43 C Tc = 93 C ROHM Tj = Tc + ((θj c) Pd ) = 106.2 C D.F. = 70.8 % 25/40

部品番号 Vin = 100VAC Load = 84A (100 %) Ta = 50 C Location No. D101 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 16 mw ΔTl = 8 C Tl = 58 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 58.5 C D.F. = 39.0 % D210 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 238 mw ΔTl = 10 C Tl = 60 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 67.2 C D.F. = 44.8 % D501 D504 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 234 mw ΔTl = 30 C Tl = 80 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 87.1 C D.F. = 58.1 % PC201 Tj (max) = 125 C θj c = 130.0 C/W TLP385 Pd = 18 mw ΔTc = 10 C Tc = 60 C (LED) Tj = Tc + ((θj c) Pd ) = 62.4 C TOSHIBA D.F. = 50.0 % PD801 SML A12M8T If = 4.5 ma ΔTc = 16 C Tc = 66 C ROHM Allowable If (max) = 22.6mA (at Ta=66 C) D.F. = 20.0% 26/40

部品番号 Vin = 200VAC Load = 84A (100 %) Ta = 50 C Location No. Q1, Q2 Tch (max) = 150 C θch c = 0.26 C/W IPP65R074C6 Pch = 5.5W ΔTc = 22 C Tc = 72 C INFINEON Tch = Tc + ((θch c) Pch ) = 73.5 C D.F. = 49.0 % Q5 Tch (max) = 150 C θch c = 2.78 C/W TK31A60W Pch = 6.4 W ΔTc = 44 C Tc = 94 C TOSHIBA Tch = Tc + ((θch c) Pch ) = 111.8 C D.F. = 74.6 % Q6 Tch (max) = 150 C θch c = 2.78 C/W TK31A60W Pch = 7.0 W ΔTc = 45 C Tc = 95 C TOSHIBA Tch = Tc + ((θch c) Pch ) = 114.5 C D.F. = 76.4 % D1, D2 Tj (max) = 150 C θj c = 1.0 C/W D25XB60 Pd = 5.5 W ΔTc = 22 C Tc = 72 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 77.5 C D.F. = 51.7 % D3 Tj (max) = 175 C θj c = 6.5 C/W FDCA10S65 Pd = 5.5 W ΔTc = 30 C Tc = 80 C FUJI ELECTRIC Tj = Tc + ((θj c) Pd ) = 115.8 C D.F. = 66.2 % D51 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 61 C Tc = 111 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 121.1 C D.F. = 80.8 % D52 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 61 C Tc = 111 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 121.1 C D.F. = 80.8 % D53 Tj (max) = 150 C θj c = 0.5 C/W S60JC10V Pd = 20.2 W ΔTc = 61 C Tc = 111 C SHINDENGEN Tj = Tc + ((θj c) Pd ) = 121.1 C D.F. = 80.8 % SR1 Tj (max) = 150 C θj c = 3.2 C/W CR12PM 12B Pd = 3.9 W ΔTc = 26 C Tc = 76 C RENESAS Tj = Tc + ((θj c) Pd ) = 88.5 C D.F. = 59.0 % A51 Tj (max) = 150 C θj c = 3.0 C/W BA17812CP Pd = 4.4 W ΔTc = 41 C Tc = 91 C ROHM Tj = Tc + ((θj c) Pd ) = 104.2 C D.F. = 69.5 % 27/40

部品番号 Vin = 200VAC Load = 84A (100 %) Ta = 50 C Location No. D101 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 16 mw ΔTl = 6 C Tl = 56 C TOSHIBA Tj = Tl + ((θj l) Pd) = 56.5 C D.F. = 37.7 % D210 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 238 mw ΔTl = 10 C Tl = 60 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 67.2 C D.F. = 44.8 % D501 D504 Tj (max) = 150 C θj l = 30.0 C/W CRH01 Pd = 234 mw ΔTl = 30 C Tl = 80 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 87.1 C D.F. = 58.1 % PC201 Tj (max) = 125 C θj c = 130.0 C/W TLP385 Pd = 18 mw ΔTc = 8 C Tc = 58 C (LED) Tj = Tc + ((θj c) Pd ) = 60.4 C TOSHIBA D.F. = 48.4 % PD801 SML A12M8T If = 4.5 ma ΔTc = 11 C Tc = 61 C ROHM Allowable If (max) = 25mA (at Ta=61 C) D.F. = 18.0% 28/40

12. Main Components Temperature Rise T List MODEL : 12 /RF (1) Measuring Conditions 取付方法 Mounting Method Mounting A ( 標準取付 : A) (Standard M ounting : A) TB51 CN83 CN84 TB1 入力電圧 Vin Input Voltage 100VAC 200VAC 出力電圧 Vout Output Voltage 12VDC 出力電流 Iout Output Current 84A (100%) (2) Measuring Results 入力電圧 Vin Input Voltage 100VAC 部品番号 部品名 取付方向 Location No. Part name M ounting A Q1 M OS FET 54 22 Q2 M OS FET 54 22 Q5 M OS FET 45 44 Q6 M OS FET 46 45 Q101 CHIP M OS FET 8 6 Q104 CHIP TRANSISTOR 18 14 Q105 CHIP TRANSISTOR 20 14 D1 BRIDGE DIODE 46 22 D2 BRIDGE DIODE 46 22 D3 DIODE 47 30 D51 S.B.D. 62 61 D52 S.B.D. 62 61 D53 S.B.D. 62 61 SR1 THYRISTOR 39 26 A51 IC 43 41 A103 CHIP IC 14 11 A201 CHIP IC 10 10 A301 CHIP IC 16 15 A302 CHIP IC 16 14 * 取付方向 B, C, D の値は取付方向 A と同様の値となります Value of Mounting B, C and D are similar to Mounting A. ΔT Temperature Rise ( C) 200VAC 29/40

入力電圧 Vin Input Voltage 100VAC 部品番号 部品名 取付方向 Location No. Part name M ounting A R4 RESISTOR 45 43 T2 CURRENT TRANS 14 13 T3 TRANS 49 48 T4 TRANS 7 6 L1 BALUN 47 21 L2 BALUN 44 22 L7 CHOKE COIL 27 13 L51 CHOKE COIL 32 31 C12 E.CAP. 7 4 C53 E.CAP. 21 19 C54 E.CAP. 24 23 C55 E.CAP. 23 22 C59 E.CAP. 28 27 C62 E.CAP. 21 19 PC201 PHOTO COUPLER 10 8 PD801 LED 16 11 * 取付方向 B, C, D の値は取付方向 A と同様の値となります Value of Mounting B, C and D are similar to Mounting A. ΔT Temperature Rise ( C) 200VAC 30/40

13. Electrolytic Capacitor Lifetime MODEL : /RF : Cooling condition: Forced air cooling A Conditions Ta 40 C : TB51 CN83 CN84 Mounting A 50 C : 12V 60 C : Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 13.4 6.7 20% 20.0 13.8 6.9 40% 20.0 11.5 5.7 40% 20.0 12.1 6.1 60% 18.7 9.3 4.7 60% 20.0 10.2 5.1 80% 14.3 7.2 80% 16.2 8.1 100% 8.4 4.2 100% 12.3 6.2 TB1 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 15V Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 13.4 6.7 20% 20.0 13.8 6.9 40% 20.0 11.5 5.7 40% 20.0 12.1 6.1 60% 18.7 9.3 4.7 60% 20.0 10.2 5.1 80% 14.3 7.2 80% 16.2 8.1 100% 8.2 4.1 100% 12.3 6.2 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 上記推定寿命は 弊社計算方法により算出した値であり 封口コ ムの劣化等の影響を含めておりません The lifetime is calculated based on our method and doesn't include the seal rubber degradation effect etc. 取付方向 B, C, Dの寿命は取付方向 Aと同様の寿命となります Lifetime of Mounting B, C and D are similar to Mounting A. 31/40

Conditions Ta 40 C : 50 C : 60 C : 24V Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 13.4 6.7 20% 20.0 13.8 6.9 40% 20.0 11.5 5.7 40% 20.0 12.1 6.1 60% 18.7 9.3 4.7 60% 20.0 10.2 5.1 80% 14.3 7.2 80% 16.2 8.1 100% 9.9 5.0 100% 12.3 6.2 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 36V Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 13.4 6.7 20% 20.0 13.8 6.9 40% 20.0 11.5 5.7 40% 20.0 12.1 6.1 60% 18.7 9.3 4.7 60% 20.0 10.2 5.1 80% 14.3 7.2 80% 16.2 8.1 100% 9.4 4.7 100% 12.3 6.2 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 上記推定寿命は 弊社計算方法により算出した値であり 封口コ ムの劣化等の影響を含めておりません The lifetime is calculated based on our method and doesn't include the seal rubber degradation effect etc. 取付方向 B, C, Dの寿命は取付方向 Aと同様の寿命となります Lifetime of Mounting B, C and D are similar to Mounting A. 32/40

Conditions Ta 40 C : 50 C : 60 C : 48V Vin = 100VAC Vin = 200VAC Ta Lifetime (years) Ta Lifetime (years) Load 40 C 50 C 60 C Load 40 C 50 C 60 C 20% 20.0 13.4 6.7 20% 20.0 13.8 6.9 40% 20.0 11.5 5.7 40% 20.0 12.1 6.1 60% 18.7 9.3 4.7 60% 20.0 10.2 5.1 80% 14.3 7.2 80% 16.2 8.1 100% 10.5 5.2 100% 12.3 6.2 20 20 16 16 Lifetime (years) 12 8 4 Lifetime (years) 12 8 4 0 0 20 40 60 80 100 Output current (%) 0 0 20 40 60 80 100 Output current (%) 上記推定寿命は 弊社計算方法により算出した値であり 封口コ ムの劣化等の影響を含めておりません The lifetime is calculated based on our method and doesn't include the seal rubber degradation effect etc. 取付方向 B, C, Dの寿命は取付方向 Aと同様の寿命となります Lifetime of Mounting B, C and D are similar to Mounting A. 33/40

14. FAN Fan Life Expectancy MODEL : /RF (1) Part Name 9G0612H40021 (SANYO DENKI CORP.) (2) Life Expectancy メーカーによるファン単体の期待寿命データを示す ( 残存率 90%) また ファン吸気温度測定箇所は Fig. 1に示す The data shows fan life expectancy for fan only by manufacture (90% survival rate). Fig. 1 shows measuring point of fan intake temperature. 100 ファン期待寿命 ( 年 ) Life expectancy (years) 10 1 40 50 60 70 ファン吸気温度 ( ) Fan intake temperature( ) Air Flow 測定箇所 Measuring point P.S. 50mm Fig. 1 ファン吸気温度測定箇所 Measuring point of fan intake temperature. 34/40

15. MTBF Calculated Values of MTBF (1) MTBF Parts stress reliability prediction MTBF MODEL : 24 /S Calculating Method Telcordiaの部品ストレス解析法 (*1) で算出されています 故障率 λssは それぞれの部品ごとに電気ストレスと動作温度によって決定されます Calculated based on parts stress reliability prediction of Telcordia (*1). Individual failure rate λss is calculated by the electric stress and temperature rise of the each part. *1: Telcordia document Reliability Prediction Procedure for Electronic Equipment (Document number SR 332,Issue3) < 算出式 > 1 MTBF = λ equip = p E i= 1 l = l p p p ssi Gi Qi Si m å Ti 1 ( N i l ssi 10 ) 9 時間 (Hours) λ equip : 全機器故障率 (FITs) Total equipment failure rate (FITs = Failures in10 9 hours) λ Gi : i 番目の部品に対する基礎故障率 Generic failure rate for the ith part π Qi : i 番目の部品に対する品質ファクタ Quality factor for the ith part π Si : i 番目の部品に対するストレスファクタ Stress factor for the ith part π Ti : i 番目の部品に対する温度ファクタ Temperature factor for the ith part m : 異なる部品の数 Number of different part types N i : i 番目の部品の個数 Quantity of ith part type π E : 機器の環境ファクタ Equipment environmental factor MTBF MTBF Values 条件 Conditions 入力電圧 : 230VAC 出力電圧 電流 : 24VDC, 42A(100%) Input voltage Output voltage & current スタンバイ電圧 電流 : 5VDC, 1A(100%) 取付方法 : 標準取付 A Standby voltage & current Mounting method : Standard mounting A 環境ファクタ : GB (Ground, Benign) Environmental factor SR 332, Issue3 MTBF(Ta=25 ) 1,415,044 時間 (Hours) MTBF(Ta=40 ) 646,468 時間 (Hours) 35/40

(2) MTBF Part count reliability prediction MTBF MODEL : 24 /S Calculating Method JEITA (RCR 9102B) の部品点数法で算出されています それぞれの部品ごとに 部品故障率 λ G が与えられ 各々の点数によって決定されます Calculated based on part count reliability prediction of JEITA (RCR 9102B). Individual failure rates λ G is given to each part and MTBF is calculated by the count of each part. < 算出式 > 1 MTBF = λ equip 10 6 = n å i= 1 n i 1 ( l p ) G Q i 10 6 時間 (Hours) λ equip : 全機器故障率 ( 故障数 / 10 6 時間 ) Total equipment failure rate (Failure / 10 6 Hours) λ G : i 番目の同属部品に対する故障率 ( 故障数 / 10 6 時間 ) Generic failure rate for the ith generic part (Failure / 10 6 Hours) n i : i 番目の同属部品の個数 Quantity of ith generic part n : 異なった同属部品のカテゴリーの数 Number of different generic part categories π : i 番目の同属部品に対する品質ファクタ (π Q =1) Generic quality factor for the ith generic part (π Q =1) MTBF MTBF Values G F : 地上 固定 (Ground, Fixed) RCR 9102B MTBF 43,062 時間 (Hours) 36/40

16. Components Derating MODEL : 12 /S (1) Calculating Method (a) 測定方法 Measuring method 取付方法 : 標準取付 : A 周囲温度 :50 Mounting method Standard mounting : A Ambient temperature 入力電圧 :100, 200VAC 出力電圧 電流 :12V, 84A(100%) Input voltage Output voltage & current スタンバイ電圧 電流 :5V, 1A(100%) Standby voltage & current (b) 半導体 Semiconductors ケース温度 消費電力 熱抵抗より使用状態の接合点温度を求め最大定格接合点温度との比較を求めました Compared with maximum junction temperature and actual one which is calculated based on case temperature, power dissipation and thermal impedance. (c) IC 抵抗 コンデンサ等 IC, Resistors, Capacitors, etc. 周囲温度 使用状態 消費電力など 個々の値は設計基準内に入っています Ambient temperature, operating condition, power dissipation and so on are within derating criteria. (d) 熱抵抗算出方法 Calculating method of thermal impedance q j - c Tc Tj (max) - Tc = Pj(max) q j - l : ディレーティングの始まるケース温度一般に 25 o C Tj (max) - Tl = Pj(max) Case Temperature at Start Point of Derating;25 o C in General Tl : ディレーティングの始まるリード温度一般に 25 o C Lead Temperature at Start Point of Derating;25 o C in General Pj(max) (Pch(max)) : 最大接合点 ( チャネル ) 損失 Maximum Junction (channel) Dissipation Tj(max) (Tch(max)) : 最大接合点 ( チャネル ) 温度 Maximum Junction (channel) Temperature θj c (θch c) : 接合点 ( チャネル ) からケースまでの熱抵抗 Thermal Impedance between Junction (channel) and Case θj l (θch l) : 接合点 ( チャネル ) からリードまでの熱抵抗 Thermal Impedance between Junction (channel) and Lead 37/40

(2) Component Derating List 部品番号 Vin = 100VAC Load = 84A (100 %) Standby = 1A (100 %) Ta = 50 C Location No. Q401 Tch (max) = 150 C θch c = 1.78 C/W STD2NK90ZT4 Pch= 1.23 W ΔTc = 52 C Tc = 102 C STMICRO Tch = Tc + ((θch c) Pch) = 104.2 C D.F. = 69.5 % D401 Tj (max) = 150 C θj l = 20.0 C/W CRF02 Pd = 0.70 W ΔTl = 33 C Tl = 83 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 97.0 C D.F. = 64.0 % D1001 Tj (max) = 150 C θj l = 5.0 C/W V8PA10 M3/I Pd = 0.33 W ΔTl = 29 C Tl = 79 C VISHAY Tj = Tl + ((θj l) Pd ) = 80.7 C D.F. = 53.8 % PC1001 Tj (max) = 125 C θj c = 130.0 C/W TLP385 Pd = 4 mw ΔTc = 14 C Tc = 64 C (LED side) Tj = Tc + ((θj c) Pd ) = 64.5 C TOSHIBA D.F. = 51.6 % 部品番号 Vin = 200VAC Load = 84A (100 %) Standby = 1A (100 %) Ta = 50 C Location No. Q401 Tch (max) = 150 C θch c = 1.78 C/W STD2NK90ZT4 Pch= 1.23 W ΔTc = 51 C Tc = 101 C STMICRO Tch = Tc + ((θch c) Pch) = 103.2 C D.F. = 68.8 % D401 Tj (max) = 150 C θj l = 20.0 C/W CRF02 Pd = 0.70 W ΔTl = 32 C Tl = 82 C TOSHIBA Tj = Tl + ((θj l) Pd ) = 96.0 C D.F. = 64.0 % D1001 Tj (max) = 150 C θj l = 5.0 C/W V8PA10 M3/I Pd = 0.33 W ΔTl = 29 C Tl = 79 C VISHAY Tj = Tl + ((θj l) Pd ) = 80.7 C D.F. = 53.8 % PC1001 Tj (max) = 125 C θj c = 130.0 C/W TLP385 Pd = 4 mw ΔTc = 13 C Tc = 63 C (LED side) Tj = Tc + ((θj c) Pd ) = 63.5 C TOSHIBA D.F. = 50.8 % 38/40

17. Main Components Temperature Rise T List MODEL : 12 /S (1) Measuring Conditions 取付方法 Mounting Method Mounting A ( 標準取付 : A) (Standard M ounting : A) TB51 CN83 CN84 TB1 入力電圧 Input Voltage 100VAC 200VAC 出力電圧 Output Voltage 12VDC 出力電流 Output Current 84A (100%) スタンバイ電圧 電流 Standby Voltage & Current 5VDC, 1A (100%) (2) Measuring Results 入力電圧 Input Voltage 100VAC 部品番号 部品名 取付方向 Location No. Part name Mounting A Q401 MOS FET 52 51 D401 DIODE 33 32 D1001 S.B.D. 29 29 A401 CHIP IC 25 24 A1001 CHIP IC 10 7 T401 TRANS 32 31 C1003 CHIP E.CAP. 9 8 PC1001 PHOTO COUPLER 14 13 * 取付方向 B, C, D の値は取付方向 A と同様の値となります Value of Mounting B, C and D are similar to Mounting A. ΔT Temperature Rise ( C) 200VAC 39/40

18. Abnormal Test MODEL : 12 /S (1) Test Conditions Input : 265VAC Output : 12V, 84A (100%) Standby : 5V, 1A (100%) Ta : 25 o C (2) Test Results Test position No. 部品 No. 試験端子 Test mode ショート オープン a b c d e f g h i j k l 発火 発煙 破裂 異臭 赤熱 破損 ヒューズ断 O V P O C P Test result 出力断 変化なし その他 (Da : Damaged) 記事 Location No. Test point Short Open Fire Smoke Burst Smell Red hot Damaged Fuse blown No output No change Others Note 1 Q401 D S Fuse : F401 2 D G Fuse : F401 3 G S 4 D 5 S 6 G 7 A K D1001 8 A/K 9 C1003 10 Fuse : F401 Da : Q401 出力リプル増加 Output ripple increase 11 T401 1 2 Fuse : F401 12 2 4 13 4 6 Fuse : F401 14 7 8 15 1 6 Fuse : F401 16 1 17 2 18 4 19 6 20 7 21 8 40/40