Search for new physics in three-body charmless B mesons decays

Similar documents
Introduction to Dalitz-plot

Recent CP violation measurements

B Factories. Alan Watson University of Birmingham, UK

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

CP Violation at the LHC - workshop 2017

Measurements of CP violating phases in B decays at LHCb

Measurements of the phase φ s at LHCb

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Recent results on CKM/CPV from Belle

Lecture III. Measurement of sin 2 in B K 0 S. Measurement of sin 2 in B + -, B + - Measurement of in B DK. Direct CP Violation

CKM Matrix and CP Violation in Standard Model

Dalitz Plot Analyses of B D + π π, B + π + π π + and D + s π+ π π + at BABAR

LHCb New B physics ideas

CP Violation in the B system

CP violation in charmless hadronic B decays

CKM phase and CP Violation in B Decays

Electroweak Theory: 5

Impact of the PXD on the Vertex Reconstruction of π 0 particles

The weak interaction Part II

Lecture 2: CPV in B system

Measurements of the CKM angle γ at LHCb

Optimising sensitivity to γ with B 0 DKπ,

Weak Decays, CKM, Anders Ryd Cornell University

CP Violation in B Decays and the CKM Matrix. Emmanuel Olaiya Rutherford Appleton Laboratory Chilton,Didcot,Oxon,OX11 0QX,UK

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

arxiv:hep-ph/ v4 18 Nov 1999

Overview of LHCb Experiment

Hadronic Effects in B -Decays

Advances in Open Charm Physics at CLEO-c

-2betas Measurement from a fit to untagged Bs-> J/psi phi data

Precision measurement of

Lecture 12 Weak Decays of Hadrons

Beyond Standard Model Effects in Flavour Physics: p.1

Cracking the Unitarity Triangle

Belle II perspectives on Unitarity Triangle sides and angles

Analysis tools: the heavy quark sector. Gianluca Cavoto INFN Roma ATHOS 12 Jun 20 th -22 nd, 2012 Camogli, Italy

Amplitude analyses with charm decays at e + e machines

Measuring α with the B-factories. Adrian Bevan SCIPP 17 th Feb 04

OBSERVATION OF THE RARE CHARMED B DECAY, AT THE BABAR EXPERIMENT

Measurement of ϕ 2 /α using

Measuring the Unitarity Triangle Angle α with BaBar. Adrian Bevan KEK, 15 th September 2006

Adrian Bevan Department of Physics Liverpool University Liverpool, United Kingdom (from the BABAR Collaboration.)

Probing New Physics Through B s Mixing

Recent results from rare decays

CKM : Status and Prospects

Recent results from LHCb. A.Hicheur (UFRJ, Brazil) On behalf of the LHCb collaboration SILAFAE 2016, Guatemala November 14-18, 2016

PoS(CKM2016)113. Measurement of γ from B meson decay to D ( ) K ( )

CP Violation in the B(s) meson system at LHCb Julian Wishahi on behalf of the LHCb collaboration

Measurement of the CKM Sides at the B-Factories

CDF. Michael Feindt, Michal Kreps, Thomas Kuhr, Felix Wick. October 6, Institut für Experimentelle Kernphysik

Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses

How well do we know the Unitarity Triangle? An experimental review

Lecture 14 Mixing and CP Violation

Dalitz Plot Analysis of Heavy Quark Mesons Decays (3).

IX Workshop GFPAE. Prof. Carla Göbel. July 13, Departamento de Física Pontifícia Universidade Católica do Rio de Janeiro

Decadimenti senza charm e misure di α alle B-Factory

arxiv: v2 [hep-ex] 8 Aug 2013

Measurement of CP Violation in B s J/ΨΦ Decay at CDF

Measurement of γ from B DK and related modes at LHCb

On behalf of M. Bona, G. Eigen, R. Itoh and E. Kou

LHCb results and prospects

Recent V ub results from CLEO

La Fisica dei Sapori Pesanti

Particle Physics. Lecture 12: Hadron Decays.!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix

La Belle Epoque. K.Trabelsi kek.jp Lausanne, 22 Jan, 2009

Searches for CP violation in decays from BABAR and Belle

CP Violation sensitivity at the Belle II Experiment

Fleischer Mannel analysis for direct CP asymmetry. Abstract

CKMfitter A Mathematica based Version

G. Eigen U Bergen NFR Meeting Bergen October 19, 2005

Sin2β and Cos2β from b ccd and b cud transitions at BABAR

Results from B-Physics (LHCb, BELLE)

PoS(FPCP2017)018. CP violation in the baryon sector. Eluned Smith RWTH Aachen On behalf of the LHCb collaboration

New Physics & Future B Physics Programs CP violation Rare Decays

CP Violation Beyond the Standard Model

Flavour Physics at hadron machines

Recent topics in heavy-quark flavour physics

B Physics Lecture 1 Steven Robertson

new measurements of sin(2) & cos(2) at BaBar

Studying CP Violation via Amplitude Analysis (i)

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

Parity violation. no left-handed ν$ are produced

ub + V cd V tb = 0, (1) cb + V td V

Particle Physics II CP violation. Lecture 3. N. Tuning. (also known as Physics of Anti-matter ) Niels Tuning (1)

Antonio Pich. IFIC, CSIC Univ. Valencia.

Penguin decays at LHCb

Flavour Physics Lecture 1

Measurement of CP violation in B J/ψK 0 S. decays. Frank Meier TU Dortmund. XXIX Rencontres de Physique de la Vallée d Aoste March 1 7, 2015

ωω: J. Albert Caltech March 24, 2006

Recent results from the LHCb

Charm Review (from FOCUS and BaBar)

CP Violation: A New Era

Unitary Triangle Analysis: Past, Present, Future

Charm CP Violation and the electric dipole moment of the neutron

STATUS OF CKM ANGLE MEASUREMENTS, A REPORT FROM BABAR AND BELLE

Department of Physics and Astronomy, University of California, Riverside, CA, USA

CP violation and rare decays Tim Gershon University of Warwick. 4 June 2015

Bs studies at a SuperB: physics case and experimental potentialities

Charm mixing and CP violation at LHCb

LHCb Physics and prospects. Stefano Perazzini On behalf of LHCb Collabora4on MENU nd June 2010

Transcription:

Search for new physics in three-body charmless B mesons decays Emilie Bertholet Advisors: Eli Ben-Haim, Matthew Charles LPNHE-LHCb group emilie.bertholet@lpnhe.in2p3.fr November 17, 2017 Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 1 / 31

Overview 1 General introduction 2 Study of a method of extraction of the CKM-angle γ 3 Dalitz-plot analysis of B 0 K 0 SK + K Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 2 / 31

Contents 1 General introduction 2 Study of a method of extraction of the CKM-angle γ 3 Dalitz-plot analysis of B 0 K 0 SK + K Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 3 / 31

Weak interaction and CKM matrix Transitions between different types of quarks in the SM weak interaction (W ± bosons). b V cb c b W + s W + CKM-matrix 3 3 complex unitarity matrix parametrised by 3 angles and 1 phase (only source of CP violation in the SM) V ud V us V ub V CKM = V cd V cs V cb V td V ts V tb Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 4 / 31

Weak interaction and CKM matrix Wolfenstein parametrisation: 3rd order development in λ = V us λ 0.23, A 0.8, ρ 0.14, η 0.35 1 λ 2 /2 λ Aλ 3 (ρ iη) V CKM = λ 1 λ 2 /2 Aλ 2 + O(λ 4 ) Aλ 3 (1 ρ iη) Aλ 2 1 u c t V ud V us V ub V CKM = V cd V cs V cb V td V ts V tb d s b Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 5 / 31

Weak interaction and CKM matrix Wolfenstein parametrisation: 3rd order development in λ = V us λ 0.23, A 0.8, ρ 0.14, η 0.35 1 λ 2 /2 λ Aλ 3 (ρ iη) V CKM = λ 1 λ 2 /2 Aλ 2 + O(λ 4 ) Aλ 3 (1 ρ iη) Aλ 2 1 u c t V ud V us V ub V CKM = V cd V cs V cb V td V ts V tb d s b Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 5 / 31

Weak interaction and CKM matrix Wolfenstein parametrisation: 3rd order development in λ = V us λ 0.23, A 0.8, ρ 0.14, η 0.35 1 λ 2 /2 λ Aλ 3 (ρ iη) V CKM = λ 1 λ 2 /2 Aλ 2 + O(λ 4 ) Aλ 3 (1 ρ iη) Aλ 2 1 u c t V ud V us V ub V CKM = V cd V cs V cb V td V ts V tb d s b Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 5 / 31

Weak interaction and CKM matrix Wolfenstein parametrisation: 3rd order development in λ = V us λ 0.23, A 0.8, ρ 0.14, η 0.35 1 λ 2 /2 λ Aλ 3 (ρ iη) V CKM = λ 1 λ 2 /2 Aλ 2 + O(λ 4 ) Aλ 3 (1 ρ iη) Aλ 2 1 u c t V ud V us V ub V CKM = V cd V cs V cb V td V ts V tb d s b Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 5 / 31

Weak interaction and CKM matrix Wolfenstein parametrisation: 3rd order development in λ = V us λ 0.23, A 0.8, ρ 0.14, η 0.35 1 λ 2 /2 λ Aλ 3 (ρ iη) V CKM = λ 1 λ 2 /2 Aλ 2 + O(λ 4 ) Aλ 3 (1 ρ iη) Aλ 2 1 u c t V ud V us V ub V CKM = V cd V cs V cb V td V ts V tb d s b Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 5 / 31

Weak interaction and CKM matrix Wolfenstein parametrisation: 3rd order development in λ = V us λ 0.23, A 0.8, ρ 0.14, η 0.35 1 λ 2 /2 λ Aλ 3 (ρ iη) V CKM = λ 1 λ 2 /2 Aλ 2 + O(λ 4 ) Aλ 3 (1 ρ iη) Aλ 2 1 u c t V ud V us V ub V CKM = V cd V cs V cb V td V ts V tb d s b Nothing in the SM explains the hierarchy in the transitions!!! Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 5 / 31

Unitarity triangle and the γ angle CKM matrix is unitary: i j V ij V ik = δ jk V ij V kj = δ jk Unitarity triangle V ud V ub + V cd V cb + V td V tb = 0 ρ + i η = V udvub V cd Vcb. γ = arg [ V udv ub V cd V cb b u highly suppressed: great precision on γ measurement is difficult to achieve. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 6 / 31 ]

Why measure γ? Measure CKM parameters: SM V CKM unitary. SM+NP maybe not? We need to test unitarity and self-consistency over-constrain the triangle α = 88.8 +2.3 2.3 [deg] β = 21.85 +0.68 0.67 [deg] γ = 72.1 +5.4 5.8 [deg] Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 7 / 31

Why measure γ? Measure CKM parameters: SM V CKM unitary. SM+NP maybe not? We need to test unitarity and self-consistency over-constrain the triangle Measure γ: from tree decays from loop decays [charmless] γ is the least known CKM parameter to date. α = 88.8 +2.3 2.3 [deg] β = 21.85 +0.68 0.67 [deg] γ = 72.1 +5.4 5.8 [deg] Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 7 / 31

Three-body decay formalism: Dalitz Plane 3-body decay 2 free parameters the phase space lies on a plane Partial width of the decay dγ = 1 1 (2π 3 ) 32M 2 M 2 ds 12 ds 23 with s ij = mij 2 = (m i + m j ) 2 s 12 + s 23 + s 13 = M 2 + m1 2 + m2 2 + m3 2 Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 8 / 31

Three-body decay formalism: Dalitz Plane 3-body decay 2 free parameters the phase space lies on a plane Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 8 / 31

The framework of Dalitz plot analysis Experimentally, we use an isobar approximation which models the total amplitude as resulting from a coherent sum of amplitudes A (s 12, s 23 ) = N j=1 c j e iφ j F j (s 12, s 23 ) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 9 / 31

The framework of Dalitz plot analysis Experimentally, we use an isobar approximation which models the total amplitude as resulting from a coherent sum of amplitudes A (s 12, s 23 ) = N j=1 c j e iφ j F j (s 12, s 23 ) Isobar parameters Coefficients describing the relative magnitude and phase of the different decay channels. Contains only the weak dynamics. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 9 / 31

The framework of Dalitz plot analysis Experimentally, we use an isobar approximation which models the total amplitude as resulting from a coherent sum of amplitudes A (s 12, s 23 ) = Isobar parameters Coefficients describing the relative magnitude and phase of the different decay channels. Contains only the weak dynamics. N j=1 c j e iφ j F j (s 12, s 23 ) DP-dependent dynamical amplitudes Functions describing the strong dynamics. Lineshape: propagators = Breit- Wigner or more complicated functions. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 9 / 31

So why study all this? Why study charmless B meson decays? Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 10 / 31

So why study all this? Why study charmless B meson decays? Penguin and tree contributions can have similar size Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 10 / 31

So why study all this? Why study charmless B meson decays? Penguin and tree contributions can have similar size { CP violation NP searches Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 10 / 31

So why study all this? Why study charmless B meson decays? Penguin and tree contributions can have similar size { CP violation NP searches Why Dalitz-plot (DP) analysis? Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 10 / 31

So why study all this? Why study charmless B meson decays? Penguin and tree contributions can have similar size { CP violation NP searches Why Dalitz-plot (DP) analysis? Gives information on the resonant structure. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 10 / 31

So why study all this? Why study charmless B meson decays? Penguin and tree contributions can have similar size { CP violation NP searches Why Dalitz-plot (DP) analysis? Gives information on the resonant structure. Gives access to many observables: Branching ratios Direct and indirect CP asymmetries Direct access to phases Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 10 / 31

Contents 1 General introduction 2 Study of a method of extraction of the CKM-angle γ 3 Dalitz-plot analysis of B 0 K 0 SK + K Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 11 / 31

Method overview Most precise measurement of γ comes from decays like B DK dominated by tree processes (SM-like measurement). We studied a method to extract γ from charmless loop processes (new physics sensitive) developed by London et al. Phys.Lett. B728 (2014) 206-209 b W + s b?? s γ is extracted combining the information coming from 5 charmless 3-body decays modes of B mesons under the assumption of SU(3) flavour symmetry. B 0 K S K S K S B 0 K + π 0 π B + K + π + π B 0 K S K + K B 0 K S π + π Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 12 / 31

Theoretical amplitudes Under SU(3) flavour symmetery the penguin diagrams and tree diagrams are proportional for b s transitions P (C) EW = κ T (C) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 13 / 31

Theoretical amplitudes Under SU(3) flavour symmetery the penguin diagrams and tree diagrams are proportional for b s transitions P (C) EW = κ T (C) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 13 / 31

Theoretical amplitudes Under SU(3) flavour symmetery the penguin diagrams and tree diagrams are proportional for b s transitions P (C) EW = κ T (C) Constant: function of CKM matrix elements and Wilson coefficients Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 13 / 31

Theoretical amplitudes Under SU(3) flavour symmetery the penguin diagrams and tree diagrams are proportional for b s transitions P (C) EW = κ T (C) Constant: function of CKM matrix elements and Wilson coefficients SU(3) flavour symmety implies using fully symmetrised amplitudes. Mathematics of symmetrisation will be discussed later. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 13 / 31

Theoretical amplitudes The theoretical amplitudes for each mode can be expressed in terms of 2A (B 0 K + π 0 π ) fs = be iγ κc, 2A (B 0 K 0 π + π ) fs = de iγ P uce iγ a + κd, 2A (B 0 K + K 0 K ) fs = α SU(3) ( ce iγ P uce iγ a + κb), A (B 0 K 0 K 0 K 0 ) fs = α SU(3) ( P uce iγ + a). Parameter counting for 5 modes (and 4 modes) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 14 / 31

Theoretical amplitudes The theoretical amplitudes for each mode can be expressed in terms of 5 effective diagrams: a, b, c, d and P uc. 2A (B 0 K + π 0 π ) fs = be iγ κc, 2A (B 0 K 0 π + π ) fs = de iγ P uce iγ a + κd, 2A (B 0 K + K 0 K ) fs = α SU(3) ( ce iγ P uce iγ a + κb), A (B 0 K 0 K 0 K 0 ) fs = α SU(3) ( P uce iγ + a). Parameter counting for 5 modes (and 4 modes) 5 magnitudes + 4 relative strong phases Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 14 / 31

Theoretical amplitudes The theoretical amplitudes for each mode can be expressed in terms of 5 effective diagrams: a, b, c, d and P uc. The weak phase γ 2A (B 0 K + π 0 π ) fs = be iγ κc, 2A (B 0 K 0 π + π ) fs = de iγ P uce iγ a + κd, 2A (B 0 K + K 0 K ) fs = α SU(3) ( ce iγ P uce iγ a + κb), A (B 0 K 0 K 0 K 0 ) fs = α SU(3) ( P uce iγ + a). Parameter counting for 5 modes (and 4 modes) 5 magnitudes + 4 relative strong phases + γ Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 14 / 31

Theoretical amplitudes The theoretical amplitudes for each mode can be expressed in terms of 5 effective diagrams: a, b, c, d and P uc. The weak phase γ α SU(3) 2A (B 0 K + π 0 π ) fs = be iγ κc, 2A (B 0 K 0 π + π ) fs = de iγ P uce iγ a + κd, 2A (B + K + π + π ) fs = ce iγ P uce iγ a + κb, 2A (B 0 K + K 0 K ) fs = α SU(3) ( ce iγ P uce iγ a + κb), A (B 0 K 0 K 0 K 0 ) fs = α SU(3) ( P uce iγ + a). Parameter counting for 5 modes (and 4 modes) 5 magnitudes + 4 relative strong phases + γ + α SU(3) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 14 / 31

Theoretical amplitudes The theoretical amplitudes for each mode can be expressed in terms of 5 effective diagrams: a, b, c, d and P uc. The weak phase γ α SU(3) 2A (B 0 K + π 0 π ) fs = be iγ κc, 2A (B 0 K 0 π + π ) fs = de iγ P uce iγ a + κd, 2A (B + K + π + π ) fs = ce iγ P uce iγ a + κb, 2A (B 0 K + K 0 K ) fs = α SU(3) ( ce iγ P uce iγ a + κb), A (B 0 K 0 K 0 K 0 ) fs = α SU(3) ( P uce iγ + a). Parameter counting for 5 modes (and 4 modes) 5 magnitudes + 4 relative strong phases + γ + α SU(3) 11 (10) theoretical parameters. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 14 / 31

Observables From the extracted the amplitudes of the 5 (4) modes we can construct observables X = M fs 2 + M fs 2 Effective branching ratio averaged on flavour Parameter counting for 5 modes (and 4 modes) X is available for all modes: 5 (4) parameters Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 15 / 31

Observables From the extracted the amplitudes of the 5 (4) modes we can construct observables X = M fs 2 + M fs 2 Y = M fs 2 M fs 2 Effective branching ratio averaged on flavour Direct CP asymmetry Parameter counting for 5 modes (and 4 modes) X is available for all modes: 5 (4) parameters Y is available for all modes: 5 (4) parameters Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 15 / 31

Observables From the extracted the amplitudes of the 5 (4) modes we can construct observables X = M fs 2 + M fs 2 Y = M fs 2 M fs 2 Z = Im[M M fs ] fs Effective branching ratio averaged on flavour Direct CP asymmetry Indirect CP asymmetry Parameter counting for 5 modes (and 4 modes) X is available for all modes: 5 (4) parameters Y is available for all modes: 5 (4) parameters Z is available for self-conjugate modes: 3 parameters Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 15 / 31

Observables From the extracted the amplitudes of the 5 (4) modes we can construct observables X = M fs 2 + M fs 2 Y = M fs 2 M fs 2 Z = Im[M M fs ] fs Effective branching ratio averaged on flavour Direct CP asymmetry Indirect CP asymmetry Parameter counting for 5 modes (and 4 modes) X is available for all modes: 5 (4) parameters Y is available for all modes: 5 (4) parameters Z is available for self-conjugate modes: 3 parameters 13 (11) observables. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 15 / 31

Observables From the extracted the amplitudes of the 5 (4) modes we can construct observables X = M fs 2 + M fs 2 Y = M fs 2 M fs 2 Z = Im[M M fs ] fs Effective branching ratio averaged on flavour Direct CP asymmetry Indirect CP asymmetry Parameter counting for 5 modes (and 4 modes) X is available for all modes: 5 (4) parameters Y is available for all modes: 5 (4) parameters Z is available for self-conjugate modes: 3 parameters 13 (11) observables. With 11 (10) theoretical parameters and 13 (11) observables γ can be extracted from a fit. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 15 / 31

Extraction of γ from a single point in phase space Likelihood scan on γ with a single point on the DP Pick a point amplitudes observables combination. Fix γ to consecutive values and minimise χ 2, floating the other parameters (a, b...). 11 theoretical parameters and 13 observables. 13 13 covariance matrix. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 16 / 31

Extraction of γ from a single point in phase space Likelihood scan on γ with a single point on the DP Pick a point amplitudes observables combination. Fix γ to consecutive values and minimise χ 2, floating the other parameters (a, b...). χ 2 10 9 8 7 6 NOT REAL DATA 5 4 0 2 4 6 8 10 γ [rad] 11 theoretical parameters and 13 observables. 13 13 covariance matrix. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 16 / 31

Extraction of γ from a single point in phase space Likelihood scan on γ with a single point on the DP Pick a point amplitudes observables combination. Fix γ to consecutive values and minimise χ 2, floating the other parameters (a, b...). χ 2 10 9 8 7 6 NOT REAL DATA 5 4 0 2 4 6 8 10 γ [rad] 11 theoretical parameters and 13 observables. 13 13 covariance matrix. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 16 / 31

Extraction of γ from a single point in phase space Likelihood scan on γ with a single point on the DP Pick a point amplitudes observables combination. Fix γ to consecutive values and minimise χ 2, floating the other parameters (a, b...). χ 2 10 9 8 7 6 NOT REAL DATA 5 4 0 2 4 6 8 10 γ [rad] 11 theoretical parameters and 13 observables. 13 13 covariance matrix. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 16 / 31

Extraction of γ from a single point in phase space Likelihood scan on γ with a single point on the DP Pick a point amplitudes observables combination. Fix γ to consecutive values and minimise χ 2, floating the other parameters (a, b...). χ 2 10 9 8 7 6 NOT REAL DATA 5 4 0 2 4 6 8 10 γ [rad] 11 theoretical parameters and 13 observables. 13 13 covariance matrix. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 16 / 31

Extraction of γ from a single point in phase space Likelihood scan on γ with a single point on the DP Pick a point amplitudes observables combination. Fix γ to consecutive values and minimise χ 2, floating the other parameters (a, b...). χ 2 10 9 8 7 6 NOT REAL DATA etc... Prefered value of γ 5 4 0 2 4 6 8 10 γ [rad] 11 theoretical parameters and 13 observables. 13 13 covariance matrix. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 16 / 31

Extraction of γ from a set of N correlated points Similar method. (11N 1) theoretical parameters and 13N observables. (13N 13N) covariance matrix, contains the correlations between the different points. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 17 / 31

Extraction of γ from a set of N correlated points Similar method. The more points we add, the larger the covariance matrix becomes. (11N 1) theoretical parameters and 13N observables. (13N 13N) covariance matrix, contains the correlations between the different points. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 17 / 31

Extraction of γ from a set of N correlated points Similar method. The more points we add, the larger the covariance matrix becomes. (11N 1) theoretical parameters and 13N observables. (13N 13N) covariance matrix, contains the correlations between the different points. The result depends on the choice of points Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 17 / 31

Choice of points on the Dalitz plane In theory, we can extract γ using as many points as we want on Dalitz plane. In practice, the number of points is limited because of large correlations between points that make the covariance matrix singular. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 18 / 31

Choice of points on the Dalitz plane In theory, we can extract γ using as many points as we want on Dalitz plane. In practice, the number of points is limited because of large correlations between points that make the covariance matrix singular. Pathological example 1 0.999... 0.999... corr = 0.999... 1 0.999... 0.999... 0.999... 1 Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 18 / 31

Choice of points on the Dalitz plane In theory, we can extract γ using as many points as we want on Dalitz plane. In practice, the number of points is limited because of large correlations between points that make the covariance matrix singular. Pathological example 1 0.999... 0.999... corr = 0.999... 1 0.999... 0.999... 0.999... 1 We found that the maximum number of points we can use is 3. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 18 / 31

Symmetrisation methods ] 2 [GeV s 23 22 20 18 16 14 12 10 8 6 4 2 0 0 5 10 15 20 Figure: Symmetrisation 1 example. s 13 2 [GeV ] Figure: Kinematic boundaries of the different modes. Symmetrisation method 1: with invariant masses A fs = A(s 13, s 23 ) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 19 / 31

Symmetrisation methods ] 2 [GeV s 23 22 20 18 16 14 12 10 8 6 4 2 0 0 5 10 15 20 Figure: Symmetrisation 1 example. s 13 2 [GeV ] Figure: Kinematic boundaries of the different modes. Symmetrisation method 1: with invariant masses A fs = A(s 13, s 23 )+A(s 23, s 13 ) + A(s 12, s 23 ) + A(s 23, s 12 ) + A(s 13, s 12 ) + A(s 12, s 23 ) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 19 / 31

Symmetrisation methods ] 2 [GeV s 23 22 20 18 16 14 12 10 8 6 4 2 0 0 5 10 15 20 Figure: Symmetrisation 1 example. s 13 2 [GeV ] Figure: Kinematic boundaries of the different modes. Symmetrisation method 1: with invariant masses A fs = 1 6 (A(s 13, s 23 )+A(s 23, s 13 ) + A(s 12, s 23 ) + A(s 23, s 12 ) + A(s 13, s 12 ) + A(s 12, s 23 )) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 19 / 31

Symmetrisation methods Helicity angle Use cos θ ij instead of s ij as parameters. The cos θ ij = f (s 12, s 23, s 13 ). With this set of parameters all the planes size the same. Figure: For the decay B abc, θ ab is the angle between a and c in the rest frame of a and b Symmetrisation method 2: with helicity angles A fs A(c 21, c 23, c 31 ) + A(c 23, c 21, c 13 ) + A(c 12, c 31, c 23 ) + A(c 32, c 13, c 21 ) + A(c 31, c 12, c 32 ) + A(c 13, c 32 c 12 ) Notice that c ij = cos θ ij = c ji Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 20 / 31

Symmetrisation methods Figure: Jacobian of the transformation (s 13, s 23 ) (c 12, c 23 ) for K S K S K S. Figure: Representation of the symmetrised K S K S K S plane in terms of cosine helicity angles using symmetrisation 2. Symmetrisation method 2: with helicity angles A fs A(c 21, c 23, c 31 ) + A(c 23, c 21, c 13 ) + A(c 12, c 31, c 23 ) + A(c 32, c 13, c 21 ) + A(c 31, c 12, c 32 ) + A(c 13, c 32 c 12 ) Notice that c ij = cos θ ij = c ji Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 20 / 31

Results: 4 modes, symmetrisation 1 γ extracted from 201 random 3-points combinations with full correlations using symmetrisation 1 #evts 160 140 γ scan minima Minima Entries 1366 Mean 143.8 Std Dev 118.7 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 γ [deg] min Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 21 / 31

Results: 4 modes, symmetrisation 1 γ extracted from 201 random 3-points combinations with full correlations using symmetrisation 1 #evts 160 140 γ scan minima Minima Entries 1366 Mean 143.8 Std Dev 118.7 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 γ [deg] min Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 21 / 31

Results: 4 modes, symmetrisation 1 γ extracted from 201 random 3-points combinations with full correlations using symmetrisation 1 #evts 160 140 γ scan minima Minima Entries 1366 Mean 143.8 Std Dev 118.7 6 minima γ [ ] 13.9 +3.6 7.5 34.4 +5.3 5.2 69.9 +8.3 6.0 230.0 +7.0 7.5 266.8 +8.9 8.7 307.5 +6.8 6.9 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 γ [deg] min Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 21 / 31

Results: 4 modes, symmetrisation 1 γ extracted from 201 random 3-points combinations with full correlations using symmetrisation 1 #evts 160 140 Compatible with γ from trees: 72.1 +5.4 5.8 γ scan minima Minima Entries 1366 Mean 143.8 Std Dev 118.7 6 minima γ [ ] 13.9 +3.6 7.5 34.4 +5.3 5.2 69.9 +8.3 6.0 230.0 +7.0 7.5 266.8 +8.9 8.7 307.5 +6.8 6.9 120 100 80 60 40 20 0 0 50 100 150 200 250 300 350 γ [deg] min Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 21 / 31

Contents 1 General introduction 2 Study of a method of extraction of the CKM-angle γ 3 Dalitz-plot analysis of B 0 K 0 SK + K Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 22 / 31

Introduction The LPNHE group is involved in studies of B 0 d,s K S hh (h = π, K) Measurement of BF(Bd,s 0 K S h + h ) with 3 fb 1 of Run 1 data. Time-independent, untagged, Dalitz-plot analysis of B 0 KSK 0 + K. Louis Henry s thesis Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 23 / 31

Measured branching fractions with 3fb 1 of data BF(B 0 d,s K S h + h ) Paper arxiv:1707.01665v1, accepted on JHEP 6 modes 3 spectra Measured relative to B 0 K 0 Sπ + π B 0 s modes measured for the 1st time in LHCb: all modes observed except B 0 K 0 SK + K ( 3σ) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 24 / 31

Dalitz-plot analysis of B 0 K 0 SK + K Reference resonance model from BaBar. Resonance Lineshape mass (MeV) width (MeV) φ(1020) RBW 1019.455 ± 0.020 4.26 ± 0.04 gk f0(980) Flatté 965± 10 = 4.12 ± 0.33 gπ f0(1500) RBW 1505±6 109± 7 f 2(1525) RBW 1720± 6 135± 8 f0(1710) RBW 1525± 5 73 +6 5 χc0 RBW 3414.75± 0.31 10.3± 0.6 NR(S-wave) 2nd order polynomial - - NR(P-wave) 2nd order polynomial - - Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 25 / 31

Dalitz-plot analysis of B 0 K 0 SK + K Reference resonance model from BaBar. 1000 fits to data with randomised initial values of parameters. Add/remove contributions depending on the likelihood and goodness of fit. Resonance Lineshape mass (MeV) width (MeV) φ(1020) RBW 1019.455 ± 0.020 4.26 ± 0.04 gk f0(980) Flatté 965± 10 = 4.12 ± 0.33 gπ f0(1500) RBW 1505±6 109± 7 f 2(1525) RBW 1720± 6 135± 8 f0(1710) RBW 1525± 5 73 +6 5 χc0 RBW 3414.75± 0.31 10.3± 0.6 NR(S-wave) 2nd order polynomial - - NR(P-wave) 2nd order polynomial - - Louis thesis results Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 25 / 31

Dalitz-plot analysis of B 0 K 0 SK + K Reference resonance model from BaBar. 1000 fits to data with randomised initial values of parameters. Add/remove contributions depending on the likelihood and goodness of fit. Resonance Lineshape mass (MeV) width (MeV) φ(1020) RBW 1019.455 ± 0.020 4.26 ± 0.04 gk f0(980) Flatté 965± 10 = 4.12 ± 0.33 gπ f0(1500) RBW 1505±6 109± 7 f 2(1525) RBW 1720± 6 135± 8 f0(1710) RBW 1525± 5 73 +6 5 χc0 RBW 3414.75± 0.31 10.3± 0.6 NR(S-wave) 2nd order polynomial - - NR(P-wave) 2nd order polynomial - - Multiple soutions! isobar contribution Louis thesis results FF in % Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 25 / 31

Analysis in progress Previous analysis: Multiple solutions implying several isobar parameters. Yields similar to B-factories but not better. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 26 / 31

Analysis in progress Previous analysis: Multiple solutions implying several isobar parameters. Yields similar to B-factories but not better. How can we improve the results? Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 26 / 31

Analysis in progress Previous analysis: Multiple solutions implying several isobar parameters. Yields similar to B-factories but not better. How can we improve the results? Use more data (we already doubled the dataset). Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 26 / 31

Analysis in progress Previous analysis: Multiple solutions implying several isobar parameters. Yields similar to B-factories but not better. How can we improve the results? Use more data (we already doubled the dataset). Use tagging information. Tagging information may reduce ambiguities and so the number of solutions. Gain in sensitivity. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 26 / 31

Analysis in progress Previous analysis: Multiple solutions implying several isobar parameters. Yields similar to B-factories but not better. How can we improve the results? Use more data (we already doubled the dataset). Use tagging information. Include more contributions to the model. Tagging information may reduce ambiguities and so the number of solutions. Gain in sensitivity. LHCb has better sensitivity in some regions of the Dalitz plane than B-factories. Add resonances in these regions. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 26 / 31

Adding components Study the effect of adding a new resonance to the model that could model the NR (P wave): a 0 (980) (isospin triplet). Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 27 / 31

Adding components Study the effect of adding a new resonance to the model that could model the NR (P wave): a 0 (980) (isospin triplet). Fits to data using various models 1 BaBar model. 2 Baseline model (BaBar with simplified NR P-wave). 3 Baseline model + a 0 0(980) + no NR P-wave. 4 Baseline resonances + a 0 0(980) + flat NR. 5 Baseline resonances - f 0 (1710) + a 0 0(980) + flat NR. For each of the above models we used the fit results for the isobar parameters to generate signal-only toys. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 27 / 31

Adding components 2. Baseline 1. BaBar 3. a00 (980), no NR-P Emilie Bertholet (LPNHE) 4. a00 (980), Flat NR 3-body charmless B decays 5. Idem 4. without f0 (1710) November 17, 2017 28 / 31

Adding components 2. Baseline 1. BaBar a00 (980) imitates the P-wave (to some extent) 3. a00 (980), no NR-P Emilie Bertholet (LPNHE) 4. a00 (980), Flat NR 3-body charmless B decays 5. Idem 4. without f0 (1710) November 17, 2017 28 / 31

Fit results with the different models Summary of tested models model number of resonances varying parameters minimum NLL number of solutions BaBar 12 15-856.556 14 Baseline 11 17-858.157 18 a 0 0 (980) without PolNR_P 10 17-854.129 7 a0 0 (980) with Flat NR 8 13-813.596 3 a0 0 (980) with Flat NR without f0(1710) 7 11-811.24 2 Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 29 / 31

Fit results with the different models Summary of tested models model number of resonances varying parameters minimum NLL number of solutions BaBar 12 15-856.556 14 Baseline 11 17-858.157 18 a 0 0 (980) without PolNR_P 10 17-854.129 7 a0 0 (980) with Flat NR 8 13-813.596 3 a0 0 (980) with Flat NR without f0(1710) 7 11-811.24 2 The addition a 0 0 (980) decreases the number of solutions. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 29 / 31

Fit results with the different models Summary of tested models model number of resonances varying parameters minimum NLL number of solutions BaBar 12 15-856.556 14 Baseline 11 17-858.157 18 a 0 0 (980) without PolNR_P 10 17-854.129 7 a0 0 (980) with Flat NR 8 13-813.596 3 a0 0 (980) with Flat NR without f0(1710) 7 11-811.24 2 The addition a 0 0 (980) decreases the number of solutions. Fit fractions (in %) φ(1020) f0(980) f0(1500) f 2(1525) f0(1710) χc0 PolNR_S0 PolNR_S1 PolNR_S2 a 0 0 (980) φ(1020) 15.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 f0(980) - 118.41-0.60-0.00 10.30 0.79 92.78 34.47-39.47-425.42 f0(1500) - - 5.86-0.00 2.61 0.13 10.17 8.14 2.72-9.95 f 2(1525) - - - 3.86-0.00 0.00-0.00 0.00 0.00 0.00 f0(1710) - - - - 1.81-0.03 1.58 1.20-2.12-18.88 χc0 - - - - - 2.06 1.98 1.25-0.25-1.98 PolNR_S0 - - - - - - 83.52-5.21-23.47-202.58 PolNR_S1 - - - - - - - 43.50-1.49-96.37 PolNR_S2 - - - - - - - - 16.19 50.49 a0 0 (980) - - - - - - - - - 419.00 Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 29 / 31

Fit results with the different models Summary of tested models model number of resonances varying parameters minimum NLL number of solutions BaBar 12 15-856.556 14 Baseline 11 17-858.157 18 a 0 0 (980) without PolNR_P 10 17-854.129 7 a0 0 (980) with Flat NR 8 13-813.596 3 a0 0 (980) with Flat NR without f0(1710) 7 11-811.24 2 The addition a 0 0 (980) decreases the number of solutions. Fit fractions (in %) φ(1020) f0(980) f0(1500) f 2(1525) f0(1710) χc0 PolNR_S0 PolNR_S1 PolNR_S2 a 0 0 (980) φ(1020) 15.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 f0(980) - 118.41-0.60-0.00 10.30 0.79 92.78 34.47-39.47-425.42 f0(1500) - - 5.86-0.00 2.61 0.13 10.17 8.14 2.72-9.95 f 2(1525) - - - 3.86-0.00 0.00-0.00 0.00 0.00 0.00 f0(1710) - - - - 1.81-0.03 1.58 1.20-2.12-18.88 χc0 - - - - - 2.06 1.98 1.25-0.25-1.98 PolNR_S0 - - - - - - 83.52-5.21-23.47-202.58 PolNR_S1 - - - - - - - 43.50-1.49-96.37 PolNR_S2 - - - - - - - - 16.19 50.49 a0 0 (980) - - - - - - - - - 419.00 The addition a 0 0 (980) increases (much) f 0 (980) fit fraction. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 29 / 31

Conclusion Phenomenological part: measurement of γ in charmless B decays Close to be finalised (article in preparation) Found 6 solutions for γ, one is compatible with that from tree-dominated decays Results are encouraging: statistical error (using only input from BaBar) at the level of < 10 Experimental aspects of B physics: B 0 KS0 K + K Work on the amplitude analysis and branching fraction measurement in progress Adding more data and using more sophisticated methods and models we hope to: obtain a first observation of Bs0 KS0 K + K decays gain sensitivity to more observables in the amplitude analysis Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 30 / 31

BACKUP Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 1 / 7

B K S hh diagrams Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 2 / 7

Measuring γ with B DK processes Super clean: loop diagrams contribution O(10 7 ) 2 competing diagrams with relative phase θ and suppression factor r B Γ 1 + r B e iθ 2 = 1 + 2r B cos(θ) Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 3 / 7

Error propagation and χ 2 function Covariance matrix of the observables: V XYZ V XYZ (s 1, s 2 ) = G T (s 1, s 2 ) V a G(s 1, s 2 ) G(s 1, s 2 ): matrix of the derivatives of the isobar parameters V a : covariance matrix of the isobar parameters Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 4 / 7

Error propagation and χ2 function Covariance matrix of the observables: VXYZ VXYZ (s1, s2 ) = G T (s1, s2 ) Va G(s1, s2 ) G(s1, s2 ): matrix of the derivatives of the isobar parameters Va : covariance matrix of the isobar parameters Covariance matrix of 2 points A and B VXYZ (s1a, s2a ; s1b, s2b ) = G T (s1a, s2a ; s1b, s2b ) Va G(s1A, s2a ; s1b, s2b ). Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 4/7

Error propagation and χ2 function Covariance matrix of the observables: VXYZ VXYZ (s1, s2 ) = G T (s1, s2 ) Va G(s1, s2 ) G(s1, s2 ): matrix of the derivatives of the isobar parameters Va : covariance matrix of the isobar parameters Covariance matrix of 2 points A and B VXYZ (s1a, s2a ; s1b, s2b ) = G T (s1a, s2a ; s1b, s2b ) Va G(s1A, s2a ; s1b, s2b ). χ2 function 1 X χ2 = X T VXYZ exp th Xmode1 Xmode1 exp th Y Ymode1 X = mode1... Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 4/7

Error propagation and χ2 function Covariance matrix of the observables: VXYZ VXYZ (s1, s2 ) = G T (s1, s2 ) Va G(s1, s2 ) G(s1, s2 ): matrix of the derivatives of the isobar parameters Va : covariance matrix of the isobar parameters Covariance matrix of 2 points A and B VXYZ (s1a, s2a ; s1b, s2b ) = G T (s1a, s2a ; s1b, s2b ) Va G(s1A, s2a ; s1b, s2b ). χ2 function exp th Xmode1 Xmode1 exp th Y Ymode1 X = mode1 1 X χ2 = X T VXYZ We need to compute the inverse of VXYZ Emilie Bertholet (LPNHE) 3-body charmless B decays... November 17, 2017 4/7

Isobar model in more details Fj L N (s 12,s 23 ) {}}{ A (s 12, s 23 ) = c j e iθ j R j (m)x L ( p )X L ( q )T j (L, p, q) j=1 R j (m) is the resonance mass term (also called lineshape). m is the invariant mass of the decay products of the resonance. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 5 / 7

Isobar model in more details Fj L N (s 12,s 23 ) {}}{ A (s 12, s 23 ) = c j e iθ j R j (m)x L ( p )X L ( q )T j (L, p, q) j=1 R j (m) is the resonance mass term (also called lineshape). m is the invariant mass of the decay products of the resonance. X L are Blatt-Weisskopf angular momentum barrier factors. T j are the Zemach tensors which describe the angular distributions. L is the spin of the resonance. p is the momentum of the bachelor particle (the particle not belonging to the resonance) evaluated in the rest frame of the B meson. p and q are the momenta of the bachelor particle and one of the resonance daughters, respectively, both evaluated in the rest frame of the resonance. Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 5 / 7

Fit fractions The fit fractions are defined the by following equation DP FF j ( M j(s 1, s 2 ) 2 + M j (s 1, s 2 ) 2 )ds 1 ds 2 DP ( M (s 1, s 2 ) 2 + M (s 1, s 2 ) 2 )ds 1 ds 2 The interference fit fractions quantify the interferences between different states. They are given by DP FF jk 2Re (M j(s 1, s 2 )Mk (s 1, s 2 ) + M j (s 1, s 2 ) M k (s 1, s 2 ))ds 1 ds 2 DP ( M (s 1, s 2 ) 2 + M (s 1, s 2 ) 2 )ds 1 ds 2 With these definitions FF j + FF jk = 1 j j<k Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 6 / 7

Measured branching fractions with 3fb 1 of data Emilie Bertholet (LPNHE) 3-body charmless B decays November 17, 2017 7 / 7