Stress concentrations, fracture and fatigue

Similar documents
MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

Introduction to Fracture

CHAPTER 9 FAILURE PROBLEM SOLUTIONS

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1

Mechanics of Earthquakes and Faulting

FME461 Engineering Design II

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved

Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

FRACTURE OF CRACKED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces.

Tentamen/Examination TMHL61

Mechanics of Earthquakes and Faulting

Failure from static loading

Volume 2 Fatigue Theory Reference Manual

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

This guide is made for non-experienced FEA users. It provides basic knowledge needed to start your fatigue calculations quickly.

Stress Concentrations, Fatigue, Fracture

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Chapter 7. Highlights:

Path to static failure of machine components

Load Determination. Fatigue Life Predictions Infinite Life, Stress Life, Strain Life

Module 2 Selection of Materials and Shapes. IIT, Bombay

Fracture Mechanics, Damage and Fatigue Non Linear Fracture Mechanics: J-Integral

DESIGN FOR FATIGUE STRENGTH

New Life in Fatigue KIVI NIRIA HOUSTON, WE HAVE A PROBLEM...

Structural Metals Lab 1.2. Torsion Testing of Structural Metals. Standards ASTM E143: Shear Modulus at Room Temperature

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

Fatigue and Fracture

Predicting Fatigue Life with ANSYS Workbench

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

Drive Shaft Failure of Z-Drive Propulsion System. Suzanne Higgins

CHAPTER 2 Failure/Fracture Criterion

V Predicted Weldment Fatigue Behavior AM 11/03 1

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software

Engineering Fracture Mechanics Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras

Mechanics of Materials Primer

Unified Quiz M4 May 7, 2008 M - PORTION

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

Introduction to fracture mechanics

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

MECHANICAL PROPERTIES OF SOLIDS

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

Sample Questions for the ME328 Machine Design Final Examination Closed notes, closed book, no calculator.

Fracture Behavior. Section

Spherical Pressure Vessels

IMECE CRACK TUNNELING: EFFECT OF STRESS CONSTRAINT

Use Hooke s Law (as it applies in the uniaxial direction),

INFLUENCE OF THE LOCATION AND CRACK ANGLE ON THE MAGNITUDE OF STRESS INTENSITY FACTORS MODE I AND II UNDER UNIAXIAL TENSION STRESSES

MECHANICS OF 2D MATERIALS

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Treatment of Constraint in Non-Linear Fracture Mechanics

Static Failure (pg 206)

Variational phase field model for dynamic brittle fracture

A Notes Formulas. This chapter is composed of 15 double pages which list, with commentaries, the results for:

Final Analysis Report MIE 313 Design of Mechanical Components

CHAPTER 7 MECHANICAL PROPERTIES PROBLEM SOLUTIONS

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

Fracture mechanics. code_aster, salome_meca course material GNU FDL licence (

Introduction to Engineering Materials ENGR2000. Dr. Coates

Chapter 6: Plastic Theory

2.002 MECHANICS AND MATERIALS II Spring, Creep and Creep Fracture: Part III Creep Fracture c L. Anand

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Principal Stresses, Yielding Criteria, wall structures

Kul Aircraft Structural Design (4 cr) Fatigue Analyses

Cracks Jacques Besson

Video Lecture on Engineering Fracture Mechanics, Prof. K. Ramesh, IIT Madras 1

Alloy Choice by Assessing Epistemic and Aleatory Uncertainty in the Crack Growth Rates

RELIABILITY-BASED DESIGN AND INSPECTION SCHEDULING OPTIMIZATION OF AN AIRCRAFT STRUCTURE CONTAINING MULTIPLE SITE DAMAGE

Failure surface according to maximum principal stress theory

CRACK GROWTH SIMULATION IN THE COURSE OF INDUSTRIAL EQUIPMENT LIFE EXTENSION

2.2 Fracture Mechanics Fundamentals

C:\W\whit\Classes\304_2012_ver_3\_Notes\6_FailureAnalysis\1_failureMechanics_intro.doc p. 1 of 1 Failure Mechanics

Fatigue calculations in ANSYS Workbench. Martin Eerme

Elastic-Plastic Fracture Mechanics. Professor S. Suresh

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Donald P. Shiley School of Engineering ME 328 Machine Design, Spring 2019 Assignment 1 Review Questions

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress

Laboratory 4 Bending Test of Materials

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

PES Institute of Technology

G1RT-CT A. BASIC CONCEPTS F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

UNIT I SIMPLE STRESSES AND STRAINS

Topics in Ship Structures

CRITICAL CONDITIONS OF PRESSURIZED PIPES

NUMERICAL ANALYSIS OF STRESS INTENSITY FACTOR AND T-STRESS IN PIPELINE OF STEEL P264GH SUBMITTED TO LOADING CONDITIONS

5. Repeated Loading. 330:148 (g) Machine Design. Dynamic Strength. Dynamic Loads. Dynamic Strength. Dynamic Strength. Nageswara Rao Posinasetti

TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1

Endurance Strength Pg 274

Transcription:

Stress concentrations, fracture and fatigue Piet Schreurs Department of Mechanical Engineering Eindhoven University of Technology http://www.mate.tue.nl/ piet December 1, 2016

Overview Stress concentrations Fracture Fatigue Piet Schreurs (TU/e) 2 / 34

Overview Stress concentrations Fracture Fatigue back to top Piet Schreurs (TU/e) 3 / 34

Circular hole in infinite plate σ y σ θ r x 2a σ rr = σ [(1 a2 2 r 2 σ tt = σ [(1 + a2 2 r 2 σ rt = σ 2 ) + (1 + 3a4 ) [1 3a4 r 4 + 2a2 r 2 r 4 4a2 r 2 (1 + 3a4 r 4 ] sin(2θ) ) cos(2θ) ) ] cos(2θ) ] Piet Schreurs (TU/e) 4 / 34

Special points σ rr (r = a, θ) = σ rt (r = a, θ) = σ rt (r, θ = 0) = 0 σ tt (r = a, θ = π 2 ) = 3σ σ tt (r = a, θ = 0) = σ stress concentration factor K t = σ max σ = 3 [-] K t is independent of hole diameter! Piet Schreurs (TU/e) 5 / 34

Stress concentrations c ρ F, T c ρ F, T ρ 2c F, T K t = σ max c = 1 + α σ nom ρ ; σ nom = F A min F, T force; torque ρ minimum radius of curvature α 0.5 for torsion (and bending); 2.0 for tension ρ 0 σ max failure Piet Schreurs (TU/e) 6 / 34

Overview Stress concentrations Fracture Fatigue back to top Piet Schreurs (TU/e) 7 / 34

Crack loading modes Mode I Mode II Mode III Mode I = opening mode Mode II = sliding mode Mode III = tearing mode Piet Schreurs (TU/e) 8 / 34

Crack crack growth increase surface energy = available energy Piet Schreurs (TU/e) 9 / 34

Crack 2a U a = 4aB γ [Nm = J] B = plate thickness γ = surface energy Piet Schreurs (TU/e) 10 / 34

Crack σ 2a 4a σ U i = 2πa 2 B 1 σ 2 2 E [Nm = J] Piet Schreurs (TU/e) 11 / 34

Crack σ σ U a = 4aB γ ; U i = 2πa 2 B 1 σ 2 2 E du i da = du a da 2πa σ2 E = 4γ [Jm 2 ] [Nm = J] critical stress σ c = 2γE πa ; critical crack length a c = 2γE πσ 2 Piet Schreurs (TU/e) 12 / 34

Energy dissipation σ c σ cexperiments dissipation!! ductile - brittle behavior σ ABS, nylon, PC PE, PTFE 0 10 100 ε (%) C v fcc (hcp) metals low strength bcc metals Be, Zn, ceramics high strength metals Al, Ti alloys T Piet Schreurs (TU/e) 13 / 34

Crack What about crack tip stresses? Piet Schreurs (TU/e) 14 / 34

Crack tip stresses x 2 θ r x 1 σ 11 = σ 22 = σ 12 = K I 2πr [ cos( 1 2 θ){ 1 sin( 1 2 θ)sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ){ 1 + sin( 1 2 θ)sin(3 2 θ)}] K I 2πr [ cos( 1 2 θ)sin(1 2 θ)cos(3 2 θ)] Stress Intensity Factor (SIF) : ( ) K I = lim 2πr σ22 θ=0 r 0 [ m 1 2 N m 2 ] Specific (SIF) : literature / analytical / numerical (FEM) Piet Schreurs (TU/e) 15 / 34

SIF for specified cases : (semi-)analytical/literature σ W 2a K I = σ ( πa sec πa W σ πa ) 1/2 small a W σ K I = σ [ a 1.12 π 0.41 a W + a W 1.12σ πa ( a ) 2 ( a ) 3 18.7 38.48 + W W ( a ) ] 4 53.85 W small a W Piet Schreurs (TU/e) 16 / 34

SIF : Numerical analysis ( ) K I = lim 2πr σ22 θ=0 r 0 extrapolation to crack tip Piet Schreurs (TU/e) 17 / 34

Inc: 0 Time: 0.000e+00 Y Z X job1 1 Piet Schreurs (TU/e) 18 / 34

Inc: 0 Time: 0.000e+00 3.690e+03 3.264e+03 2.837e+03 UVW 2.411e+03 1.985e+03 1.559e+03 1.133e+03 7.065e+02 2.803e+02-1.459e+02-5.721e+02 Y Z X job1 Comp 22 of Stress (Rectangular) 1 Piet Schreurs (TU/e) 19 / 34

Energy dissipation 1 Von Mises plastic zones pl.stress pl.strain 0.5 0 0.5 1 0.5 0 0.5 1 1.5 Piet Schreurs (TU/e) 20 / 34

Crack growth criterion K I = K Ic K Ic = Fracture Toughness σ c and a c experimental determination of K Ic (ASTM E399) Material σ y [MPa] K Ic [MPa m ] steel, carbon 241 220 steel, AISI 4340 1827 47.3 Al 2014-T4 448 28.6 Ti 6Al-4V 1103 38.5 Piet Schreurs (TU/e) 21 / 34

Overview Stress concentrations Fracture Fatigue back to top Piet Schreurs (TU/e) 22 / 34

Fatigue falure clam shell markings striations Piet Schreurs (TU/e) 23 / 34

Fatigue load (stress controlled) σ σ max σ m σ min 0 0 i i + 1 t N σ = σ max σ min ; σ a = 1 2 σ σ m = 1 2 (σ max + σ min ) Piet Schreurs (TU/e) 24 / 34

(S-N)-curve S = σ max σ N f S σ th 0 0 log(n f ) reference : σ m = 0 fatigue life : N f fatigue (endurance) limit : σ th N f = (±10 9 ) Rest life : N r = 1 N N f N f Piet Schreurs (TU/e) 25 / 34

(S-N)-curves 600 550 500 450 steelt1 400 σ max [MPa] 350 300 250 steel1020 200 150 100 Mgalloy Al2024T4 10 4 10 5 10 6 10 7 10 8 10 9 N f Piet Schreurs (TU/e) 26 / 34

Endurance limit Tensile strength endurance limit tensile strength Copper 0.23 Aluminum 0.38 Magnesium 0.38 Steel 0.46-0.54 Wrought iron 0.63 Piet Schreurs (TU/e) 27 / 34

Influence factors stress concentrations surface quality material properties environment loading Piet Schreurs (TU/e) 28 / 34

Crack growth a I II a c III a c a i σ a 1 a f N i N f N I : N < N i - a i = initial fatigue crack II : N i < N < N f - slow stable crack propagation - a 1 = non-destr. inspection detection limit III : N f < N - global instability - a = a c : failure Paris law da dn = C( K)m Piet Schreurs (TU/e) 29 / 34

Paris law parameters da dn = C( K)m material K th [MNm 3/2 ] m[-] C 10 11 [!] mild steel 3.2-6.6 3.3 0.24 structural steel 2.0-5.0 3.85-4.2 0.07-0.11 idem in sea water 1.0-1.5 3.3 1.6 aluminium 1.0-2.0 2.9 4.56 aluminium alloy 1.0-2.0 2.6-3.9 3-19 copper 1.8-2.8 3.9 0.34 titanium 2.0-3.0 4.4 68.8 Piet Schreurs (TU/e) 30 / 34

Load spectrum σ 0 N n 1 n 2 n 3 n 4 Palmgren-Miner (1945) law L i=1 n i N if = 1 life time by piecewise integration da dn f ( K, K max) interaction Palmgren-Miner no longer valid : L i=1 n i N if = 0.6 2.0 Piet Schreurs (TU/e) 31 / 34

Random load σ 0 t cyclic counting procedure : (mean crossing) peak count / range pair (mean) count / rain flow count statistical representation load spectrum Piet Schreurs (TU/e) 32 / 34

Measured load histories Piet Schreurs (TU/e) 33 / 34

Design against fatigue Infinite life design σ < σ th (σ < σ e ) no fatigue damage sometimes economically undesirable Safe life design determine load spectra empirical rules / numerical analysis / laboratory tests fatigue life : (S N)-curves apply safety factors Damage tolerant design determine load spectra periodic inspection (NOT; insp. schedules) monitor cracks calculate safe rest life (Paris law, Miner s rule) repair when necessary Fail safe design design for safety : crack arrest / etc. Search : BS7910:2005 Piet Schreurs (TU/e) 34 / 34