Some integral inequalities of the Hermite Hadamard type for log-convex functions on co-ordinates

Similar documents
On the Co-Ordinated Convex Functions

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

ON CO-ORDINATED OSTROWSKI AND HADAMARD S TYPE INEQUALITIES FOR CONVEX FUNCTIONS II

Inequalities for convex and s-convex functions on Δ =[a, b] [c, d]

Hadamard-Type Inequalities for s-convex Functions

SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED CONVEX

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New general integral inequalities for quasiconvex functions

Bulletin of the. Iranian Mathematical Society

The Hadamard s inequality for quasi-convex functions via fractional integrals

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

The Hadamard s Inequality for s-convex Function

SOME NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE HIGHER ORDER PARTIAL DERIVATIVES ARE CO-ORDINATED s-convex

Integral inequalities for n times differentiable mappings

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

Hermite-Hadamard type inequalities for harmonically convex functions

Some new integral inequalities for n-times differentiable convex and concave functions

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

NEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED s-convex FUNCTIONS VIA FRACTIONAL INTEGRALS

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

arxiv: v1 [math.ca] 28 Jan 2013

RIEMANN-LIOUVILLE FRACTIONAL SIMPSON S INEQUALITIES THROUGH GENERALIZED (m, h 1, h 2 )-PREINVEXITY

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

GENERALIZED ABSTRACTED MEAN VALUES

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

Hyers-Ulam stability of Pielou logistic difference equation

On some refinements of companions of Fejér s inequality via superquadratic functions

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

Properties and integral inequalities of Hadamard- Simpson type for the generalized (s, m)-preinvex functions

Some new inequalities of the Hermite Hadamard type for extended ((s 1

On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

Some New Inequalities of Simpson s Type for s-convex Functions via Fractional Integrals

The study of dual integral equations with generalized Legendre functions

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On some inequalities for s-convex functions and applications

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

MAT 403 NOTES 4. f + f =

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

Hadamard-Type Inequalities for s Convex Functions I

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

Lecture 1 - Introduction and Basic Facts about PDEs

Generalized Hermite-Hadamard Type Inequalities for p -Quasi- Convex Functions

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

ON THE WEIGHTED OSTROWSKI INEQUALITY

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

Part 4. Integration (with Proofs)

n-points Inequalities of Hermite-Hadamard Type for h-convex Functions on Linear Spaces

An inequality related to η-convex functions (II)

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

On some Hermite Hadamard type inequalities for (s, QC) convex functions

A Note on Feng Qi Type Integral Inequalities

Several Answers to an Open Problem

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

arxiv: v1 [math.ca] 21 Aug 2018

SOME INTEGRAL INEQUALITIES FOR HARMONICALLY CONVEX STOCHASTIC PROCESSES ON THE CO-ORDINATES

S. S. Dragomir. 2, we have the inequality. b a

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

WENJUN LIU AND QUÔ C ANH NGÔ

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

Journal of Inequalities in Pure and Applied Mathematics

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

6.1 Definition of the Riemann Integral

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

Journal of Inequalities in Pure and Applied Mathematics

A short introduction to local fractional complex analysis

The Riemann and the Generalised Riemann Integral

Chapter 6. Riemann Integral

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

The Riemann-Stieltjes Integral

Improvement of Ostrowski Integral Type Inequalities with Application

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

1. On some properties of definite integrals. We prove

HERMITE-HADAMARD TYPE INEQUALITIES OF CONVEX FUNCTIONS WITH RESPECT TO A PAIR OF QUASI-ARITHMETIC MEANS

Journal of Inequalities in Pure and Applied Mathematics

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

Journal of Inequalities in Pure and Applied Mathematics

More Properties of the Riemann Integral

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

Transcription:

Avilble online t www.tjns.om J. Nonliner Si. Appl. 9 06), 5900 5908 Reserh Artile Some integrl inequlities o the Hermite Hdmrd type or log-onvex untions on o-ordintes Yu-Mei Bi, Feng Qi b,, College o Mthemtis, Inner Mongoli University or Ntionlities, Tonglio City, Inner Mongoli Autonomous Region, Chin. b Deprtment o Mthemtis, College o Siene, Tinjin Polytehni University, Tinjin City, 30060, Chin. Institute o Mthemtis, Henn Polytehni University, Jiozuo City, Henn Provine, 500, Chin. Communited by Sh. Wu Abstrt In the pper, the uthors estblish some new integrl inequlities or log-onvex untions on o-ordintes. These newly-estblished inequlities re onneted with integrl inequlities o the Hermite Hdmrd type or log-onvex untions on o-ordintes. 06 All rights reserved. Keywords: Log-onvex untions, o-ordintes, integrl inequlity, Hermite Hdmrd type. 00 MSC: 6A5, 6D5, 6D0, 6E60, A55.. Introdution Let : I R R be onvex untion on n intervl I nd let, b I suh tht < b. Then the double inequlity ) + b ) + b) x) b holds. This double inequlity is known in the literture s the Hermite Hdmrd integrl inequlity. Deinition.. I positive untion : I R R + = 0, ) stisies λx + λ)y) x) λ y) λ or ll x, y I nd λ 0,, then we sy tht is logrithmilly onvex or simply, log-onvex) untion on I. I the bove inequlity is reversed, then we sy tht is log-onve untion. Corresponding uthor Emil ddresses: biym008@sohu.om Yu-Mei Bi), qieng68@gmil.om, qieng68@hotmil.om Feng Qi) Reeived 06-08-0

Y.-M. Bi, F. Qi, J. Nonliner Si. Appl. 9 06), 5900 5908 590 Equivlently, untion is log-onvex on I i nd only i is positive nd its logrithm ln is onvex on I. Moreover, i the seond derivtive exists on I, then is log-onvex i nd only i ) 0. A orresponding version o the Hermite Hdmrd integrl inequlity or log-onvex untions ws given in 5 s ollows. Theorem. 5). Suppose tht :, b R R + is log-onvex untion on, b. Then ) + b b x) L), b)), where Lx, y) is the logrithmi men y x Lx, y) = ln y ln x, x y, x, x = y. In 3,, the so-lled onvex untions on o-ordintes were introdued s ollows. Deinition.3 3, ). A untion : =, b, d R R is sid to be onvex on o-ordintes on with < b nd < d i the prtil mppings y :, b R, y u) = y u, y) nd x :, d R, x v) = x x, v) re onvex or ll x, b) nd y, d). Deinition. 3, ). A untion : =, b, d R R is sid to be onvex on o-ordintes on with < b nd < d i the inequlity tx + t)z, λy + λ)w) tλx, y) + t λ)x, w) + t)λz, y) + t) λ)z, w) holds or ll t, λ 0, n, y), z, w). An inequlity o the Hermite Hdmrd type or onvex untion on o-ordintes on retngle rom the plne R ws estblished in 3, s ollows. Theorem.5 3,, Theorem.). Let : =, b, d R R be onvex on o-ordintes on with < b nd < d. Then one hs + b, + d ) b x, + d ) + ) + b b d, y d y b )d ) b b x, y) d y x, ) + x, d) + d, ) + b, ) +, d) + b, d)., y) + b, y) d y In, Alomri nd Drus introdued lss o log-onvex untions on o-ordintes s ollows. Deinition.6 ). A untion : =, b, d R R + is lled log-onvex on o-ordintes on with < b nd < d i tx + t)z, λy + λ)w) x, y) tλ x, w) t λ) z, y) t)λ z, w) t) λ) holds or ll t, λ 0, n, y), z, w).

Y.-M. Bi, F. Qi, J. Nonliner Si. Appl. 9 06), 5900 5908 590 Remrk.7. I nd g re both log-onvex on o-ordintes on, then their omposite g is lso log-onvex on o-ordintes on. An inequlity o the Hermite Hdmrd type or log-onvex untions on o-ordintes on retngle rom the plne R ws estblished by Alomri nd Drus in s ollows. Theorem.8, Theorem 3.3). Suppose tht : =, b, d R R + is log-onvex on oordintes on or < b nd < d. Let A =, )b, d), d) b, ), B =, nd C = b, ), d) b, d) b, d). Then the inequlity, A = B = C =, B C ln B ln C, A =, HC), B =, HB), C =, C ln C, A = B =, I = b )d ) x, y) d y b, d) B ln B, A = C =, γ + ln ln A) + Ei, ln A), B = C =, ln A B ln B + AB, A, B, C > 0, lnab) 0 C β AB lnab) d β, otherwise holds, where γ is the Euler onstnt, Hx) = nd Ei, ln A) + ln ln x Ei, lnax)) ln lnax) ln A is the exponentil integrl untion. e t Eix) = V.P. d t x t ln ln A ln ln A), < ln x + ln A ln A < 0, 0, otherwise; For more nd detiled inormtion on this topi, plese reer to the newly published ppers, 6 5 nd plenty o reerenes therein.. Some new integrl inequlities o the Hermite Hdmrd type In this setion, we prove some new inequlities o the Hermite Hdmrd type or log-onvex untions on o-ordintes.

Y.-M. Bi, F. Qi, J. Nonliner Si. Appl. 9 06), 5900 5908 5903 Theorem.. Let : =, b, d R R + or < b nd < d be log-onvex on o-ordintes on. Then one hs b )d ) x, y) d y where Lu, v) is the logrithmi men. b L x, ), x, d) ) + L, y), b, y)) d y b d b d x, ) + x, d) +, y) + b, y) d y b d ) ) L, ), b, )) + L, d), b, d)) + L, ),, d) + L b, ), b, d), ) + b, ) +, d) + b, d), Proo. For ll x, y > 0, it is known tht Lx, y) x+y. Setting y = λ + λ)d or ll 0 λ, using the log-onvexity o, nd by the rithmeti-geometri men inequlity, we obtin b )d ) x, y) d y = b b = b 0 b ) 0 x, λ + λ)d) d λ x, ) λ x, d) λ d λ Lx, ), x, d)) x, ) + x, d). Sine x, ), ) t b, ) t n, d), d) t b, d) t or eh t 0,, we hve b ) By similr rgument, we n obtin b )d ) x, + x, d) {, ) t b, ) t +, d) t b, d) t} 0 = L, ), b, )) + L, d), b, d)) The proo o Theorem. is thus omplete., ) + b, ) +, d) + b, d). x, y) d y d L, y), b, y)) d y, y) + b, y) d y d ) ) ) L, ),, d) + L b, ), b, d), ) + b, ) +, d) + b, d). Exmple.. The untion x, y) = x y + is log-onvex on o-ordintes on =,. In Theorem.8, sine A = B = C =, we hve b )d ) x, y) d y = 0 9 < = b, d).

Y.-M. Bi, F. Qi, J. Nonliner Si. Appl. 9 06), 5900 5908 590 By Theorem., we obtin b )d ) = b x, y) d y = 0 9 < 3 L x, ), x, d) ) + d L, y), b, y)) d y <. Theorem.3. Let : =, b, d R R + with < b nd < d be log-onvex on o-ordintes on. Then + b, + d ) { b x, + d ) + b x, + d ) / b + ) ) + b + b / d, y, + d y d y} b x, + d ) + ) + b b d, y d y.) d { x, y)x, + d y) / b )d ) + x, y) + b x, y) /} d y b )d ) x, y) d y. Proo. Utilizing the log-onvexity o leds to + b, + d ) = t + t)b + t) + tb, + d + + d )) t + t)b, + d ) t) + tb, + d ) /.) or ll 0 t. On using the hnge o the vrible x = t + t)b or 0 t, integrting the inequlity.) over t on 0,, nd by the rithmeti-geometri men inequlity, we proure + b, + d ) t + t)b, + d ) t) + tb, + d ) / d t 0 = x, + d ) + b x, + d ) /.3) b x, + d ). b Using the log-onvexity o, we ind x, + d ) x, λ + λ)d)x, λ) + λd) / or ll 0 λ n, b. Integrting the inequlity.) with respet to x, λ) on, b 0, nd using the inequlity.3) give b x, + d ) / x, λ + λ)d)x, λ) + λd) d λ b b = 0 b )d ) b )d ) x, y) x, + d y ) / d y x, y) d y..).5)

Y.-M. Bi, F. Qi, J. Nonliner Si. Appl. 9 06), 5900 5908 5905 Similrly, we obtin + b, + d ) d d b )d ) b )d ) ) + b, y ) + b, y d y ) + b /, + d y d y x, y) + b x, y ) / d y x, y) d y. A ombintion o.3),.5), nd the lst inequlity gives the desired inequlity.). Theorem.3 is thus proved. Mking use o Theorem.3, we derive the ollowing orollry. Corollry.. Let, g : =, b, d R R + with < b nd < d be log-onvex on o-ordintes on. Then + b, + d ) + b g, + d ) { b x, + d ) g x, + d ) + b x, + d ) g + b x, + d ) / b + ) ) ) ) + b + b + b + b / d, y g, y, + d y g, + d y d y} b x, + d ) g x, + d ) + ) ) + b + b b d, y g, y d y d { x, y)gx, y)x, + d y)gx, + d y) / b )d ) + x, y)gx, y) + b x, y)g + b x, y) /} d y b )d ) x, y) d y. Theorem.5. Let : =, b, d R R + with < b nd < d be log-onvex on o-ordintes on. Then + b, + d ) b x, + d ) + b x, + d ) / b + ) ) + b + b / d, y, + d y d y d / x, y)x, + d y) + b x, y) + b x, + d y) d y b )d ) d { x, y)x, + d y) / + x, y) + b x, y) /} d y b )d ) b )d ) x, y) d y.

Y.-M. Bi, F. Qi, J. Nonliner Si. Appl. 9 06), 5900 5908 5906 Proo. Sine is log-onvex on o-ordintes on, using the inequlities.3),.5), nd the rithmetigeometri inequlity igures out + b, + d ) x, + d ) + b x, + d ) / b x, λ + λ)d)x, λ) + λd) b = 0 + b x, λ + λ)d) + b x, λ) + λd) / d λ b )d ) + b x, + d y) / d y b )d ) Similrly, we obtin + b, + d ) d b )d ) b )d ) x, y)x, + d y) + b x, y) { x, y)x, + d y) / + x, y) + b x, y) /} d y x, y) d y. ) ) + b + b /, y, + d y d y + b x, + d y) / d y b )d ) b )d ) Hene, the proo o Theorem.5 is omplete. x, y)x, + d y) + b x, y) { x, y)x, + d y) / + x, y) + b x, y) /} d y x, y) d y. Corollry.6. Let, g : =, b, d R R + with < b nd < d be log-onvex on o-ordintes on. Then + b, + d ) + b g, + d ) b x, + d ) g x, + d ) + b x, + d ) g + b x, + d ) / b + ) ) ) ) + b + b + b + b / d, y g, y, + d y g, + d y d y d x, y)gx, y)x, + d y)gx, + d y) b )d ) + b x, y)g + b x, y) + b x, + d y)g + b x, + d y) / d y b )d ) { x, y)gx, y)x, + d y)gx, + d y) / + x, y)gx, y) + b x, y)g + b x, y) /} d y b )d ) x, y) d y.

Y.-M. Bi, F. Qi, J. Nonliner Si. Appl. 9 06), 5900 5908 5907 Theorems. nd.3 n be improved s ollows. Corollry.7. Under the onditions o Theorems. nd.3, i x, y) = x)g y) or x, y), then ) ) + b + d g b + d b )d ) x) + b x) ) / + d )g g x)g + d y) ) / + d d y ) x)g y) + b x)g + d y) / d y x)g y) d y b )d ) b L x)g ), x)g d) ) b L )g y), b)g y)) d y + d g ) + g d) b x) + ) + b) d g y) d y b d L ), b))g ) + g d) + ) + b)lg ), g d)) ) + b)g ) + g d). 3. Conlusions By the rithmeti-geometri inequlity nd other tehniques, we estblish some new integrl inequlities or log-onvex untions on o-ordintes. These newly-estblished inequlities re onneted with integrl inequlities o the Hermite Hdmrd type or log-onvex untions on o-ordintes. Aknowledgment This work ws prtilly supported by the Ntionl Nturl Siene Foundtion o Chin under Grnt No. 36038 nd by the Foundtion o the Reserh Progrm o Siene nd Tehnology t Universities o Inner Mongoli Autonomous Region under Grnt No. NJZY680, Chin. The uthors ppreite the ommuniting editor nd nonymous reerees or their kind help, reul orretions, nd vluble omments on the originl version o this pper. Reerenes M. Alomri, M. Drus, On the Hdmrd s inequlity or log-onvex untions on the oordintes, J. Inequl. Appl., 009 009), 3 pges.,.6,,.8 S.-P. Bi, F. Qi, S.-H. Wng, Some new integrl inequlities o Hermite-Hdmrd type or α, m; P )-onvex untions on o-ordintes, J. Appl. Anl. Comput., 6 06), 7 78. 3 S. S. Drgomir, On the Hdmrds inequllity or onvex untions on the o-ordintes in retngle rom the plne, Tiwnese J. Mth., 5 00), 775 788.,.3,.,,.5 S. S. Drgomir, C. E. M. Pere, Seleted topis on Hermite Hdmrd inequlities nd pplitions, RGMIA Monogrphs, Vitori University, 00).,.3,.,,.5 5 P. M. Gill, C. E. M. Pere, J. Pečrić, Hdmrd s inequlity or r-onvex untions, J. Mth. Anl. Appl., 5 997), 6 70.,. 6 X.-Y. Guo, F. Qi, B.-Y. Xi, Some new inequlities o Hermite-Hdmrd type or geometrilly men onvex untions on the o-ordintes, J. Comput. Anl. Appl., 06), 55.

Y.-M. Bi, F. Qi, J. Nonliner Si. Appl. 9 06), 5900 5908 5908 7 D.-Y. Hwng, K.-L. Tseng, G.-S. Yng, Some Hdmrd s inequlities or o-ordinted onvex untions in retngle rom the plne, Tiwnese J. Mth., 007), 63 73. 8 M. Klričić Bkul, J. Peǎrić, On the Jensen s inequlity or onvex untions on the o-ordintes in retngle rom the plne, Tiwnese J. Mth., 0 006), 7 9. 9 M. E. Özdemir, A. O. Akdemir, H. Kvurmı, On the Simpsons inequlity or o-ordinted onvex untions, Turkish J. Anl. Number Theory, 0), 65 69. 0 M. E. Özdemir, A. O. Akdemir, Ç. Yıldız, On o-ordinted qusi-onvex untions, Czehoslovk Mth. J., 6 0), 889 900. M. E. Özdemir, E. Set, M. Z. Sriky, Some new Hdmrd type inequlities or o-ordinted m-onvex nd α, m)-onvex untions, Het. J. Mth. Stt., 0 0), 9 9. M. E. Özdemir, Ç. Yıldız, A. O. Akdemir, On some new Hdmrd-type inequlities or o-ordinted qusi-onvex untions, Het. J. Mth. Stt., 0), 697 707. 3 F. Qi, B.-Y. Xi, Some integrl inequlities o Simpson type or GA-ε-onvex untions, Georgin Mth. J., 0 03), 775 788. M. Z. Sriky, On the Hermite-Hdmrd-type inequlities or o-ordinted onvex untion vi rtionl integrls, Integrl Trnsorms Spe. Funt., 5 0), 3 7. 5 M. Z. Sriky, Some inequlities or dierentible oordinted onvex mppings, Asin-Eur. J. Mth., 8 05), pges. 6 M. Z. Sriky, H. Budk, H. Yldiz, Čebysev type inequlities or o-ordinted onvex untions, Pure Appl. Mth. Lett., 0), 36 0. 7 M. Z. Sriky, H. Budk, H. Yldiz, Some new Ostrowski type inequlities or o-ordinted onvex untions, Turkish J. Anl. Number Theory, 0), 76 8. 8 M. Z. Sriky, E. Set, M. E. Ozdemir, S. S. Drgomir, New some Hdmrd s type inequlities or o-ordinted onvex untions, Tmsui Ox. J. In. Mth. Si., 8 0), 37 5. 9 E. Set, M. Z. Sriky, A. O. Akdemir, Hdmrd type inequlities or ϕ-onvex untions on o-ordintes, Tbilisi Mth. J., 7 0), 5 60. 0 E. Set, M. Z. Sriky, H. Ögülmüş, Some new inequlities o Hermite-Hdmrd type or h-onvex untions on the o-ordintes vi rtionl integrls, Ft Univ. Ser. Mth. Inorm., 9 0), 397. S.-H. Wng, F. Qi, Hermite Hdmrd type inequlities or s-onvex untions vi Riemnn Liouville rtionl integrls, J. Comput. Anl. Appl. 07), 3. Y. Wng, B.-Y. Xi, F. Qi, Integrl inequlities o Hermite-Hdmrd type or untions whose derivtives re strongly α-preinvex, At Mth. Ad. Pedgog. Nyházi. N.S.), 3 06), 79 87. 3 Y. Wu, F. Qi, On some Hermite Hdmrd type inequlities or s, QC)-onvex untions, SpringerPlus, 5 06), 3 pges. B.-Y. Xi, F. Qi, Integrl inequlities o Simpson type or logrithmilly onvex untions, Adv. Stud. Contemp. Mth. Kyungshng), 3 03), 559 566. 5 J. Zhng, F. Qi, G.-C. Xu, Z.-L. Pei, Hermite Hdmrd type inequlities or n-times dierentible nd geometrilly qusi-onvex untions, SpringerPlus, 5 06), 6 pges.