Thermodynamics of the Polyakov-Quark-Meson Model

Similar documents
Can we locate the QCD critical endpoint with a Taylor expansion?

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

With the FRG towards the QCD Phase diagram

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

Critical Region of the QCD Phase Transition

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

Can we locate the QCD critical endpoint with the Taylor expansion?

Non-perturbative Study of Chiral Phase Transition

arxiv: v1 [hep-ph] 2 Nov 2009

Renormalization Group Study of the Chiral Phase Transition

The phase diagram of two flavour QCD

On the role of fluctuations in (2+1)-flavor QCD

Probing the QCD phase diagram with higher moments

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

Jochen Wambach. to Gerry Brown

t Hooft Determinant at Finite Temperature with Fluctuations

QCD-like theories at finite density

A field theoretical model for the QCD phase transition in the early universe

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

The interplay of flavour- and Polyakov-loop- degrees of freedom

Confined chirally symmetric dense matter

Complex Saddle Points in Finite Density QCD

Phase diagram of strongly interacting matter under strong magnetic fields.

QCD at finite density with Dyson-Schwinger equations

Chiral symmetry breaking in continuum QCD

QCD Phases with Functional Methods

Role of fluctuations in detecting the QCD phase transition

Aspects of Two- and Three-Flavor Chiral Phase Transitions

QCD phase structure from the functional RG

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

(Inverse) magnetic catalysis and phase transition in QCD

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Magnetized QCD phase diagram

Pushing dimensional reduction of QCD to lower temperatures

Dimensional reduction near the deconfinement transition

arxiv: v2 [hep-ph] 24 Sep 2007

Baryon number fluctuations within the functional renormalization group approach

From confinement to new states of dense QCD matter

QCD at finite density with Dyson-Schwinger equations

Center-symmetric dimensional reduction of hot Yang-Mills theory

PNJL Model and QCD Phase Transitions

Deconfinement and Polyakov loop in 2+1 flavor QCD

Phases and facets of 2-colour matter

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

arxiv: v1 [hep-ph] 15 Jul 2013

Goldstone bosons in the CFL phase

Confinement in Polyakov gauge

Functional renormalization group approach of QCD and its application in RHIC physics

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

Chiral symmetry breaking in continuum QCD

Polyakov Loop in a Magnetic Field

Effective theories for QCD at finite temperature and density from strong coupling

The Flavors of the Quark-Gluon Plasma

Fluctuations and QCD phase structure

Pions in the quark matter phase diagram

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

STRANGENESS NEUTRALITY AND THE QCD PHASE STRUCTURE

QCD chiral phase boundary from RG flows. Holger Gies. Heidelberg U.

Dual and dressed quantities in QCD

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

The Quark-Gluon plasma in the LHC era

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

Heavy quark free energies, screening and the renormalized Polyakov loop

Critical lines and points. in the. QCD phase diagram

QGP Thermodynamics and Phase Transitions. Mahnaz Q. Haseeb Department of Physics CIIT, Islamabad

G 2 -QCD at Finite Density

Functional RG methods in QCD

Cold and dense QCD matter

arxiv: v2 [hep-ph] 18 Nov 2008

Dual quark condensate and dressed Polyakov loops

Dimensional Reduction in the Renormalisation Group:

arxiv: v1 [hep-lat] 26 Dec 2009

The Polyakov loop and the Hadron Resonance Gas Model

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

QCD Thermodynamics Péter Petreczky

Heavy quark free energies and screening from lattice QCD

The QCD equation of state at high temperatures

QCD quasi-particle model with widths and Landau damping

Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS

Mesonic and nucleon fluctuation effects at finite baryon density

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

Partial Chiral Symmetry restoration and. QCD Scalar Susceptibilities in Nuclear Matter

QCD from quark, gluon, and meson correlators

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Axel Maas. 6 th of January 2005 RHI Seminar WS 2004/2005

Electric Dipole Moments and the strong CP problem

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Spectral Properties of Quarks in the Quark-Gluon Plasma

IR fixed points in SU(3) Gauge Theories

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

Thermodynamics of (2+1)-flavor QCD from the lattice

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Constraints on the QCD phase diagram from imaginary chemical potential

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

Bulk Thermodynamics in SU(3) gauge theory

Transcription:

Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute "Dense Hadronic Matter and QCD Phase Transitions 15 th Oct. - 17 th Oct, 006 Rathen (Sächsische Schweiz), Germany B.-J. Schaefer (KFU Graz) 1 / 16

Outline 1 Motivation Polyakov-Quark-Meson Model 3 Results 4 Summary & Outlook B.-J. Schaefer (KFU Graz) / 16

QCD Phase Diagram QCD: two phase transitions 1 restoration of chiral symmetry SU L+R(N f ) SU L(N f ) SU R(N f ) order parameter: qq de/confinement in heavy-quark limit: Z(N c)-symmetry order parameter: φ (Polyakov loop) dynamical quarks: Z(N c)-symmetry explicitly broken combined in effective description: Polyakov quark-meson or PNJL models B.-J. Schaefer (KFU Graz) 3 / 16

Polyakov-quark-meson model quark-meson model: L qm = q[iγ µ µ +g(σ+i τ πγ 5 )]q + 1 ( µσ µ σ + µ π µ π) + V (σ, π) mesonic potential: V (σ, π) = λ 4 (σ + π v ) cσ B.-J. Schaefer (KFU Graz) 4 / 16

Polyakov-quark-meson model quark-meson model: L qm = q[iγ µ µ +g(σ+i τ πγ 5 )]q + 1 ( µσ µ σ + µ π µ π) + V (σ, π) background gauge field: µ D µ = µ ia µ with A µ = δ µ 0 g sa 0 a λa L pol = qγ 0 A 0 q U(φ, φ) B.-J. Schaefer (KFU Graz) 4 / 16

Polyakov-quark-meson model quark-meson model: L qm = q[iγ µ µ +g(σ+i τ πγ 5 )]q + 1 ( µσ µ σ + µ π µ π) + V (σ, π) background gauge field: µ D µ = µ ia µ with A µ = δ µ 0 g sa 0 a λa L pol = qγ 0 A 0 q U(φ, φ) Polyakov loop ( φ( x) = 1 Tr c P exp i N c β ) dτa 0 ( x, τ) 0 β B.-J. Schaefer (KFU Graz) 4 / 16

Polyakov-quark-meson model quark-meson model: L qm = q[iγ µ µ +g(σ+i τ πγ 5 )]q + 1 ( µσ µ σ + µ π µ π) + V (σ, π) background gauge field: µ D µ = µ ia µ with A µ = δ µ 0 g sa 0 a λa L pol = qγ 0 A 0 q U(φ, φ) Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 ) φ φ b 3 6 ( φ 3 + φ 3) + b 4 ( φ φ) 16 B.-J. Schaefer (KFU Graz) 4 / 16

Polyakov-quark-meson model quark-meson model: L qm = q[iγ µ µ +g(σ+i τ πγ 5 )]q + 1 ( µσ µ σ + µ π µ π) + V (σ, π) background gauge field: µ D µ = µ ia µ with A µ = δ µ 0 g sa 0 a λa L pol = qγ 0 A 0 q U(φ, φ) Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 ) φ φ b 3 6 ( φ 3 + φ 3) + b 4 ( φ φ) 16 Polyakov-quark-meson model: L PQM = L qm + L pol B.-J. Schaefer (KFU Graz) 4 / 16

Polyakov-quark-meson model quark-meson model: L qm = q[iγ µ µ +g(σ+i τ πγ 5 )]q + 1 ( µσ µ σ + µ π µ π) + V (σ, π) background gauge field: µ D µ = µ ia µ with A µ = δ µ 0 g sa 0 a λa L pol = qγ 0 A 0 q U(φ, φ) Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 ) φ φ b 3 6 ( φ 3 + φ 3) + b 4 ( φ φ) 16 parameters b i i =,..., 4 fixed to pure gauge QCD B.-J. Schaefer (KFU Graz) 4 / 16

Polyakov-quark-meson model quark-meson model: L qm = q[iγ µ µ +g(σ+i τ πγ 5 )]q + 1 ( µσ µ σ + µ π µ π) + V (σ, π) background gauge field: µ D µ = µ ia µ with A µ = δ µ 0 g sa 0 a λa L pol = qγ 0 A 0 q U(φ, φ) Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 ) φ φ b 3 6 parameter b (T, T 0 ) = b (α(t, T 0 )) ( φ 3 + φ 3) + b 4 ( φ φ) 16 B.-J. Schaefer (KFU Graz) 4 / 16

Polyakov-quark-meson model quark-meson model: L qm = q[iγ µ µ +g(σ+i τ πγ 5 )]q + 1 ( µσ µ σ + µ π µ π) + V (σ, π) background gauge field: µ D µ = µ ia µ with A µ = δ µ 0 g sa 0 a λa L pol = qγ 0 A 0 q U(φ, φ) Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 ) φ φ b 3 6 ( φ 3 + φ 3) + b 4 ( φ φ) 16 T 0 = T 0 (N f ): N f 0 1 + 1 3 T 0 [MeV] 70 40 08 187 178 B.-J. Schaefer (KFU Graz) 4 / 16

Polyakov-quark-meson model Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 (N f )) φ φ b 3 6 ( φ 3 + φ 3) + b 4 ( φ φ) 16 finite µ φ φ φ φ 1 (φ φ + (φ φ) ) or 1 ( φ + φ ) B.-J. Schaefer (KFU Graz) 5 / 16

Polyakov-quark-meson model Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 (N f ; µ)) ( φ + 4 φ ) b 3 6 (φ3 + φ 3 )+ b 4 ( φ + 16 φ ) B.-J. Schaefer (KFU Graz) 5 / 16

Polyakov-quark-meson model Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 (N f ; µ)) ( φ + 4 φ ) b 3 6 (φ3 + φ 3 )+ b 4 ( φ + 16 φ ) this potential has a minimum and no saddle point determinant of Hessian: 3000 500 000 1500 1000 500 positive minimum 0 50 100 150 00 50 300 B.-J. Schaefer (KFU Graz) 5 / 16

Polyakov-quark-meson model Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 (N f ; µ)) ( φ + 4 φ ) b 3 6 (φ3 + φ 3 )+ b 4 ( φ + 16 φ ) mean-field grand canonical potential: with fermi contribution: d 3 p { Ω qq = N f T (π) 3 Ω(T, µ) = U(φ, φ) + V renorm ( σ, 0) + Ω qq (T, µ) ln [1+3(φ + φe ] (Ep µ)/t )e (Ep µ)/t +e 3(Ep µ)/t + ln [1+3( φ ]} + φe (Ep+µ)/T )e (Ep+µ)/T 3(Ep+µ)/T +e E p = p p + (g σ ) B.-J. Schaefer (KFU Graz) 5 / 16

Polyakov-quark-meson model Polyakov loop potential: U(φ, φ) T 4 = b (T, T 0 (N f ; µ)) ( φ + 4 φ ) b 3 6 (φ3 + φ 3 )+ b 4 ( φ + 16 φ ) equations of motion: Ω σ = 0 Ω φ = 0 Ω φ = 0 B.-J. Schaefer (KFU Graz) 5 / 16

Outline 1 Motivation Polyakov-Quark-Meson Model 3 Results 4 Summary & Outlook B.-J. Schaefer (KFU Graz) 6 / 16

Order parameters: µ = 0 1.4 1. 1 <qq> <phi> 0.8 0.6 0.4 0. 0 10 140 160 180 00 0 40 T [MeV] B.-J. Schaefer (KFU Graz) 7 / 16

Order parameters: µ = 0 0.1 0.08 d<qq>/dt d<phi>/dt 0.06 0.04 0.0 0 10 140 160 180 00 0 40 T [MeV] B.-J. Schaefer (KFU Graz) 8 / 16

Order parameters: finite µ 1.6 1.4 1. 1 0.8 0.6 0.4 0. 0 <qq> <phi> <phibar> 0 50 100 150 00 50 300 350 T [MeV] µ=0 µ=00 µ=70 B.-J. Schaefer (KFU Graz) 9 / 16

Phase diagram 00 150 1st order crossover CEP T [MeV] 100 50 0 0 50 100 150 00 50 300 350 µ [MeV] B.-J. Schaefer (KFU Graz) 10 / 16

Phase diagram 00 150 1st order crossover CEP T [MeV] 100 50 0 0 50 100 150 00 50 300 350 µ [MeV] B.-J. Schaefer (KFU Graz) 10 / 16

Pressure perturbative pressure of QCD with N f massless quarks [ p T 4 = (N c 1) π 7π 45 + N f 60 + 1 ( µ ) 1 ( µ ) ] 4 + T 4π T µ = 0: 1 N f =. 0.8 p/p SB 0.6 0.4 0. 0 0 0.5 1 1.5 T/T c B.-J. Schaefer (KFU Graz) 11 / 16

Scaled pressure difference p p = p(t, µ) p(t, µ = 0) ; T c (µ = 0) 184 MeV p/t 4 0.8 0.7 0.6 0.5 0.4 0.3 0. 0.1 0 µ =0. T c µ =0.4 T c µ =0.6 T c µ =0.8 T c 0 0.5 1 1.5.5 T/T c B.-J. Schaefer (KFU Graz) 1 / 16

Quark number density n q Ω(T, µ) n q = µ ; T c (µ = 0) 184 MeV n q /T 3 1. 1 0.8 0.6 0.4 0. µ = 0. T c µ = 0.4 T c µ = 0.6 T c µ = 0.8 T c 0 0 0.5 1 1.5 T/T c B.-J. Schaefer (KFU Graz) 13 / 16

Outline 1 Motivation Polyakov-Quark-Meson Model 3 Results 4 Summary & Outlook B.-J. Schaefer (KFU Graz) 14 / 16

Summary parameter in Polyakov loop potential: T 0 pure gauge: T 0 70 MeV T 0 10 MeV for N f = T 0 (N f, µ) quark-meson model is renormalizable no cutoff parameter mean-field approximation encouraging Outlook include quark-meson dynamics with RG include glue dynamics with RG full QCD (step by step) B.-J. Schaefer (KFU Graz) 15 / 16

Phase diagrams: MF versus RG 00 150 1st order crossover CEP T [MeV] 100 50 0 0 50 100 150 00 50 300 350 µ [MeV] B.-J. Schaefer (KFU Graz) 16 / 16