The one-dimensional Henstock-Kurzweil integral

Similar documents
The Regulated and Riemann Integrals

Math 554 Integration

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

ON THE C-INTEGRAL BENEDETTO BONGIORNO

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Chapter 6. Riemann Integral

The Henstock-Kurzweil integral

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

Review of Riemann Integral

Journal of Inequalities in Pure and Applied Mathematics

7.2 Riemann Integrable Functions

Properties of the Riemann Integral

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

arxiv: v1 [math.ca] 18 Sep 2016

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

Appendix to Notes 8 (a)

arxiv:math/ v2 [math.ho] 16 Dec 2003

Generalized Riemann Integral

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Lecture 1. Functional series. Pointwise and uniform convergence.

Math Advanced Calculus II

Presentation Problems 5

1. On some properties of definite integrals. We prove

Calculus in R. Chapter Di erentiation

On the fundamental theorem of calculus. Jesper Singh

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

The Riemann and the Generalised Riemann Integral

Review of Calculus, cont d

Lecture notes. Fundamental inequalities: techniques and applications

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

Convex Sets and Functions

1 The Riemann Integral

Fourier series. Preliminary material on inner products. Suppose V is vector space over C and (, )

Chapter 4. Lebesgue Integration

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

A short introduction to local fractional complex analysis

MAA 4212 Improper Integrals

11 An introduction to Riemann Integration

NOTES AND PROBLEMS: INTEGRATION THEORY

The Riemann Integral

Math 324 Course Notes: Brief description

Analytical Methods Exam: Preparatory Exercises

Advanced Calculus I (Math 4209) Martin Bohner

MAT 403 NOTES 4. f + f =

Riemann is the Mann! (But Lebesgue may besgue to differ.)

For a continuous function f : [a; b]! R we wish to define the Riemann integral

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

STUDY GUIDE FOR BASIC EXAM

Chapter 4. Additional Variational Concepts

Math 360: A primitive integral and elementary functions

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

Example Sheet 6. Infinite and Improper Integrals

Fundamental Theorem of Calculus and Computations on Some Special Henstock-Kurzweil Integrals

1 Sets Functions and Relations Mathematical Induction Equivalence of Sets and Countability The Real Numbers...

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.

arxiv: v1 [math.ca] 7 Mar 2012

Fundamental Theorem of Calculus for Lebesgue Integration

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

ODE: Existence and Uniqueness of a Solution

Prof. Girardi, Math 703, Fall 2012 Homework Solutions: 1 8. Homework 1. in R, prove that. c k. sup. k n. sup. c k R = inf

Abstract inner product spaces

Riemann Stieltjes Integration - Definition and Existence of Integral

Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that

Necessary and Sufficient Conditions for Differentiating Under the Integral Sign

Henstock Kurzweil delta and nabla integrals

II. Integration and Cauchy s Theorem

Main topics for the First Midterm

Chapter 6. Infinite series

Hermite-Hadamard type inequalities for harmonically convex functions

Math& 152 Section Integration by Parts

7 Improper Integrals, Exp, Log, Arcsin, and the Integral Test for Series

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

Principles of Real Analysis I Fall VI. Riemann Integration

Chapter 8: Methods of Integration

SYDE 112, LECTURES 3 & 4: The Fundamental Theorem of Calculus

38 Riemann sums and existence of the definite integral.

ODE: Existence and Uniqueness of a Solution

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 (

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

arxiv: v1 [math.ca] 11 Jul 2011

Lecture 3: Curves in Calculus. Table of contents

Lecture 3. Limits of Functions and Continuity

MATH1050 Cauchy-Schwarz Inequality and Triangle Inequality

CHAPTER 4 MULTIPLE INTEGRALS

Lecture 1: Introduction to integration theory and bounded variation

Math Solutions to homework 1

Henstock-Kurzweil and McShane product integration

Notes on length and conformal metrics

Journal of Mathematical Analysis and Applications

a n+2 a n+1 M n a 2 a 1. (2)

Week 7 Riemann Stieltjes Integration: Lectures 19-21

Indefinite Integral. Chapter Integration - reverse of differentiation

Problem Set 4: Solutions Math 201A: Fall 2016

Integration Techniques

Best Approximation in the 2-norm

Chapter 3 Single Random Variables and Probability Distributions (Part 2)

a n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction.

Transcription:

Chpter 1 The one-dimensionl Henstock-Kurzweil integrl 1.1 Introduction nd Cousin s Lemm The purpose o this monogrph is to study multiple Henstock-Kurzweil integrls. In the present chpter, we shll irst present nd prove certin results or the one-dimensionl Henstock-Kurzweil integrl. Unless mentioned otherwise, the ollowing conventions nd nottions will be used throughout this monogrph. R, R +, nd N denote the rel line, the positive rel line, nd the set o positive integers respectively. An intervl in R is set o the orm [α,β], where < α < β <, nd [,b] denotes ixed intervl in R. Deinition 1.1.1. (i) Two intervls [u,v], [s,t] in R re sid to be non-overlpping i (u,v) (s,t) =. (ii) I {[u 1,v 1 ],...,[u p,v p ]} is inite collection o pirwise non-overlpping subintervls o [,b] such tht [,b] = p [u k,v k ], we sy tht {[u 1,v 1 ],...,[u p,v p ]} is division o [,b]. (iii) A point-intervl pir (t,[u,v]) consists o point t R nd n intervl [u,v] in R. Here t is known s the tg o [u,v]. (iv) A Perron prtition o [,b] is inite collection {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} o point-intervl pirs, where {[u 1,v 1 ],...,[u p,v p ]} is division o [,b], nd t k [u k,v k ] or k = 1,...,p. (v) A unction δ : [,b] R + is known s guge on [,b]. (vi) Let δ be guge on [,b]. A Perron prtition {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} o [,b] is sid to be δ-ine i [u k,v k ] (t k δ(t k ),t k +δ(t k )) or k = 1,...,p. 1

2 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES The ollowing exmple shows tht tgs ply n importnt role in our study. Exmple 1.1.2. We deine guge δ on [0,1] by setting { t i 0 < t 1, δ(t) = 1 2 i t = 0. Then the ollowing sttements re true. (i) {[0, 1 3 ],[1 3, 1 2 ],[1 2,1]} is division o [0,1]. (ii) {(0,[0, 1 3 ]),(1 2,[1 3, 1 2 ]),(1,[1 2,1])} is δ-ine Perron prtition o [0,1]. (iii) {(0,[0, 1 3 ]),(1 2,[1 3, 1 2 ]),(1 2,[1 2,1])} is not δ-ine Perronprtition o[0,1]. The ollowing nturl question rises rom Exmple 1.1.2. Question 1.1.3. I δ is n rbitrry guge on [,b], is it possible to ind δ-ine Perron prtition o [, b]? In order to proceed urther, we need the ollowing result. Lemm 1.1.4. Let δ be guge on [,b] nd let < c < b. I P 1 nd P 2 re δ-ine Perron prtitions o [,c] nd [c,b] respectively, then P 1 P 2 is δ-ine Perron prtition o [,b]. Proo. Exercise. The ollowing theorem gives n irmtive nswer to Question 1.1.3. Theorem 1.1.5 (Cousin s Lemm). I δ is guge on [,b], then there exists δ-ine Perron prtition o [,b]. Proo. Proceeding towrds contrdiction, suppose tht [, b] does not hve δ-ine Perron prtition. We divide [,b] into [, +b 2 ] nd [+b 2,b] so tht [,b] is the union o two non-overlpping intervls in R. In view o Lemm 1.1.4, we cn choose n intervl [ 1,b 1 ] rom the set {[, +b 2 ],[+b 2,b]} so tht [ 1,b 1 ] does not hve δ-ine Perron prtition. Using induction, we construct intervls [ 1,b 1 ],[ 2,b 2 ],... in R so tht the ollowing properties re stisied or every n N: (i) [ n,b n ] [ n+1,b n+1 ]; (ii) no δ-ine Perron prtition o [ n,b n ] exists; (iii) b n n = b 2 n.

The one-dimensionl Henstock-Kurzweil integrl 3 Since properties (i) nd (iii) hold or every n N, it ollows rom the Nested Intervl Theorem [6, Theorem 2.5.3] tht [ k,b k ] = {t 0 } or some t 0 R. On the other hnd, since [ k,b k ] = {t 0 } nd δ(t 0 ) > 0, it ollows rom property (iii) tht there exists N N such tht {(t 0,[ N,b N ])} is δ-ine Perron prtition o [ N,b N ], contrdiction to (ii). This contrdiction completes the proo. Let C[, b] denote the spce o rel-vlued continuous unctions on [, b]. A simple ppliction o Theorem 1.1.5 gives the ollowing clssicl result. Theorem 1.1.6. I C[,b], then is uniormly continuous on [,b]. Proo. Let ε > 0 be given. Using the continuity o on [,b], or ech x 0 [,b] there exists δ 0 (x 0 ) > 0 such tht (x) (x 0 ) < ε 2 whenever x (x 0 δ 0 (x 0 ),x 0 +δ 0 (x 0 )) [,b]. We wnt to prove tht there exists η > 0 with the ollowing property: s,t [,b] with s t < η = (s) (t) < ε. Deine guge δ on [,b] by setting δ = 1 2 δ 0. In view o Cousin s Lemm, we my select nd ix δ-ine Perron prtition {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} o [,b]. I s,t [,b] with t s < η := min{δ(t i ) : i = 1,...,p}, then there exists j {1,...,p} such tht t t j < δ(t j ) nd so s t j s t + t t j < 2δ(t j ) = δ 0 (t j ). Thus (t) (s) (t) (t j ) + (t j ) (s) < ε. Thereore, is uniormly continuous on [, b]. Following the proo o Theorem 1.1.6, we obtin the ollowing corollry. Corollry 1.1.7. I C[,b], then is bounded on [,b].

4 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES 1.2 Deinition o the Henstock-Kurzweil integrl Let P = {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} be Perron prtition o [,b]. I is rel-vlued unction deined on {t 1,...,t p }, we write p S(,P) = (t i )(v i u i ). i=1 We irst deine the Riemnn integrl. Deinition 1.2.1. A unction : [,b] R is sid to be Riemnn integrble on [,b] i there exists A 0 R with the ollowing property: given ε > 0 there exists constnt guge δ on [,b] such tht or ech δ-ine Perron prtition P o [,b]. S(,P) A 0 < ε (1.2.1) The collection o ll unctions tht re Riemnn integrble on [, b] will be denoted by R[,b]. Once we omit the word constnt rom Deinition 1.2.1, we obtin the ollowing modiiction o the Riemnn integrl. Deinition 1.2.2. A unction : [,b] R is sid to be Henstock- Kurzweil integrble on [,b] i there exists A R with the ollowing property: given ε > 0 there exists guge δ on [,b] such tht or ech δ-ine Perron prtition P o [,b]. S(,P) A < ε (1.2.2) The collection o ll unctions tht re Henstock-Kurzweil integrble on [,b] will be denoted by HK[,b]. It is esy to deduce rom Deinitions 1.2.1 nd 1.2.2 tht i R[,b], then HK[,b]. In this cse, Cousin s Lemm shows tht there is unique number stisying Deinitions 1.2.1 nd 1.2.2. Theorem 1.2.3. There is t most one number A stisying Deinition 1.2.2. Proo. Suppose tht A 1 nd A 2 stisy Deinition 1.2.2. We clim tht A 1 = A 2. Let ε > 0 be given. Since A 1 stisies Deinition 1.2.2, there exists guge δ 1 on [,b] such tht S(,P 1 ) A 1 < ε 2

The one-dimensionl Henstock-Kurzweil integrl 5 or ech δ 1 -ine Perron prtition P 1 o [,b]. Similrly, there exists guge δ 2 on [,b] such tht S(,P 2 ) A 2 < ε 2 or ech δ 2 -ine Perron prtition P 2 o [,b]. Deine guge δ on [,b] by setting δ(x) = min{δ 1 (x),δ 2 (x)}. (1.2.3) According to Cousin s Lemm (Theorem 1.1.5), we my ix δ-ine Perron prtition P o [, b]. Since (1.2.3) implies tht the δ-ine Perron prtition P is both δ 1 -ine nd δ 2 -ine, it ollows rom the tringle inequlity tht A 1 A 2 S(,P) A 1 + S(,P) A 2 < ε. Since ε > 0 is rbitrry, we conclude tht A 1 = A 2. Theorem 1.2.3 tells us tht i HK[,b], then there is unique number A stisying Deinition 1.2.2. In this cse the number A, denoted by, (x) dx or (t) dt, is known s the Henstock- Kurzweil integrl o over [,b]. It is cler tht i R[,b], then HK[,b] nd the number stisies Deinition 1.2.1. In this cse the unique number, denoted by, (x) dx or (t) dt, is known s the Riemnn integrl o over [,b]. The ollowing exmple shows tht the inclusion R[,b] HK[,b] is proper. Exmple 1.2.4. Let Q be the set o ll rtionl numbers, nd deine the unction : [0,1] R by setting Then HK[0,1]\R[0,1]. 1 i x [0,1] Q, (x) = 0 otherwise. Proo. Let (r n ) n=1 be n enumertion o [0,1] Q nd let ε > 0. We deine guge δ on [0,1] by setting ε 2 i x = r n+1 n or some n N, δ(x) = 1 i x [0,1]\Q.

6 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES I P is δ-ine Perron prtition o [0,1], then S(,P) 0 = (t)(v u)+ t Q [0,1] = (t)(v u) < t Q [0,1] = ε. ε 2 k t [0,1]\Q (t)(v u) Since ε > 0 is rbitrry, we conclude tht HK[0,1]nd 1 0 = 0. It remins to prove tht R[0, 1]. Proceeding towrds contrdiction, suppose tht R[0,1]. Since R[0,1] HK[0,1] nd 1 0 = 0, we hve 1 0 = 0. Hence or ε = 1 there exists constnt guge δ 1 on [0,1] such tht S(,P 1 ) < 1 or ech δ 1 -ine Perron prtition P 1 o [0,1]. I q is positive integer stisying q 1 < δ 1, then P 2 := {( (k 1 1)q 1,[(k 1 1)q 1,k 1 q 1 ] ) : k 1 = 1,...,q } is δ 1 -ine Perron prtition o [0,1]. A contrdiction ollows: q 1 > S(,P 2 ) = (kq 1 (k 1)q 1 ) = 1. The ollowing theorem shows tht the one-dimensionl Henstock- Kurzweil integrl is useul or ormulting Fundmentl Theorem o Clculus. Theorem 1.2.5. Let : [,b] R nd let F C[,b]. I F is dierentible on (,b) nd F (x) = (x) or ll x (,b), then HK[,b] nd = F(b) F().

The one-dimensionl Henstock-Kurzweil integrl 7 Proo. Let ε > 0 be given. Since F is continuous on [, b], or ech x [,b] there exists δ 1 (x) > 0 such tht F(x) F(y) < ε 6 whenever y [,b] (x δ 1 (x),x+δ 1 (x)). Since F is dierentible on (,b), or ech x (,b) there exists δ 2 (x) > 0 such tht F ε(v u) (x)(v u) (F(v) F(u)) 3(b ) whenever x [u,v] (,b) (x δ 2 (x),x+δ 2 (x)). Deine guge δ on [,b] by the ormul } min {δ 1 (x),δ 2 (x), 12 (x ), 12 (b x) i < x < b, δ(x) = ε i x {,b}. 6( () + (b) +1) I P is δ-ine Perron prtition o [,b], then S(,P) (F(b) F()) = {(t)(v u) ( F(v) F(u) )} (t)(v u) (F(v) F(u)) t {,b} + <t<b t {,b} t {,b} (t)(v u) (F(v) F(u)) ( (t) (v u)+ F(v) F(u) ) + (t) (v u)+ t {,b} < ε( () + (b) ) 6( () + (b) +1) + 2ε 6 + <t<b <t<b F(v) F(u) + ε(v u) 3(b ) < ε. Since ε > 0 is rbitrry, we conclude tht HK[,b] nd = F(b) F(). ε(v u) 3(b ) <t<b ε(v u) 3(b )

8 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES The ollowing exmples re specil cses o Theorem 1.2.5. Exmple 1.2.6. Let x 2 sin 1 x F(x) = 2 i 0 < x 1, 0 i x = 0. Then F is dierentible on [0,1]. In prticulr, F HK[0,1] nd 1 0 F = sin1. Exmple 1.2.7. Let 2 x (x) = 3 2cosx sin 3 i 0 < x π 2 x, 0 i x = 0. Then HK[0, π 2 ] nd π 2 = 2 0 3 4 π 2. The ollowing theorem is consequence o Theorem 1.2.5. Theorem 1.2.8. I : [,b] R is derivtive on [,b], then HK[,b]. We remrk tht the converse o Theorem 1.2.8 is not true. More detils will be given in Section 4.5. 1.3 Simple properties The im o this section is to prove some bsic properties o the Henstock- Kurzweil integrl vi Deinition 1.2.2. Theorem 1.3.1. I,g HK[,b], then +g HK[,b] nd ( +g) = + g.

The one-dimensionl Henstock-Kurzweil integrl 9 Proo. Let ε > 0 be given. Since HK[,b], there exists guge δ 1 on [,b] such tht S(,P 1) < ε 2 or ech δ 1 -ine Perron prtition P 1 o [,b]. Similrly, there exists guge δ 2 on [,b] such tht S(g,P 2) g < ε 2 or ech δ 2 -ine Perron prtition P 2 o [,b]. Deine guge δ on [,b] by setting δ(x) = min{δ 1 (x),δ 2 (x)}, (1.3.1) nd let P be δ-ine Perron prtition o [,b]. Since (1.3.1) implies tht the δ-ine Perron prtition P is both δ 1 -ine nd δ 2 -ine, the identity S( +g,p) = S(,P)+S(g,P) nd the tringle inequlity yield { S( +g,p) + g} S(,P) + S(g,P) < ε. Since ε > 0 is rbitrry, we conclude tht +g HK[,b] nd ( +g) = + Theorem 1.3.2. I HK[,b] nd c R, then c HK[,b] nd { } c = c. Proo. Let ε > 0 be given. Since HK[,b], there exists guge δ on [,b] such tht S(,P 1) < ε c +1 g. g

10 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES or ech δ-ine Perron prtition P 1 o [,b]. I P is δ-ine Perron prtition o [,b], then { S(c,P) c } = c S(,P) < c ε c +1 < ε. Since ε > 0 is rbitrry, we conclude tht c HK[,b] nd { } c = c. Theorem 1.3.3. I,g HK[,b] nd (x) g(x) or ll x [,b], then Proo. Let ε > 0 be given. Since HK[,b], there exists guge δ 1 on [,b] such tht S(,P 1) < ε 2 or ech δ 1 -ine Perron prtition P 1 o [,b]. Similrly, there exists guge δ 2 on [,b] such tht S(g,P 2) g < ε 2 or ech δ 2 -ine Perron prtition P 2 o [,b]. Deine guge δ on [,b] by setting g. δ(x) = min{δ 1 (x),δ 2 (x)}, (1.3.2) nd we pply Cousin s Lemm to ix δ-ine Perron prtition P 0 o [,b]. Since (1.3.2) implies tht the δ-ine Perron prtition P 0 is both δ 1 -ine nd δ 2 -ine, it ollows rom the inequlity S(,P 0 ) S(g,P 0 ) tht < S(,P 0 )+ ε 2 S(g,P 0)+ ε 2 < g +ε, nd the desired inequlity ollows rom the rbitrriness o ε. The ollowing theorem gives useul necessry nd suicient condition or unction to be Henstock-Kurzweil integrble on [, b].

The one-dimensionl Henstock-Kurzweil integrl 11 Theorem 1.3.4 (Cuchy Criterion). A unction : [,b] R is Henstock-Kurzweil integrble on [,b] i nd only i given ε > 0 there exists guge δ on [,b] such tht S(,P) S(,Q) < ε (1.3.3) or ech pir o δ-ine Perron prtitions P nd Q o [,b]. Proo. (= ) Let ε > 0 be given. Since HK[,b], there exists guge δ on [,b] such tht S(,P 0) < ε (1.3.4) 2 or ech δ-ine Perronprtition P 0 o[,b]. I P nd Q re two δ-ine Perron prtitions o [, b], the tringle inequlity nd (1.3.4) yield S(,P) S(,Q) S(,P) + S(,Q) < ε. ( =) For ech n N we let δ n be guge on [,b] so tht S(,Q n ) S(,R n ) < 1 n or echpiroδ n -ine Perronprtitions Q n nd R n o[,b]. Next we deine guge n on [,b] by setting n (x) = min{δ 1 (x),...,δ n (x)}, nd pply Cousin s Lemm to ix n -ine Perron prtition P n o [,b]. We clim tht (S(,P n )) n=1 is Cuchy sequence o rel numbers. Let ε > 0 be given nd choose positive integer N so tht 1 N < ε. I n 1 nd n 2 re positive integers such tht min{n 1,n 2 } N, then P n1 nd P n2 re both min{n1,n 2}-ine Perron prtitions o [,b] nd so 1 S(,P n1 ) S(,P n2 ) < min{n 1,n 2 } 1 N < ε. Consequently, (S(,P n )) n=1 is Cuchy sequence o rel numbers. Since R is complete, the sequence (S(,P n )) n=1 converges to some rel number A. It remins to prove tht HK[,b] nd A =. Let P be N -ine Perron prtition o [,b]. Since our construction implies tht the sequence ( n ) n=1 o guges is non-incresing, we see tht the n -ine Perron prtition P n is N -ine or every integers n N. Thus S(,P) A = lim n S(,P) S(,P n) 1 N < ε. Sinceε > 0isrbitrry,weconcludetht HK[,b]ndA =.

12 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES We re now redy to give n importnt clss o Henstock-Kurzweil integrble unctions. Theorem 1.3.5. I C[,b], then HK[,b]. Proo. Let ε > 0 be given. Since is continuous on [,b], or ech x [,b] there exists δ(x) > 0 such tht (y) (x) < whenever y [,b] (x δ(x),x+δ(x)). ε 2(b ) Clerly, the unction x δ(x) is guge on [,b]. Let P = {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} nd Q = {(w 1,[x 1,y 1 ]),...,(w q,[x q,y q ])} be two δ-ine Perron prtitions o [,b]. I [u j,v j ] [x k,y k ] is non-empty or some j {1,...,p} nd k {1,...,q}, we select nd ix point z j,k [u j,v j ] [x k,y k ]. On the other hnd, i [u r,v r ] [x s,y s ] is empty or some r {1,...,p} nd s {1,...,q}, we set z r,s =. Let µ 1 ( ) = 0 nd let µ 1 ([α,β]) = β α or ech pir o rel numbers α nd β stisying α β. By the tringle inequlity, S(,P) S(,Q) p q = (t j )(v j u j ) (w k )(y k x k ) j=1 p q q p = (t j )µ 1 ([u j,v j ] [x k,y k ]) (w k )µ 1 ([u j,v j ] [x k,y k ]) j=1 j=1 p q ( (tj ) (z j,k ) ) µ 1 ([u j,v j ] [x k,y k ]) j=1 p q ( + (wk ) (z j,k ) ) µ 1 ([u j,v j ] [x k,y k ]) < ε. j=1 An ppliction o Theorem 1.3.4 completes the proo. The ollowing theorem is lso consequence o Theorem 1.3.4. Theorem 1.3.6. I HK[,b], then HK[c,d] or ech intervl [c,d] [,b].

The one-dimensionl Henstock-Kurzweil integrl 13 Proo. Let [c,d] be proper subintervl o [,b]. For ech ε > 0 we use Theorem 1.3.4 to select guge δ on [,b] such tht S(,P) S(,Q) < ε or ech pir o δ-ine Perron prtitions P nd Q o [,b]. Since [c,d] is proper subintervl o [,b], there exists inite collection {[u 1,v 1 ],...,[u N,v N ]}opirwisenon-overlppingsubintervlso[,b]such tht [c,d] {[u 1,v 1 ],...,[u N,v N ]} nd N [,b] = [c,d] [u k,v k ]. For ech k {1,...,N} we ix δ-ine Perron prtition P k o [u k,v k ]. I P [c,d] nd Q [c,d] re δ-ine Perron prtitions o [c,d], then it is cler tht P [c,d] N P k nd Q [c,d] N P k re δ-ine Perron prtitions o [,b]. Thus S(,P[c,d] ) S(,Q [c,d] ) N N = S(,P [c,d])+ S(,P k ) S(,Q [c,d] ) S(,P k ) N N = S(,P [c,d] P k ) S(,Q [c,d] P k ) < ε. By Theorem 1.3.4, HK[c,d]. Remrk 1.3.7. I HK[,b] nd c [,b], we deine the Henstock- Kurzweil integrl o over {c} to be zero. Theorem 1.3.8. Let : [,b] R nd let < c < b. I HK[,c] HK[c,b], then HK[,b] nd = c + Proo. Given ε > 0 there exists guge δ on [,c] such tht c S(,P ) < ε 2 wheneverp isδ -ine Perronprtitiono[,c]. Asimilrrgumentshows tht there exists guge δ b on [c,b] such tht S(,P b) < ε 2 c c.

14 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES or ech δ b -ine Perron prtition P b o [c,b]. Deine guge δ on [,b] by setting min{δ (x),c x} i x < c, δ(x) = min{δ (x),δ b (x)} i x = c, min{δ b (x),x c} i c < x b, nd let P = {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} be δ-ine Perron prtition o [,b]. Since our choice o δ implies tht c = u j = v k or some j,k {1,...,p}, we conclude tht P = P 1 P 2 or some δ-ine Perron prtitions P 1, P 2 o [,c] nd [c,b] respectively. Consequently, { S(,P) S(,P 1) < ε. c c + Since ε > 0 is rbitrry, the theorem ollows. Exercise 1.3.9. c } + S(,P 2) (i) Prove tht i,g R[,b], then +g R[,b] nd ( +g) = + (ii) Prove tht i R[,b] nd c R, then c R[,b] nd c = c (iii) Let : [,b] R nd let < c < b. Prove tht i R[,c] R[c,b], then R[,b] nd = c +. c. g. c 1.4 Sks-Henstock Lemm The im o this section is to estblish the importnt Sks-Henstock Lemm (Theorem 1.4.4) or the Henstock-Kurzweil integrl. As result, we deduce tht there re no improper Henstock-Kurzweil integrls (Theorems 1.4.6 nd 1.4.8). We begin with the ollowing deinitions.

The one-dimensionl Henstock-Kurzweil integrl 15 Deinition 1.4.1. A inite collection {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} o point-intervl pirs is sid to be Perron subprtition o [,b] i t i [u i,v i ] or i = 1,...,p, nd {[u 1,v 1 ],...,[u p,v p ]} is inite collection o nonoverlpping subintervls o [, b]. Deinition 1.4.2. Let {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} be Perron subprtition o [,b] nd let δ be guge on {t 1,...,t p }. The Perron subprtition {(t 1,[u 1,v 1 ]),...,(t p,[u p,v p ])} is sid to be δ-ine i [u i,v i ] (t i δ(t i ),t i +δ(t i )) or i = 1,...,p. By replcing δ-ine Perron prtitions by δ-ine Perron subprtitions in Deinition 1.2.2, we obtin the ollowing Lemm 1.4.3. Let HK[,b] nd let ε > 0. I δ is guge on [,b] such tht (x)(z y) < ε (x,[y,z]) Q or ech δ-ine Perron prtition Q o [,b], then { (t)(v u) or ech δ-ine Perron subprtition P o [, b]. v u } ε (1.4.1) Proo. Let P be δ-ine Perron subprtition o [, b]. I [u,v] = [,b], then (1.4.1) ollows rom Theorem 1.3.8. Henceorth we ssume tht [u,v] [,b]; in this cse, we choose nonoverlpping intervls [x 1,y 1 ],...,[x q,y q ] such tht q [,b] \ (u,v) = [x k,y k ]. For ech k {1,...,q} we iner rom Theorem 1.3.6 tht HK[x k,y k ]. Hence or ech η > 0 there exists guge δ k on [x k,y k ] such tht yk S(,P k) < η q x k or ech δ k -ine Perron prtition P k o [x k,y k ]. Since δ nd δ k re guges on [u k,v k ], we cn pply Cousin s Lemm to select nd ix min{δ,δ k }-ine Perron prtition Q k o [x k,y k ].

16 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES Following the proo o Lemm 1.1.4, we conclude tht Q := P q Q k is δ-ine Perron prtition o [,b] such tht q S(,Q) = S(,P)+ S(,Q k ) nd = Consequently, { q = S(,Q) S(,Q) < ε+η. { (t)(v u) v v u } + u } { S(,Q k ) q q + S(,Q k) Since η > 0 is rbitrry, the lemm is proved. yk x k. q vk x k vk x k We re now redy to stte nd prove the ollowing crucil Sks-Henstock Lemm, which plys n importnt role or the rest o this chpter. Theorem 1.4.4 (Sks-Henstock). I HK[,b], then or ech ε > 0 there exists guge on δ on [,b] such tht v (t)(v u) < ε (1.4.2) or ech δ-ine Perron subprtition P o [, b]. Proo. Since is Henstock-Kurzweil integrble on [, b], it ollows rom Lemm 1.4.3 tht there exists guge δ on [,b] such tht { } y (z)(y x) x < ε (1.4.3) 2 (z,[x,y]) Q or ech δ-ine Perron subprtition Q o [,b]. Let P be δ-ine Perron subprtition o [, b], let { v } P + = (t,[u,v]) P : (t)(v u) 0 u u }

The one-dimensionl Henstock-Kurzweil integrl 17 nd let P = P\P +. Then P + P is δ-ine Perron subprtition o [,b] nd hence the desired result ollows rom (1.4.3): v (t)(v u) = < ε. + { (t)(v u) { (t)(v u) u v u v Theorem 1.4.5. Let HK[,b] nd let F(x) = x or ech x [,b]. Then F is continuous on [,b]. Proo. For ech ε > 0 we pply the Sks-Henstock Lemm to select guge δ on [,b] such tht v (t)(v u) < ε 2 or ech δ-ine Perron subprtition P o [,b]. By mking δ smller, we my ssume tht δ(t) or ll t [,b]. I x [,b], then ε 2(1+ (t) ) u u } } F(y) F(x) (x)(y x) (F(y) F(x)) + (x)(y x) < ε whenever y (x δ(x),x +δ(x)) [,b]. Since x [,b] is rbitrry, we conclude tht F is continuous on [, b]. Theorem 1.4.6 (Cuchy extension). A unction : [,b] R is Henstock-Kurzweil integrble on [,b] i nd only i or ech c (,b) the unction [,c] is Henstock-Kurzweil integrble on [,c] nd lim c b c In this cse, = lim c b c. Proo. (= ) This ollows rom Theorem 1.4.5. exists. (1.4.4) ( =) Let ε > 0 nd let (c n ) n=0 be strictly incresing sequence o rel numbers such tht c 0 = nd sup n N c n = b. Since (1.4.4) holds, there exists positive integer N such tht x c lim c b < ε (1.4.5) 4

18 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES whenever x [c N,b). For ech k N we let δ k be guge on [c k 1,c k ] so tht the inequlity y (z)(y x) < ε 4(2 k (1.4.6) ) (z,[x,y]) Q k holds or ech δ k -ine Perron subprtition Q k o [c k 1,c k ]. Deine guge δ on [,b] by setting 1 2 (c 1 c 0 ) i x = c 0, min{δ k (c k ),δ k+1 (c k ), 1 2 (c k c k 1 ), 1 2 (c k+1 c k )} i x = c k or some k N, δ(x) = min{δ k (x), 1 2 (x c k 1), 1 2 (c k x)} x i x (c k 1,c k ) or some k N, ε min{b c N, 4( (b) +1) } i x = b, nd let P = {(t 1,[x 0,x 1 ]),...,(t p,[x p 1,x p ])} be δ-ine Perron prtition o [,b]. Ater suitble reordering, we my ssume tht = x 0 < x 1 < < x p = b. Since b [c k 1,c k ], our choice o δ implies tht t p = b nd x p 1 (c r,c r+1 ] or some unique positive integer r. We lso observe tht i k {1,...,r}, our choice o δ implies tht {(t,[u,v]) P : [u,v] [c k 1,c k ]} is δ k -ine Perron prtition o [c k 1,c k ]. Thus c S(,P) lim c b r { ck } (t)(v u) c k 1 [u,v] [c k 1,c k ] xp 1 + (t)(v u) + (b) (b x p 1 ) c r [u,v] [c r,x p 1] xp 1 c + lim c b < ε.

The one-dimensionl Henstock-Kurzweil integrl 19 Corollry 1.4.7. Let : [,b] R nd suppose tht [,c] is Riemnn c integrble on [,c] or every c (,b). I lim c b (t) dt exists, then HK[,b] nd lim c b c = Likewise, we hve the ollowing modiiction o Theorem 1.4.6. Theorem 1.4.8 (Cuchy extension). A unction : [,b] R is Henstock-Kurzweil integrble on [,b] i nd only i or ech c (,b) the unction [c,b] is Henstock-Kurzweil integrble on [c,b] nd lim c + c. exists. In this cse, = lim c + c. The ollowing corollry is n immedite consequence o Theorem 1.4.8. Corollry 1.4.9. Let : [,b] R nd suppose tht [c,b] is Riemnn integrble on [c,b] or every c (,b). I lim c + (t) dt exists, then c HK[,b] nd lim c b c = Exmple 1.4.10. Let 1 1 x i 0 x < 1, (x) = 0 i x = 0. Since is Henstock-Kurzweil integrble on [0,c] or ll c [0,1) nd c ( 1 lim dt = lim 2 2 ) 1 c = 2, c 1 1 t c 1 0 it ollows rom Theorem 1.4.6 tht HK[0,1] nd 1 0 = 2..

20 HENSTOCK-KURZWEIL INTEGRATION ON EUCLIDEAN SPACES Exmple 1.4.11. Let 1 x sin 1 2 x i 0 < x 1, h(x) = 0 i x = 0. It is cler tht h is Henstock-Kurzweil integrble on [c,1] or ll c (0,1). On the other hnd, since the limit 1 1 lim c 0 + x 2 sin 1 ( dx = lim cos1 cos 1 ) x c 0 + c c does not exist, n ppliction o Theorem 1.4.8 shows tht h is not Henstock-Kurzweil integrble on [0, 1]. Exercise 1.4.12. Show tht the Sks-Henstock Lemm remins true or the Riemnn integrl. Further pplictions o the Sks-Henstock Lemm will be given in the subsequent chpters. 1.5 Notes nd Remrks Cousin s Lemm hs been used by Gordon [46] to prove some clssicl results in nlysis. Theorem 1.1.6 is lso due to Gordon [46]. It is known tht R[, b] is liner spce. Further properties o the Riemnn integrl cn be ound in [88, Sections 1.3-1.5] or [6, Chpter 7]. 1n 1957, Kurzweil [71] gve slight but ingenious modiiction o the clssicl Riemnn integrl nd used it in his work on dierentil equtions. Lter, Henstock [55] discovered the integrl independently nd developed the theory urther. This integrl, which is now commonly known s the Henstock-Kurzweil integrl, is lso known s the Henstock integrl, the Kurzweil-Henstock integrl, or the generlized Riemnn integrl; see, or exmple, [4 6, 85, 88]. In dimension one, this integrl is equivlent to the Perron integrl in the ollowing sense: unction which is integrble in one sense is integrble in the other sense nd both integrls coincide; proo o this result is given in [44, Chpter 11]. A good overll view o the theory cn be ound in Bongiorno [10] nd Lee [86]. See lso [133].