Electroweak Effective Theory

Similar documents
5. Fingerprints of Heavy Scales

RGE of d = 6 Operators in SM EFT

Effective Lagrangian Approach. Ansgar Denner, University of Würzburg

The Standard Model Effective Field Theory and Dimension 6 Operators

Viability of strongly coupled scenarios with a light Higgs like boson

Effective Lagrangians for Higgs Physics

EWSB by strongly-coupled dynamics: an EFT approach

Top quark effects in composite vector pair production at the LHC

arxiv: v1 [hep-ph] 18 Oct 2017

Exploring Extended Scalar Sectors with Di Higgs Signals: A Higgs EFT Perspective

Beyond the Higgs. new ideas on electroweak symmetry breaking

Oblique corrections from Light Composite Higgs

Kinematics in Higgs Fits

Higgs Boson Phenomenology Lecture I

Triple Gauge Couplings and Quartic Gauge Couplings

linear Colliders Sayipjamal Dulat, Kaoru Hagiwara and Yu Matsumoto Xinjiang University, China and KEK, Tsukuba, Japan

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection

Effective Higgs-Gauge Analyses

arxiv: v1 [hep-ph] 25 Nov 2015

Dimension-Six Terms in the Standard Model Lagrangian

Lectures on Standard Model Effective Field Theory

arxiv: v1 [hep-ph] 4 May 2015

Overview of low energy NN interaction and few nucleon systems

The Higgs discovery - a portal to new physics

Effective Field Theory and EDMs

Constraining BSM physics in effective Higgs interactions

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Antonio Pich. IFIC, CSIC Univ. Valencia.

Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators.

Higgs EFTs and signatures of a nonstandard Higgs from flavor physics

General Composite Higgs Models

arxiv: v1 [hep-ph] 13 May 2013

Hidden two-higgs doublet model

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN

Bin Yan Peking University

Bachelor s Degree thesis

A Minimal Composite Goldstone Higgs model

Andreas Crivellin Effective Field Theory, Higgs-quark couplings and Dark Matter Direct Detection in the MSSM

The Higgs Mechanism and the Higgs Particle

PAPER 305 THE STANDARD MODEL

Tilman Plehn. Mainz, July 2015

The Physics of Heavy Z-prime Gauge Bosons

Composite Higgs/ Extra Dimensions

S = 2 decay in Warped Extra Dimensions

Higgs couplings in the Composite Higgs Models

Basics of Higgs Physics

The Rise of Effective Lagrangians at the LHC

Higgs Couplings. Tilman Plehn. Standard 4/2013. Higgs Couplings. Tilman Plehn. Results. Channels. Higgs couplings.

arxiv: v1 [hep-ph] 20 Oct 2017

Higgs Physics for the LHC

Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges

Triplet Higgs Scenarios

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Lepton Flavor Violation

arxiv: v1 [hep-ph] 27 Nov 2014

(Non-degenerate) light generation compositeness in composite Higgs models

Optimal-Observable Analysis of Top Production/Decay at Photon-Photon Colliders

Higgs-charm Couplings

Probing Two Higgs Doublet Models with LHC and EDMs

Gauge-Higgs Unification on Flat Space Revised

Dipole operator constraints on composite Higgs models

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Baryon and Lepton Number Violation at the TeV Scale

Aspetti della fisica oltre il Modello Standard all LHC

Discovering Technicolor

Flavour Physics Lecture 1

Effective field theory approach to the Higgs boson phenomenology

Scalar leptoquarks from GUT to accommodate the B-physics anomalies

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

Introduction to Supersymmetry

Introduction to the Standard Model

Higgs Boson Physics, Part II

Modification of Higgs Couplings in Minimal Composite Models

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

Constraints on Multi-Higgs-Doublet Models: Flavour Alignment

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

Composite Higgs and Flavor

S, T and U parameters

HIGGS COMPOSITENESS: CURRENT STATUS (AND FUTURE STRATEGIES) Roberto Contino Università di Roma La Sapienza & INFN Roma

Physics at TeV Energy Scale

Strongly-Coupled Signatures through WW Scattering

New Physics Scales to be Lepton Colliders (CEPC)

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

arxiv:hep-ph/ v1 8 Apr 1993

Electroweak Theory: 3

WZ di-boson production at CMS

Constraints on new physics from rare (semi-)leptonic B decays

Electroweak Theory, SSB, and the Higgs: Lecture 2

DEGENERATE BESS AT FUTURE e + e COLLIDERS

Particle Physics Today, Tomorrow and Beyond. John Ellis

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Beyond Standard Model Effects in Flavour Physics: p.1

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

Supersymmetry Breaking

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Strongly coupled gauge theories: What can lattice calculations teach us?

Light Pseudoscalar Higgs boson in NMSSM

Higher dimensional operators. in supersymmetry

Transcription:

Electroweak Effective Theory Antonio Pich IFIC, Univ. Valencia - CSIC Schladming 2014, Styria, Austria, 1 8 March 2014

Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) g h ϕ ϕ G/H EWET A. Pich Schladming 2014 53

Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) ξ(ϕ) (ξ L (ϕ),ξ R (ϕ)) G g h ξ L (ϕ) ξ R (ϕ) G g L ξ L (ϕ)h (ϕ,g) G g R ξ R (ϕ)h (ϕ,g) ϕ ϕ G/H EWET A. Pich Schladming 2014 53

Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) ξ(ϕ) (ξ L (ϕ),ξ R (ϕ)) G g h ξ L (ϕ) ξ R (ϕ) G g L ξ L (ϕ)h (ϕ,g) G g R ξ R (ϕ)h (ϕ,g) ϕ ϕ G/H U(ϕ) ξ L (ϕ)ξ R (ϕ) G g L U(ϕ)g R EWET A. Pich Schladming 2014 53

Coset Space Coordinates: G SU(2) L SU(2) R H SU(2) L+R H ξ(ϕ) ξ(ϕ) (ξ L (ϕ),ξ R (ϕ)) G g h ξ L (ϕ) ξ R (ϕ) G g L ξ L (ϕ)h (ϕ,g) G g R ξ R (ϕ)h (ϕ,g) ϕ ϕ G/H U(ϕ) ξ L (ϕ)ξ R (ϕ) G g L U(ϕ)g R Canonical choice: ξ L (ϕ) = ξ R (ϕ) G u(ϕ) g L u(ϕ)h (ϕ,g) = h(ϕ,g)u(ϕ)g R { U(ϕ) = u(ϕ) 2 } = exp i 2 f Φ EWET A. Pich Schladming 2014 53

CCWZ Formalism: Callan Coleman Wess Zumino u(ϕ) G g L u(ϕ) h (ϕ,g) = h(ϕ,g) u(ϕ) g R SU(2) L+R triplets: X G h(ϕ,g) X h(ϕ,g) R 1 2 σ R, µ R = µ R +[Γ µ,r] u µ i ud µ U u = u µ, h µν = µ u ν + ν u µ Γ µ = 1 2 f µν ± = u Ŵ µν u ±u ˆB µν u { } u( µ i ˆB µ)u + u ( µ i Ŵ µ)u EWET A. Pich Schladming 2014 54

CCWZ Formalism: Callan Coleman Wess Zumino u(ϕ) G g L u(ϕ) h (ϕ,g) = h(ϕ,g) u(ϕ) g R SU(2) L+R triplets: X G h(ϕ,g) X h(ϕ,g) R 1 2 σ R, µ R = µ R +[Γ µ,r] u µ i ud µ U u = u µ, h µν = µ u ν + ν u µ Γ µ = 1 2 f µν ± = u Ŵ µν u ±u ˆB µν u { } u( µ i ˆB µ)u + u ( µ i Ŵ µ)u L (2) EW = v2 4 uµ u µ EWET A. Pich Schladming 2014 54

Resonance Effective Theory Towers of heavy states are usually present in strongly-coupled models of EWSB: Technicolour, Walking TC... The low-energy constants (LECs) of the Goldstone Lagrangian contain information on the heavier states. The lightest states not included in the Lagrangian dominate EWET A. Pich Schladming 2014 55

Resonance Effective Theory Towers of heavy states are usually present in strongly-coupled models of EWSB: Technicolour, Walking TC... The low-energy constants (LECs) of the Goldstone Lagrangian contain information on the heavier states. The lightest states not included in the Lagrangian dominate 1 Build L eff (ϕ i,r k ) with the lightest R k coupled to the ϕ i 2 Require a good UV behaviour Low # of derivatives 3 Match the two effective Lagrangians LECs EWET A. Pich Schladming 2014 55

Resonance Effective Theory Towers of heavy states are usually present in strongly-coupled models of EWSB: Technicolour, Walking TC... The low-energy constants (LECs) of the Goldstone Lagrangian contain information on the heavier states. The lightest states not included in the Lagrangian dominate 1 Build L eff (ϕ i,r k ) with the lightest R k coupled to the ϕ i 2 Require a good UV behaviour Low # of derivatives 3 Match the two effective Lagrangians LECs This program works in QCD: RχT (Ecker Gasser Leutwyler Pich de Rafael) Good dynamical understanding at large N C EWET A. Pich Schladming 2014 55

LO Resonance EW Lagrangian Pich Rosell Sanz-Cillero L eff = L ϕ + R L R + R,R L RR + Triplets: V(1 ), A(1 ++ ) ; Singlet: S 1 (0 ++ ) L S1 +L A +L V = v 2 κ W S 1 u µ u µ + F A 2 2 A µνf µν L S1A = 2 λ SA 1 µ S 1 A µν u ν + F V 2 2 V µν f µν + + i G V 2 2 V µν [u µ u ν ] Antisymmetric V µν and A µν fields (better UV properties): L Kin = 1 λ R λµ νr νµ 1 2 2 M2 R RµνRµν + 1 2 µ S 1 µs 1 1 2 M2 S S 2 1 1 R=V,A EWET A. Pich Schladming 2014 56

Resonance Exchange G V V G V G V 2 2 M V V F V G V F V G V 2 q << 2 M V,A 2 M V V F 2 V 2 F V F V M V F A A F A F 2 A 2 M A a 1 = F2 V 4M 2 V + F2 A 4M 2 A, a 2 = a 3 = F VG V 4M 2 V, a 4 = a 5 = G2 V 4M 2 V EWET A. Pich Schladming 2014 57

Left (Ŵ µ ) and Right (ˆB µ ) Sources: U(ϕ) g L U(ϕ)g R Ŵ µ g L Ŵ µ g L +i g L µ g L, ˆBµ g R ˆBµ g R +i g R µ g R Left / Right (Vector / Axial) Currents EWET A. Pich Schladming 2014 58

Left (Ŵ µ ) and Right (ˆB µ ) Sources: U(ϕ) g L U(ϕ)g R Ŵ µ g L Ŵ µ g L +i g L µ g L, ˆBµ g R ˆBµ g R +i g R µ g R Left / Right (Vector / Axial) Currents Vector Form Factor: ϕ(p 1)ϕ(p 2) J µ V 0 = (p1 p2)µ F v ϕϕ(s) κ W F V V G V F v ϕϕ(s) = 1 + F V G V v 2 s M 2 V s EWET A. Pich Schladming 2014 58

Left (Ŵ µ ) and Right (ˆB µ ) Sources: U(ϕ) g L U(ϕ)g R Ŵ µ g L Ŵ µ g L +i g L µ g L, ˆBµ g R ˆBµ g R +i g R µ g R Left / Right (Vector / Axial) Currents Vector Form Factor: ϕ(p 1)ϕ(p 2) J µ V 0 = (p1 p2)µ F v ϕϕ(s) κ W F V V G V F v ϕϕ(s) = 1 + F V G V v 2 s M 2 V s Short-distance constraint: lim F v s ϕϕ(s) = 0 F V G V = v 2 EWET A. Pich Schladming 2014 58

Axial Form Factor: S 1(p 1)ϕ(p 2) J µ A 0 = (p1 p2)µ F a S 1 ϕ(s) κ W F A A λ 1 SA F a S 1 ϕ (s) = κ W (1 + F Aλ SA 1 κ W v 2 ) s MA 2 s EWET A. Pich Schladming 2014 59

Axial Form Factor: S 1(p 1)ϕ(p 2) J µ A 0 = (p1 p2)µ F a S 1 ϕ(s) κ W F A A λ 1 SA F a S 1 ϕ (s) = κ W (1 + F Aλ SA 1 κ W v 2 ) s MA 2 s Short-distance constraint: lim F a s S 1 ϕ (s) = 0 F A λ SA 1 = κ W v 2 EWET A. Pich Schladming 2014 59

Weinberg Sum Rules Chiral Symmetry: Π µν LR (q) d 4 x e iqx 0 T(J µ L (x)jν R (0) ) 0 = ( g µν q 2 +q µ q ν ) Π LR (q 2 ) = 0 EWET A. Pich Schladming 2014 60

Weinberg Sum Rules Chiral Symmetry: Π µν LR (q) d 4 x e iqx 0 T(J µ L (x)jν R (0) ) 0 = ( g µν q 2 +q µ q ν ) Π LR (q 2 ) = 0 OPE: Π µν LR (q) 0 only through order parameters of EWSB (operators invariant under H but not under G) EWET A. Pich Schladming 2014 60

Weinberg Sum Rules Chiral Symmetry: Π µν LR (q) d 4 x e iqx 0 T(J µ L (x)jν R (0) ) 0 = ( g µν q 2 +q µ q ν ) Π LR (q 2 ) = 0 OPE: Π µν LR (q) 0 only through order parameters of EWSB (operators invariant under H but not under G) Asymptotically-Free Theories: lim s s2 Π LR (s) = 0 (Bernard et al.) EWET A. Pich Schladming 2014 60

Weinberg Sum Rules Chiral Symmetry: Π µν LR (q) d 4 x e iqx 0 T(J µ L (x)jν R (0) ) 0 = ( g µν q 2 +q µ q ν ) Π LR (q 2 ) = 0 OPE: Π µν LR (q) 0 only through order parameters of EWSB (operators invariant under H but not under G) Asymptotically-Free Theories: lim s s2 Π LR (s) = 0 (Bernard et al.) 1 π 1 π 0 0 ds [ImΠ VV (s) ImΠ AA (s)] = v 2 ds s [ImΠ VV (s) ImΠ AA (s)] = 0 (1 st WSR) (2 nd WSR) EWET A. Pich Schladming 2014 60

WSRs @ LO V, A Π LR (s) = v2 s + F 2 V M 2 V s F 2 A M 2 A s 1 st WSR: F 2 V F2 A = v2 2 nd WSR: F 2 V M2 V F2 A M2 A = 0 EWET A. Pich Schladming 2014 61

WSRs @ LO V, A Π LR (s) = v2 s + F 2 V M 2 V s F 2 A M 2 A s 1 st WSR: F 2 V F2 A = v2 2 nd WSR: F 2 V M2 V F2 A M2 A = 0 M 2 A FV 2 = v2 MA 2 M2 V, F 2 A = v2 M 2 V M 2 A M2 V, M A > M V EWET A. Pich Schladming 2014 61

WSRs @ LO V, A Π LR (s) = v2 s + F 2 V M 2 V s F 2 A M 2 A s 1 st WSR: F 2 V F2 A = v2 2 nd WSR: F 2 V M2 V F2 A M2 A = 0 M 2 A FV 2 = v2 MA 2 M2 V, F 2 A = v2 M 2 V M 2 A M2 V, M A > M V 1 st WSR likely valid also in gauge theories with non-trivial UV fixed points 2 nd WSR questionable (not valid) in walking (conformal) TC scenarios Appelquist Sannino, Orgogozo Rychkov EWET A. Pich Schladming 2014 61

Gauge Boson Self-Energies: S, T q 00000 11111 00000 11111 00000 11111 00000 11111 000 111 L = 1 2 W3 µ Πµν 33 (q2 )W 3 ν 1 2 Bµ Πµν 00 (q2 )B ν W 3 µ Πµν 30 (q2 )B ν W + µ Πµν WW (q2 )W ν ) Landau gauge (ξ = 0): Π µν ij (q 2 ) = ( g µν + qµ q ν q 2 Π ij (q 2 ) There is no mixing with the Goldstones T S 16π ( e3 g 2 e3 SM ) = 0.03±0.10 4π ( g 2 sin 2 e1 e SM ) 1 = 0.05±0.12 θ W e 3 = g g Π30(0) e 1 = Π33(0) Π WW(0) M 2 W Π 30(q 2 ) = g2 tanθ W 4 s [Π VV (s) Π AA (s)] = q 2 Π30(q 2 ) + g2 tanθ W 4 v 2 e SM 1,3 defined at M H = 126 GeV EWET A. Pich Schladming 2014 62

Dispersive Representation S = 16 g 2 tanθ W 0 ds s [ Im Π 30 (s) Im Π SM 30 (s) ] (Peskin-Takeuchi) Im Π SM 30 (s) = g2 tanθ W 192π 2 [ θ(s) ( 1 M2 H s ) 3 ( θ s MH) ] 2 (1 loop) EWET A. Pich Schladming 2014 63

Dispersive Representation S = 16 g 2 tanθ W 0 ds s [ Im Π 30 (s) Im Π SM 30 (s) ] (Peskin-Takeuchi) Im Π SM 30 (s) = g2 tanθ W 192π 2 [ θ(s) ( 1 M2 H s ) 3 ( θ s MH) ] 2 (1 loop) T = 4π g 2 cos 2 θ W 0 ds s 2 [ ρt (s) ρ SM T (s)] (Pich Rosell Sanz-Cillero) ρ T (s) = 1 π Im[Σ(0) (s) Σ (+) (s)] (Goldstone self-energies) ρ SM T (s) = 3g 2 s 64π 2 [ θ(s) + ( 1 M4 H s 2 )θ(s M 2H ) ] (1 loop) SM contribution defined at M H = 126 GeV EWET A. Pich Schladming 2014 63

Gauge Boson Self-Energies @ LO V, A S LO = 4π( F 2 V M 2 V ) F2 A MA 2, T LO = 0 Sensitive to vector and axial states M A > M V > 1.5 TeV MA TeV 4 SLO 2.5 3 2.0 1.5 2 1.0 1 0 MV TeV 0 1 2 3 4 0.5 0.0 0.5 MV TeV 0.5 1.0 1.5 2.0 2.5 3.0 3 σ bounds AP Rosell Sanz-Cillero ( ) 1 st +2 nd WSR: S LO = 4πv2 MV 2 1+ M2 V MA 2 1 st { ( WSR (M A > M V ): v 2 S LO = 4π M V 2 + FA 2 1 M V 2 1 )} M A 2 > 4πv2 M V 2 > 4πv2 M A 2 EWET A. Pich Schladming 2014 64

Gauge Boson Self-Energies @ NLO Sensitive to the light scalar S 1 (125) AP, Rosell, Sanz-Cillero V V V V S A A A A S S S 0.4 M V [1.5, 6.0] TeV 0 κ W 1 0.2 V V V V M V T 0.0 A A A A S S S S 0.2 Κ W 0.4 κ W g SWW g SM HWW = M2 V M 2 A [0.94, 1] 0.4 0.2 0.0 0.2 0.4 S M A M V > 4 TeV (95% CL) 1 st +2 nd WSRs EWET A. Pich Schladming 2014 65

Gauge Boson Self-Energies @ NLO Weaker assumptions: 1 st WSR only, M A > M V > 0.4 TeV 1.2 1.0 AP, Rosell, Sanz-Cillero ΚW 0.8 0.6 0.4 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 M V TeV 0.2 < M V M A < 1 0.02 < M V M A < 0.2 κ W g SWW /g SM very different from one HWW requires large (unnatural) mass splittings EWET A. Pich Schladming 2014 66

Linear Realization: SU(2) L U(1) Y Assumes that H(126) and ϕ combine into an SU(2) L doublet: Φ = ( Φ + Φ 0 ) = 1 2 (v +H) U( ϕ) ( 0 1 ) The SM Lagrangian is the low-energy effective theory with D = 4 L eff = L SM + D>4 i c (D) i O(D) D 4 i Λ 1 operator with D = 5: O (5) = L L Φ Φ T L c L 59 independent O (6) i 5 independent O (6) i (violates L by 2 units) preserving B and L (for 1 generation) Weinberg Buchmuller Wyler, Grzadkowski Iskrzynski Misiak Rosiek violating B and L (for 1 generation) Weinberg, Wilczek Zee, Abbott Wise, EWET A. Pich Schladming 2014 67

O G O G O W O W D = 6 Operators (other than 4-fermion ones) Grzadkowski Iskrzynski Misiak Rosiek X 3 Φ 6 and Φ 4 D 2 ψ 2 Φ 3 f ABC Gµ AνGBρ ν Gρ Cµ O Φ (Φ Φ) 3 O eφ (Φ Φ)( l pe rφ) f ABC G Aν µ Gν Bρ Gρ Cµ O Φ (Φ Φ) (Φ Φ) O uφ (Φ Φ)( q pu r Φ) ε IJK Wµ IνWJρ ν Wρ Kµ O ΦD ( Φ D µ Φ ) ( Φ D ) µφ O dφ (Φ Φ)( q pd rφ) εijk W Iν µ Wν Jρ Wρ Kµ X 2 Φ 2 ψ 2 XΦ ψ 2 Φ 2 D O ΦG Φ Φ G A µν GAµν O ew ( l pσ µν e r) τ I ΦW I µν O (1) Φl (Φ i D µφ)( l pγ µ l r) O Φ G Φ Φ G A µνg Aµν O eb ( l pσ µν e r) ΦB µν O (3) Φl (Φ i D I µ Φ)( l pτ I γ µ l r) O ΦW Φ Φ W I µν WIµν O ug ( q pσ µν T A u r) ΦG A µν O Φe (Φ i D µφ)(ē pγ µ e r) O Φ W Φ Φ W µνw I Iµν O uw ( q pσ µν u r) τ I ΦW µν I O (1) Φq (Φ i D µφ)( q pγ µ q r) O ΦB Φ Φ B µνb µν O ub ( q pσ µν u r) ΦB µν O (3) Φq (Φ i Dµ I Φ)( qpτi γ µ q r) O Φ B Φ Φ B µνb µν O dg ( q pσ µν T A d r) ΦG A µν O Φu (Φ i D µφ)(ū pγ µ u r) O ΦWB Φ τ I Φ W I µν Bµν O dw ( q pσ µν d r) τ I ΦW I µν O Φd (Φ i D µφ)( d pγ µ d r) O Φ WB Φ τ I Φ W I µν Bµν O db ( q pσ µν d r) ΦB µν O Φud i( Φ D µφ)(ū pγ µ d r) q = q L, l = l L, u = u R, d = d R, e = e R, p,r = generation indices EWET A. Pich Schladming 2014 68

D = 6 Four-Fermion Operators Grzadkowski Iskrzynski Misiak Rosiek ( LL)( LL) ( RR)( RR) ( LL)( RR) O ll ( l pγ µl r)( l sγ µ l t) O ee (ē pγ µe r)(ē sγ µ e t) O le ( l pγ µl r)(ē sγ µ e t) O (1) qq ( q pγ µq r)( q sγ µ q t) O uu (ū pγ µu r)(ū sγ µ u t) O lu ( l pγ µl r)(ū sγ µ u t) O (3) qq ( q pγ µτ I q r)( q sγ µ τ I q t) O dd ( d pγ µd r)( d sγ µ d t) O ld ( l pγ µl r)( d sγ µ d t) O (1) lq ( l pγ µl r)( q sγ µ q t) O eu (ē pγ µe r)(ū sγ µ u t) O qe ( q pγ µq r)(ē sγ µ e t) O (3) lq ( l pγ µτ I l r)( q sγ µ τ I q t) O ed (ē pγ µe r)( d sγ µ d t) O (1) qu ( q pγ µq r)(ū sγ µ u t) O (1) ud (ū pγ µu r)( d sγ µ d t) O (8) qu ( q pγ µt A q r)(ū sγ µ T A u t) O (8) ud (ū pγ µt A u r)( d sγ µ T A d t) O (1) qd ( q pγ µq r)( d sγ µ d t) O (8) qd ( q pγ µt A q r)( d sγ µ T A d t) ( LR)( RL) and ( LR)( LR) B-violating O ledq ( l p j er)( d sq j t ) O [ duq ε αβγ ε jk (d α p ) T ][ Cur β (q γj s ) T Clt k ] O (1) ( q j quqd p ur)ε jk ( q s k dt) [ Oqqu εαβγ ε jk (q αj p )T Cqr βk ][ (u γ s ) T ] Ce t O (8) quqd ( q p j TA u r)ε jk ( q s k [ TA d t) O qqq (1) ε αβγ ε jk ε mn (q αj p )T Cqr βk ][ (q γm s ) T Clt n ] O (1) lequ ( l p j er)ε jk ( q s k ut) O(3) qqq ε αβγ (τ I ε) jk (τ I [ ε) mn (q αj p )T Cqr βk ][ (q γm s ) T Clt n ] O (3) lequ ( l p j σµνer)ε jk ( q s k σµν u t) O duu ε [ ][ αβγ (dp α )T Cur β (u γ s ) T ] Ce t q = q L, l = l L, u = u R, d = d R, e = e R, p,r,s,t = generation indices EWET A. Pich Schladming 2014 69

Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 EWET A. Pich Schladming 2014 70

Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 ( Canonical Normalization: H ch kin H, ch kin = C Φ 1 ) v 2 4 C ΦD Λ 2 EWET A. Pich Schladming 2014 70

Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 ( Canonical Normalization: H ch kin H, ch kin = C Φ 1 ) v 2 4 C ΦD Λ 2 M 2 H = 2λv 2 T ( 1 3C Φ 2λ ) v 2 Λ 2 +2ckin H EWET A. Pich Schladming 2014 70

Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 ( Canonical Normalization: H ch kin H, ch kin = C Φ 1 ) v 2 4 C ΦD Λ 2 M 2 H = 2λv 2 T ( 1 3C Φ 2λ ) v 2 Λ 2 +2ckin H Flavour: Y f M f L = Q r L[Y d ] rs Φd s R + [M f ] rs = v ( ) T [Y ψ ] rs v2 2 2Λ [C fφ] 2 rs [Y f ] rs = 1 v T [M f ] rs ( 1+cH kin ) v2 Λ 2 [C fφ] rs EWET A. Pich Schladming 2014 70

Shifts of SM parameters: L (D=6) eff = i C i Λ 2 O i V(H) = λ ) 2 (Φ Φ v2 C ( ( 3 Φ Φ Φ) v 2 Λ 2 T = 1+ 3C Φ 8λ ) v 2 v Λ 2 ( Canonical Normalization: H ch kin H, ch kin = C Φ 1 ) v 2 4 C ΦD Λ 2 Flavour: Y f M f L = Q r L[Y d ] rs Φd s R + 4G F 2 = 2 v 2 T M 2 H = 2λv 2 T ( 1 3C Φ 2λ ) v 2 Λ 2 +2ckin H [M f ] rs = v ( ) T [Y ψ ] rs v2 2 2Λ [C fφ] 2 rs [Y f ] rs = 1 v T [M f ] rs ( 1+cH kin + 1 ( 2 [ C (3) Λ ]ee +2[ C (3) ]µµ [ C 2 ll ]µe,eµ [ ] C ll Φl Φl ) v2 Λ 2 [C fφ] rs eµ,µe EWET A. Pich Schladming 2014 70 )

Gauge Fields: L (D=6) eff = i C i Λ 2 O i Alonso et al ḡ = g ( 1+C ΦB v 2 T Λ 2 ), ḡ = g ( 1+C ΦW v 2 T Λ 2 ), ḡ s = g s ( 1+C ΦG v 2 T Λ 2 ) tan θ W = ḡ ḡ + v2 T 2Λ 2 ) (1 ḡ 2 ḡ 2 C ΦWB MW 2 = v2 T 4 ḡ2, MZ 2 = v2 T (ḡ2 +ḡ 2) + v4 T {(ḡ2 4 8Λ 2 +ḡ 2) C ΦD +4ḡ ḡ } C ΦWB ē = ḡ sin θ W { 1 cot θ W v 2 T 2Λ 2 C ΦWB }, ḡ Z = ē sin θ W cos θ W { 1+ ḡ2 +ḡ 2 2ḡḡ v 2 T Λ 2 C ΦWB } ρ ḡ2 M 2 Z ḡ 2 Z M2 W = 1+ v2 T 2Λ 2 C ΦD EWET A. Pich Schladming 2014 71

Equivalent Bases of CP-even Operators (EW bosons only) BW HISZ GGPR Willenbrock Zhang O W = ǫ IJK W Iν µ WJρ ν WKµ ρ O WWW = Tr[ŴµνŴνρ Ŵ µ ρ ] O 3W = 1 3! g ǫ abcw aν µ Wb νρ Wcρµ O ΦW = Φ Φ W I µν WIµν O WW = Φ Ŵ µν Ŵ µν Φ O ΦB = Φ Φ B µνb µν O BB = Φ ˆBµν ˆBµν Φ O BB = g 2 H 2 B µνb µν O ΦWB = Φ σ I Φ W I µν Bµν O BW = Φ ˆBµν Ŵ µν Φ O W = (D µφ) Ŵ µν (D νφ) O HW = ig (D µ H) σ a (D ν H)W a µν O B = (D µφ) ˆBµν (D νφ) ( ) O HB = ig (D µ H) (D ν H)B µν O DW = Tr [D µ,ŵνρ][dµ,ŵνρ ] O 2W = 1 2 (Dµ W a µν )2 O DB = g 2 2 ( µb νρ)( µ B νρ ) O 2B = 1 2 ( µ B µν) 2 O W = ig 2 (H σ a D µ H)D ν W a µν O B = ig 2 (H D µ H) ν B µν O ΦD = (Φ D µ Φ) (Φ D µφ) O Φ,1 = (D µφ) ΦΦ (D µ Φ) O T = 1 2 (H D µ H) 2 O Φ = (Φ Φ) (Φ Φ) O Φ,2 = 1 2 µ(φ Φ) µ (Φ Φ) O H = 1 2 ( µ H 2 ) 2 O Φ = (Φ Φ) 3 O Φ,3 = 1 3 (Φ Φ) 3 O 6 = λ H 6 O Φ,4 = (D µφ) (D µ Φ)(Φ Φ) BW = Buchmuller Wyler, Grzadkowski et al. HISZ = Hagiwara et al. GGPR = Giudice et al. EWET A. Pich Schladming 2014 72

Anomalous Triple Gauge Couplings L WWV = i g WWV {g V 1 ( W + µν W µ V ν W + µ W µν V ν ) +κ V W + µ W ν V µν + λ V M 2 W } W µνw + νρ V ρ µ g WWγ = e = g cosθ W, g WWZ = g cosθ W, κ V = 1+ κ V, g V 1 = 1+ gv 1 Relevant operators: O W, O ΦWB, O (3) φl (BW) O WWW, O W, O B, O BW, O DW O 3W, O HW, O HB, O 2W, O W, O B (HISZ) (GGPR) D = 6 Relations: λ γ = λ Z, g Z 1 = κ Z +tan2 θ W κ γ EWET A. Pich Schladming 2014 73

Anomalous Triple Gauge Couplings HISZ basis: L eff = n f n Λ 2 O n Corbett Eboli González-Fraile González-García λ γ = λ Z = 3g2 M 2 W 2Λ 2 f WWW, κ γ = g2 v 2 8Λ 2 (f W +f B ) κ Z = g2 v 2 8Λ 2 ( f W tan 2 θ W f B ), g Z 1 = g 2 v 2 8cos 2 θ W Λ 2 f W (95% CL) Higgs data: (90% CL) 0.047 g Z 1 0.089, 0.19 κγ 0.099 0.019 κ Z 0.083 Combined: (90% CL) 0.005 g Z 1 0.040, 0.058 κγ 0.047 0.004 κ Z 0.040 LEP, D0, ATLAS assume λγ = λ Z = 0 EWET A. Pich Schladming 2014 74

Global Fit to L (D=6) eff Pomarol Riva GGPR basis: O H = 1 2 ( µ H 2 ) 2 O T = 1 2 (H D µh) 2 O 6 = λ H 6 O W = ig 2 (H σ a D µh)d νw aµν O B = ig 2 (H D µh) νb µν O BB = g 2 H 2 B µνb µν O GG = g 2 s H 2 G A µνg Aµν O HW = ig (D µ H) σ a (D ν H)W a µν O HB = ig (D µ H) (D ν H)B µν O 3W = 1 3! g ǫ abcwµ aνwb νρwc ρµ O yu = y u H 2 Q L HuR + h.c. O yd = y d H 2 Q L Hd R + h.c. O ye = y e H 2 L L He R + h.c. O u R = i (H D µh)(ū R γ µ u R ) O d R = i (H D µh)( d R γ µ d R ) O e R = i (H D µh)(ē R γ µ e R ) O q L = i (H D µh)( Q L γ µ Q L ) O (3)q L = i (H σ a D µh)( Q L σ a γ µ Q L ) O (3)ql LL = ( Q L σ a γ µq L )( L L σ a γ µ L L ) O (3)l LL = ( L L σ a γ µ L L )( L L σ a γ µl L ) EWET A. Pich Schladming 2014 75

LEP-I + SLC + KLOE (CKM univ) + pp l ν (LHC) Pomarol Riva c T (95% CL) c L q c R e c L 3 q c V c R u c LL 3 l c R d c LL 3 ql 0.010 0.005 0.000 0.005 0.05 0.025 0. 0.025 c L q3 c L 3 q3 All ; --- without KLOE ; include O t L + O(3)t L ; All other O i set to zero L = c T v 2 O T + c+ V M 2 W + cq L v 2 Oq L + c (3) q L O (3)q v 2 L (O W + O B ) + c(3)l LL O (3)l v 2 LL + ce R v 2 Oe R + cu R v 2 Ou R + cd R v 2 Od R + c (3) ql LL v 2 O (3)ql LL c ± V = 1 2 (c W ± c B ) EWET A. Pich Schladming 2014 76

Pomarol Riva LEP-II + H Zγ (LHC) H VV,f f (LHC) c V Κ HV (95% CL) Κ GG Κ HV Κ BB 0.10 0.05 0.00 0.05 0.002 0.001 0.000 0.001 0.002 All ; All other O i set to zero ; c H and c yf effects constrained to be below 50% of SM L TGC = κ+ HV m 2 W L Higgs = c H v 2 O H + (O HW + O HB ) + c V + κ HV 2m 2 W f=t,b,τ O + + κ 3W mw 2 O 3W c yf v 2 Oy + c6 f v 2 O6 + κ BB MW 2 O BB + κ GG MW 2 O GG + c V κ HV 2MW 2 O O ± (O W O B ) ± (O HW O HB ), O WW = 4O + O BB, κ ± HV = 1 2 (κ HW ± κ HB ) EWET A. Pich Schladming 2014 77

Renormalization Group Equations L (D=6) eff = i C i (µ) Λ 2 O i (µ) Loop Corrections µ dci dµ = j γ ij 16π 2 Cj Ci(µ) = Ci(Λ) j ( ) γ ij Λ Cj(Λ) log 16π2 µ Anomalous Dimensions: γ ij EWET A. Pich Schladming 2014 78

Anomalous Dimensions γ ij Complete 59 59 matrix computed in the BW basis: Jenkins et al. γ O ( 1,g 2,λ,y 2,g 4,g 2 λ,g 2 y 2,λ 2,λy 2,y 4,g 6,g 4 λ,g 6 λ ) g 3 X 3 H 6 H 4 D 2 g 2 X 2 H 2 yψ 2 H 3 gyψ 2 XH ψ 2 H 2 D ψ 4 g 3 X 3 g 2 0 0 1 0 0 0 0 H 6 g 6 λ λ,g 2,y 2 g 4,g 2 λ,λ 2 g 6,g 4 λ λy 2,y 4 0 λy 2,y 4 0 H 4 D 2 g 6 0 g 2,λ,y 2 g 4 y 2 g 2 y 2 g 2,y 2 0 g 2 X 2 H 2 g 4 0 1 g 2,λ,y 2 0 y 2 1 0 yψ 2 H 3 g 6 0 g 2,λ,y 2 g 4 g 2,λ,y 2 g 2 λ,g 4,g 2 y 2 g 2,λ,y 2 λ,y 2 gyψ 2 XH g 4 0 0 g 2 1 g 2,y 2 1 1 ψ 2 H 2 D g 6 0 g 2,y 2 g 4 y 2 g 2 y 2 g 2,λ,y 2 y 2 ψ 4 g 6 0 0 0 0 g 2 y 2 g 2,y 2 g 2,y 2 (X 2 H 2,X 2 H 2 ) submatrix computed in the HISZ basis Chen Dawson Zhang A submatrix computed in the GGPR basis J. Elias-Miro et al. EWET A. Pich Schladming 2014 79

Oblique Corrections (NLO) g 2 16π S M2 W Λ 2 [ ] {C [ ( )]} BW (µ)+ g2 M C 32π 2 WW +tan 2 2 θ W C BB 1 2 log H µ 2 g 2 sin 2 θ W 4π T v2 2Λ 2 C Φ,1 (HISZ basis) Mebane et al., Chen Dawson Zhang 0.10 0.05 c,1 2 TeV 2 0.00 Tree-level Bounds 0.05 0.10 0.4 0.2 0.0 0.2 0.4 c BW 2 TeV 2 EWET A. Pich Schladming 2014 80

OUTLOOK Effective Field Theory: powerful low-energy tool Mass Gap: E,m light Λ NP Assumption: relevant symmetries (breakings) & light fields Most general L eff (φ light ) allowed by symmetry Short-distance dynamics encoded in LECs LECs constrained phenomenologically Goal: get hints on the underlying fundamental dynamics New Physics EWET A. Pich Schladming 2014 81

Learning from QCD experience. EW problem more difficult Fundamental Underlying Theory unknown QCD? χpt Standard Model Additional dynamical input (fresh ideas!) needed EWET A. Pich Schladming 2014 82

A new boson discovered It behaves as the SM Higgs particle The SM appears to be the right theory at the EW scale New physics needed to explain many pending questions Flavour, CP, baryogenesis, cosmology... How far is the Scale of New-Physics Λ NP? Which symmetry keeps Å À away from Λ NP? Supersymmetry, scale/conformal symmetry... Eagerly awaiting more LHC data... EWET A. Pich Schladming 2014 83