Recent Results from the Sudbury Neutrino Observatory

Similar documents
The Sudbury Neutrino Observatory

Measurement of Day and Night Neutrino Energy Spectra at SNO and Constraints on Neutrino Mixing Parameters

Results from the SNO Salt Phase

Solar Neutrino Results from SNO Salt Phase

What we know from Solar Neutrinos The next steps Low-energy solar neutrinos

SOLAR NEUTRINO OBSERVATIONS AT THE SUDBURY NEUTRINO OBSERVATORY

RESULTS FROM SNO. Art McDonald For the SNO collaboration Nobel Symposium Stockholm, August 18, 2004

Measurement of the Total Active 8 B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity

arxiv:nucl-ex/ v1 7 Oct 2001

30 years, solar neutrino experiments

Measurement of the rate of ν e + d! p + p + e interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory Q.R. Ahmad 15, R.C. All

Measurement of CC interactions produced by 8 Bsolar neutrinos at SNO

THE BEGINNING OF THE END OF AN ERA: Analysis After the Shutdown of the Sudbury Neutrino Observatory

Status of Solar Neutrino Oscillations

Neutrino Oscillations

Solar Neutrino Oscillations

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Solar Neutrino Results from Phase III of the Sudbury Neutrino Observatory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Results from the Sudbury Neutrino Observatory

Search for periodicities in the 8 B solar neutrino flux measured by the Sudbury Neutrino Observatory

arxiv:hep-ex/ v1 15 Jul 2004

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

arxiv: v2 [nucl-ex] 22 Apr 2016

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

4p 4 He + 2e + +2ν e. (1)

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Li in a WbLS Detector

1. Neutrino Oscillations

Low-energy-threshold analysis of the Phase I and Phase II data sets of the Sudbury Neutrino Observatory

Radio-chemical method

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Independent Measurement of the Total Active 8 B Solar Neutrino Flux Using an Array of 3 He Proportional Counters at the Sudbury Neutrino Observatory

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino oscillation experiments: Recent results and implications

arxiv:hep-ex/ v2 31 Aug 2006

arxiv: v3 [nucl-ex] 9 Sep 2008

Solar Neutrinos in Large Liquid Scintillator Detectors

( Some of the ) Lateset results from Super-Kamiokande

A SEARCH FOR NEUTRINOS FROM THE SOLAR hep REACTION AND THE DIFFUSE SUPERNOVA NEUTRINO BACKGROUND WITH THE SUDBURY NEUTRINO OBSERVATORY

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

KamLAND. Introduction Data Analysis First Results Implications Future

SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

ν?? Solar & Atmospheric Oscillation Experiments Greg Sullivan University of Maryland Aspen Winter Conference January 21, 1999 )Past )Present )Future

Dear Radioactive Ladies and Gentlemen,

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Super-Kamiokande (on the activities from 2000 to 2006 and future prospects)

Neutrino Oscillations

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

arxiv:hep-ph/ v1 16 May 1997

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Present and future of SNO: SNO, SNO+ and SNOLAB. Aksel Hallin,Queen s University for the SNO Collaboration NDM, Paris, September 2006

arxiv: v1 [hep-ex] 22 Jan 2009

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

Results from Borexino on solar (and geo-neutrinos) Gemma Testera

Where do we stand with solar neutrino oscillations?

Solar Neutrinos II: New Physics

Neutrino Mass How can something so small be so important? Greg Sullivan University of Maryland April 1999

SNO: Predictions for ten measurable quantities

Status and Perspectives for KM3NeT/ORCA

Recent Discoveries in Neutrino Physics

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

Recent results from Super-Kamiokande

Study of Solar Neutrinos at Super Kamiokande

Neutrino Oscillations

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Neutrino Oscillations and the Matter Effect

The Solar Neutrino Day-Night Effect. Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH

MiniBooNE Progress and Little Muon Counter Overview

arxiv: v1 [nucl-ex] 7 Sep 2009

14-th Lomonosov conference on elementary particle physics Moscow, August 19-25,2009 BNO INR V.N. Gavrin. The Solar Neutrinos

Review of Neutrino Oscillation Experiments

Produc'on and coun'ng of uncontained sources in SNO. Simon JM Peeters

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

Background and sensitivity predictions for XENON1T

Solar neutrinos and the MSW effect

Reactor Neutrino Oscillation Experiments: Status and Prospects

BNL Very Long Baseline Neutrino Oscillation Expt.

arxiv: v1 [hep-ex] 24 Nov 2010

The Daya Bay Reactor Neutrino Experiment

Search for Sterile Neutrinos with the Borexino Detector

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

W, Z and top production measurements at LHCb

Measurement of Фs, ΔΓs and Lifetime in Bs J/ψ Φ at ATLAS and CMS

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

arxiv: v1 [hep-ex] 2 Apr 2019

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Optimization of Neutrino Oscillation Parameters Using Differential Evolution

SOLAR NEUTRINO PROBLEM SOLVED

Solar Neutrino Road Map. Carlos Pena Garay IAS

Neutrino Experiments with Reactors

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

Neutrinoless Double Beta Decay Search with SNO+

Events with High P T Leptons and Missing P T and Anomalous Top at HERA

The SNO+ experiment: status and overview. Simon JM Peeters on behalf of the SNO+ collaboration

Journal of Instrumentation. Related content OPEN ACCESS. To cite this article: M. Dawson et al 2016 JINST 11 P08013

The Sudbury Neutrino Observatory

Interactions/Weak Force/Leptons

Transcription:

Recent Results from the Sudbury Neutrino Observatory Mark Boulay For the SNO Collaboration Los Alamos National Laboratory, Los Alamos NM, 87544, USA Photo courtesy of LBNL

The SNO Collaboration G. Milton, B. Sur Atomic Energy of Canada Ltd., Chalk River Laboratories J.D. Anglin, M. Bercovitch, W.F. Davidson, R.S. Storey * National Research Council of Canada S. Gil, J. Heise, R.J. Komar, T. Kutter, C.W. Nally, H.S. Ng, Y.I. Tserkovnyak, C.E. Waltham University of British Columbia J. Boger, R.L Hahn, J.K. Rowley, M. Yeh Brookhaven National Laboratory R.C. Allen, G. Bühler, H.H. Chen * University of California, Irvine I. Blevis, F. Dalnoki-Veress, D.R. Grant, C.K. Hargrove, I. Levine, K. McFarlane, C. Mifflin, V.M. Novikov, M. O'Neill, M. Shatkay, D. Sinclair, N. Starinsky Carleton University T.C. Andersen, P. Jagam, J. Law, I.T. Lawson, R.W. Ollerhead, J.J. Simpson, N. Tagg, J.-X. Wang University of Guelph J. Bigu, J.H.M. Cowan, J. Farine, E.D. Hallman, R.U. Haq, J. Hewett, J.G. Hykawy, G. Jonkmans, S. Luoma, A. Roberge, E. Saettler, M.H. Schwendener, H. Seifert, R. Tafirout, C.J. Virtue Laurentian University Y.D. Chan, X. Chen, M.C.P. Isaac, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon, S.S.E Rosendahl, A. Schülke, A.R. Smith, R.G. Stokstad Lawrence Berkeley National Laboratory J.C. Barton, S. Biller, R.A. Black, R.J. Boardman, M.G. Bowler, J. Cameron, B.T. Cleveland, X. Dai, G. Doucas, J.A. Dunmore, H. Fergani, A.P. Ferrarris, K. Frame, N. Gagnon, H. Heron, N.A. Jelley, A.B. Knox, M. Lay, W. Locke, J. Lyon, S. Majerus, G. McGregor, M. Moorhead, M. Omori, C.J. Sims, N.W. Tanner, R.K. Taplin, M.Thorman, P.M. Thornewell, P.T. Trent, N. West, J.R. Wilson University of Oxford E.W. Beier, D.F. Cowen, M. Dunford, E.D. Frank, W. Frati, W.J. Heintzelman, P.T. Keener, J.R. Klein, C.C.M. Kyba, N. McCauley, D.S. McDonald, M.S. Neubauer, F.M. Newcomer, S.M. Oser, V.L Rusu, S. Spreitzer, R. Van Berg, P. Wittich University of Pennsylvania R. Kouzes Princeton University E. Bonvin, M. Chen, E.T.H. Clifford, F.A. Duncan, E.D. Earle, H.C. Evans, G.T. Ewan, R.J. Ford, K. Graham, A.L. Hallin, W.B. Handler, P.J. Harvey, J.D. Hepburn, C. Jillings, H.W. Lee, J.R. Leslie, H.B. Mak, J. Maneira, A.B. McDonald, B.A. Moffat, T.J. Radcliffe, B.C. Robertson, P. Skensved Queen s University D.L. Wark Rutherford Appleton Laboratory, University of Sussex R.L. Helmer, A.J. Noble TRIUMF M.G. Boulay, T.J. Bowles, S.J. Brice, M.R. Dragowsky, M.M. Fowler, A.S. Hamer, A. Hime, G.G. Miller, R.G. Van de Water, J.B. Wilhelmy, J.M. Wouters Los Alamos National Laboratory Q.R. Ahmad, M.C. Browne, T.V. Bullard, G.A. Cox, P.J. Doe, C.A. Duba, S.R. Elliott, J.A. Formaggio, J.V. Germani, A.A. Hamian, R. Hazama, K.M. Heeger, K. Kazkaz, J. Manor, R. Meijer Drees, J.L. Orrell, R.G.H. Robertson, K.K. Schaffer, M.W.E. Smith, T.D. Steiger, L.C. Stonehill, J.F. Wilkerson University of Washington

Outline The Solar Neutrino Problem The SNO Detector Calibration and Detector Response Signal Analysis of the SNO Data Physics Implications Conclusion

The Solar Neutrino Problem Experiment Exp/SSM SAGE+GALLEX/GNO 0.58 Homestake 0.33 Kamiokande+SuperK 0.46 Figure by J. Bahcall SNO CC (June 2001) 0.35 SNO NC (April 2002) ~1 SNO CC vs NC implies flavor change, which can then explain other experimental results.

The SNO Detector Nucl. Inst. and Meth. A449, p172 (2000)

ν Reactions in SNO CC ν e + d p + p + - e -Good measurement of ν e energy spectrum -Weak directional sensitivity 1-1/3cos(θ) - ν e only. NC ν + d p + n + x ν x - Equal cross section for all ν types - Measure total 8 B ν flux from the sun. ES + - + - ν x e ν x e -Low Statistics -Mainly sensitive to ν e,, some sensitivity to ν µ and ν τ -Strong directional sensitivity

Beyond the Standard Model: Neutrino Mass and Mixing Neutrino Flavor Transformation through Oscillations If neutrinos have mass leptons can mix: ν e ν µ ν τ = U e1 U e2 U e3 U µ1 U µ2 U µ3 U τ1 U τ 2 U τ3 ν 1 ν 2 ν3 Flavor eigenstates are a mixture of mass eigenstates States evolve with time or distance ν e = U e1 ν 1 + U e 2 ν 2 +U e3 ν 3 ν e = U e1 e E 1 t ν 1 + U e2 e E 2 t ν 2 + U e3 e E 3 t ν 3 Matter Enhanced Oscillations (MSW) Neutrinos in matter can acquire effective mass through forward scattering, ν e can undergo both CC and NC scattering MSW ν oscillations are dependent on ν energy and density of matter

Key signatures for ν oscillations Measure total flux of solar neutrinos vs. the pure ν e flux Evidence for ν flavor change Φ cc = Φ es Φ cc ν e ν e + 0.154(ν µ + ν τ ) ν = e Φ nc ν e + ν µ + ν τ June 2001 April 2002 Potential signal for ν oscillations Φ day vs Φ April 2002 night

Potential Signatures for Neutrino Oscillations Comparing the solar ν flux at Day and Night Certain ν oscillation models predict ν regeneration in Earth [CC] DAY = [ν ] e DAY 1 [CC] NIGHT [ν e ] NIGHT [NC] DAY = [ν e +ν µ +ν τ ] DAY 1 [NC] NIGHT [ν e +ν µ + ν τ ] NIGHT Tests for Neutrino Oscillations

Solar Neutrino Physics with SNO What can we learn from measuring the NC interaction rate and the Day/Night variations of the 8 B Flux? Total 8 B ν flux (NC) ν e flux (CC) CC SNO /NC SNO Test of neutrino flavor change Total flux of solar 8 B neutrinos Test of solar models Diurnal time dependence Test of neutrino oscillations Electron neutrino energy spectrum Distortions in 8 B spectrum?

SNO Detector Calibration Monte Carlo Cherenkov production (e -, γ, β γ) Photon propagation and detection Neutron transport and capture Reconstruction (position, direction, energy) Pulsers Pulsed Laser 16 N 3 H(p,γ) 4 He 8 Li 252 Cf U/Th Calibration 337nm to 620 nm 6.13 MeV γ s 19.8 MeV γ s <13.0 MeV β s neutrons 214 Bi & 208 Tl β γ s

Cherenkov Event Information PMT Information Positions, Charges, Times Event Reconstruction Vertex, Direction Energy, Isotropy 8 Li Electron

Candidate Neutrino Event

16 N Events Resolution ~15 cm PMT times used to reconstruct event position Vertex Reconstruction of June 4, 2002 TAGGED UNTAGGED DESY

Position and Direction Reconstruction 8 Li at different positions 16 N events far from source Flux Uncertainties Vertex Accuracy Vertex Resolution Angular Resolution CC/CC NC/NC 2.8,+2.9 1.8,+1.8 0.0,+0.0 0.1,+0.1 0.2,+0.2 0.3,+0.3

Energy Calibration Prompt time cut applied to accept only direct photons Reduces uncertainty due to scattering Corrections for detector optics, dead PMTs, and gain applied No. prompt hits vs. electron energy determined from MC calculations (SNOMAN EGS)

Energy Calibration Calibration PMT response, optical properties 16 N Normalization Response Uncertainties Scale, Resolution, Linearity E = 1.21 % σ = 4.5 % Flux Uncertainties (%) CC/CC NC/NC E 4.2,+4.3 σ 0.9,+0.0 6.2,+6.1 0.0,+4.4 Stability over time Energy for various sources

Neutron Capture Efficiency in D 2 O Determination of Capture Efficiency Efficiency (%) Critical for understanding NC detection efficiency calibration source Calibration with neutron source Diffusion model calculation diffusion model Residual Efficiency (%) Neutron Capture Efficiency Total 29.90 ± 1.10 % With threshold and fiducial cut 14.38 ± 0.53 % Source Radius (cm) Source Radius (cm)

Signal Information Hits and Energy Direction from Sun Radial Response n + d t + γ e (E γ = 6.25 MeV)

Components in the SNO Dataset Neutrino Events Charged-current (CC) Neutral-current (NC) Elastic scattering (ES) Low-Energy Backgrounds Internal photodisintegration from U, Th in D 2 O PMT β-γ Backgrounds from PMT support structure and cavity High Energy Backgrounds Backgrounds from PSUP and cavity Muon-induced spallation Instrumental Backgrounds PMT flashers High voltage breakdown Hot cards, etc. Energy, fiducial volume, and other cuts applied

High Level Data Cuts I. Reconstruction Figures of Merit II. In-Time Light Fraction uses detailed PMT time distributions III. Event Isotropy Average angle between hit PMTs Event Isotropy Discriminates between Cerenkov electron and multiple vertices Tests hypothesis of single-particle events 1.8 High level parameters performance 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 Instrumental background Candidate neutrino events 16 N calibration source 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Fraction of hits in prompt time window In-Time Light Fraction Event Isotropy Signal loss from triggered 16 N, 8 Li, and neutron sources: CC, ES 1.4 +0.4/-0.2 % Neutrons 2.3 +0.4/-0.2 % Residual instrumental contamination from bifurcated analysis: < 0.2%

Measuring U/Th Content Ex-situ Ion exchange ( 224 Ra, 226 Ra) Membrane Degassing ( 222 Rn) count daughter product decays In-situ Low energy data analysis Separate 208 Tl & 214 Bi 1 0.8 0.6 0.4 0.2 Using Event isotropy (c) Bi decays Tl decays Mean angle between PMT hits - θ ij 0.6 0.8 1 1.2 1.4 1.6 1.8 Events per bin (arbitrary units) 0 Neutron Events D 2 O H 2 O/AV +8 44-9 +8 27-8

Cherenkov Tails (From Energy Resolution and Event Mislocation) Cherenkov Events D 2 O H 2 O Acrylic PMTs +13 20-6 +4 3-3 +3 6-6 +11 16-8

Detector Conditions in the Pure D 2 O phase Data Set: Nov 2, 1999 - May 27, 2001 Neutrino Livetime: 306.4 live days Channel threshold: ~ 0.25 photo-electrons Multiplicity trigger: 18 PMT hits within 93 ns Trigger efficiency: 100% efficiency at ~ 3 MeV Instantaneous Trigger Rate ~ 15-18 Hz Hardware Threshold ~ 2 MeV Analysis Threshold 5 MeV kinetic Fiducial Volume Cut 550 cm Total Number of Events after cuts 2928 Neutron Background Events 78 +- 12 Cherenkov Background Events: 45 +18,-12

Data Flow & Instrumental Background Cuts Data Flow Analysis Step Events Total Event Triggers 450,188,649 Neutrino Data Triggers 191,312,560 NHIT 30 (Analysis Threshold) 10,088,842 Instrumental Background 7,805,238 Instrumental Background Removal Charge Timing PMT hit Geometry Event Rate PMT Veto Tubes High Level Cuts 3,418,439 Fiducial Volume Cut 67,343 Energy Threshold 3440 Muon Followers 2928 Cerenkov Nature of Events prompt light single particle event Candidate Event Set 2928 Instrumental removal: Two independent methods Signal loss: 0.4±0.3%within R fit 550 cm from 16 N, 8 Li, and the laser ball

Signal Analysis Once response functions and uncertainties are determined, we can generate neutrino signal PDFs (both through Monte-Carlo calculations and analytically) F ( r, E,cos θ CC sun F ( r, E,cos θ ES sun F ( r, E,cos θ NC sun ) ) ) SNO response in event radius, energy and direction to solar neutrinos through CC, ES, and NC reactions

Signal Analysis To extract the CC, ES, NC signal SNO performs a Maximum likelihood statistical separation of these signals based on distributions of the SNO observables.

Signal Analysis Use Signal PDFs: R 3,cosθ Sun, Energy Monte Carlo Analytic Functions CC NC ES or Φ e Φ µτ Amplitudes Free Perturb Observables x, u, E Photodisintegration Cherenkov Amplitudes Fixed Shift Amplitudes σ bkg Backgrounds Signals 8 B CC Shape Constraint No CC Shape Constraint A tot = 0 Day = Night Maximum Likelihood Fit # Signal Events Systematic Error

Results of Statistical Signal Separation

Shape Constrained Signal Extraction Results Events per 500 kev CC 1967.7 +61.9 +60.9 +26.4 ES 263.6 +25.6 +49.5 NC 576.5 +48.9 600 500 400 300 200 100 0 (c) Bkgd CC NC + bkgd neutrons ES #EVENTS 500 400 300 200 0 0.2 0.4 0.6 0.8 1 1.2 (R/R AV) 5 6 7 8 9 10 11 12 13 (MeV) T eff 20 Events per 0.1 wide bin Fiducial Volume 100 0 (b) Events per 0.05 wide bin CC NC + bkgd neutrons ES Bkgd 3 160 140 120 100 80 (a) 60 CC ES 40 20 NC + bkgd neutrons 0 Bkgd -1-0.8-0.6-0.4-0.2-0 0.2 0.4 0.6 0.8 1 June 4, 2002 cos θ sun DESY

Uncertainties on ν fluxes 0 5 10 15 20 25 Energy Scale Energy Resolution Vertex Accuracy Vertex Resolution Angular Resolution Neutron backgrounds Cer. Backgrounds CC uncert. NC uncert. PNT Φ ντ uncert. Neutron Capture Statistics Total

Shape Constrained Analysis Signal Extraction in Φ CC, Φ NC, Φ ES. +0.06-0.05 +0.09-0.09 Φ cc (ν e ) = 1.76 (stat.) (syst.) x10 6 cm -2 s -1 +0.24-0.23 +0.12-0.12 Φ es (ν x ) = 2.39 (stat.) (syst.) x10 6 cm -2 s -1 +0.44-0.43 +0.46-0.43 Φ nc (ν x ) = 5.09 (stat.) (syst.) x10 6 cm -2 s -1 E Theshold > 5 MeV Low threshold results agrees with first publication (6.75 MeV threshold).

Shape Constrained Analysis Signal Extraction in Φ e, Φ µτ. +0.05-0.05 +0.09-0.09 Φ e = 1.76 (stat.) (syst.) x10 6 cm -2 s -1 +0.45-0.45 +0.48-0.45 Φ µτ = 3.41 (stat.) (syst.) x10 6 cm -2 s -1 Φµτ > 0! But only ν e s from the sun, ν flavor has changed. 5.3 σ effect

Flavor Content of the Solar 8 B Neutrino Flux ~ 2/3 of initial solar ν e are observed at SNO to be ν µ,τ Standard Solar Model predictions for total 8 B flux in excellent agreement! 8 7 6 5 φµτ (10 6 cm -2 s -1 ) Φ 8B SSM= 5.05 +1.01-0.81 Φ NC SNO= 5.09 +0.44 +0.46-0.43-0.43 4 3 2 SNO φ ES SNO φ CC SNO φ NC SSM φ NC 1 0 0 1 2 3 4 5 6 ) φ e (10 6 cm -2 s -1

Solar Neutrino Flux 8 B SSM Flux BP01 +1.01 Φ(ν x ) = 5.05-0.81 x10 6 cm -2 s -1 8 B SSM Flux: First SNO Result SNO + SK +0.99 Φ(ν x ) = 5.44-0.99 x10 6 cm -2 s -1 Energy Constraint in 8 B Energy shape Signal extraction in R 3,cosθ Sun, Energy +0.44 +0.46 Φ(ν x ) = 5.09-0.43 (stat.) -0.43 (syst.) x10 6 cm -2 s -1 No Energy Constraint Signal extraction in R 3,cosθ Sun +1.57 +0.55 Φ(ν x ) = 6.42-1.57 (stat.) -0.58 (syst.) x10 6 cm -2 s -1

8 B Solar Neutrino Flux Measurements at SNO Summary of Results 2.0 1.5 1.0 0.5 Neutrino Signal (SSM BP00) ES SNO (2001) CC SNO (2001) NC SNO (2002) ES SNO (2002) CC SNO (2002) 0.0 CC Neutral-Current shape Elastic Scattering Charged-Current constrained CC shape unconstrained ν e + ν µ +ν τ SSM Neutrino Signal(SSM BP00) 8 B from CCSNO +ES SK (2001) Neutral Current (NC) Elastic Scattering (ES) Charged Current (CC) ν e + 0.15 (ν µ +ν τ ) ν e 5.3 σ Null hypothesis (no flavor change) ruled out at 5.3 σ level

MSW and Day-Night Fluxes Certain MSW oscillation solutions predict ν s can change flavor while passing through the earth Define Asymmetry A x = 2*(Φ N,X Φ D,X ) (Φ N,X + Φ D,X )

Inputs to Global Solar ν Analysis Cl, latest Gallex/GNO, new SAGE, SK 1258-day dataset day spectrum and night spectrum SNO day spectrum (total: CC+NC+ES+bkgnd) SNO night spectrum (total: CC+NC+ES+bkgnd) 8 B floats free in fit, hep 1 SSM pp, pep, 7 Be, CNO SSM; solar model correlated uncertainties based upon Fogli, Lisi prescription MSW (Petcov) and QVO analytic approximation (Lisi et al.) numerical Earth MSW calculation

-3-4 -5-6 -7-8 -9-10 -11-12 Physics Interpretation Neutrino Oscillations SNO Day and Night Energy Spectra Alone Combining All Experimental and Solar Model information (a) LMA SMA (b) -4 LMA -5-6 LOW -7 LOW 90% CL 95% CL 99% CL 99.73% CL VAC -12-4 -3-2 -1 0 1 2 log(tan θ) -4-3 -2-1 0 1 2 log(tan θ) 2 2 log( m /ev ) 2 2 log( m /ev ) -8-9 -10 90% CL 95% CL 99% CL 99.73% CL -11

Global Fit with total SNO spectrum without separate day and night spectra most of the MSW model constraints comes from SNO CC/NC!

Global Analysis Fit Results region χ 2 /dof φ B /SSM A e m 2 (ev 2 ) tan 2 θ CL LMA 57.0/72 1.16 6.4% 5.0 10 5 0.34 --- LOW 67.7/72 0.98 5.9% 1.3 10 7 0.55 99.5% SNO CC/NC measurement directly constrains the survival probability at high energy Forces LOW solution to confront the Ga experimental results

LMA versus LOW LMA SNO NC: 5.86 10 6 cm 2 s 1 SNO CC day: 1.66 10 6 cm 2 s 1 SNO A e : 6.4% SK ES: 2.30 10 6 cm 2 s 1 SK A ES : 3.5% Ga rate: 72.8 SNU Cl rate: 3.0 SNU LOW SNO NC: 4.95 10 6 cm 2 s 1 SNO CC day: 1.83 10 6 cm 2 s 1 SNO A e : 5.9% SK ES: 2.30 10 6 cm 2 s 1 SK A ES : 4.4% Ga rate: 61.2 SNU Cl rate: 3.0 SNU experimental: SK ES 2.32 10 6 cm 2 s 1 ; Ga 72.0 ± 4.5 SNU; Cl 2.56 ± 0.23 SNU

Present and Future of SNO The Salt Phase Neutral Current Detectors n + 35 Cl 36 Cl + Σγ e (E Σγ = 8.6 MeV) n + 3 He p + t Higher n-capture efficiency Event by event separation Higher event light output Event isotropy differs from e - Running since June 2001

Conclusions Nucl-ex/0204008, Nucl-ex/0204009 First NC Flux measurements yield clear evidence that the majority of ν e produced in the Sun are transformed to ν µ and/or ν τ Null hypothesis - No Weak Flavor Mixing ruled out at 5.3 σ Lowest Detection threshold yet for a real-time solar ν detector Total 8 B flux measurement agrees well with Solar Models Data in good agreement with previous SNO - SK CC/ES result Interpretation SNO Data is consistent with MSW oscillation interpretation combined with global solar neutrino data favors LMA solution Measurement, with NaCl underway since June 2001