The Neutrino Physics at Accelerators: the High Intensity Frontier

Similar documents
Current status of T2K experiment

T2K neutrino oscillation results

T2K and the MAINZ Photon Beam

Neutrino Oscillation and CP violation

F. Retière (TRIUMF) For the T2K collaboration

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Recent T2K results on CP violation in the lepton sector

K2K and T2K experiments

JHFnu at J-PARC neutrino oscillation experiment

Future Experiments with Super Neutrino Beams

K2K and T2K. 2006/10/19 For the 2006 External Review Panel. Masato Shiozawa Kamioka Observatory

E362 (K2K) 12 GeV PS review June

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

Tsuyoshi Nakaya (Kyoto Univ.)

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Recent Results from T2K and Future Prospects

T2K: A long-baseline neutrino oscillation experiment

What should be considered and improved for CP study.

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

( Some of the ) Lateset results from Super-Kamiokande

Neutrino oscillation physics potential of Hyper-Kamiokande

The T2K experiment Results and Perspectives. PPC2017 Corpus Christi Mai 2017 Michel Gonin On behalf of the T2K collaboration

BNL Very Long Baseline Neutrino Oscillation Expt.

BNL Very Long Baseline Neutrino Oscillation Expt.

First neutrino beam and cosmic tracks. GDR neutrino

Long & Very Long Baseline Neutrino Oscillation Studies at Intense Proton Sources. Jeff Nelson College of William & Mary

Results from T2K. Alex Finch Lancaster University ND280 T2K

arxiv: v1 [hep-ex] 11 May 2017

N u P J-PARC Seminar August 20, 2015

Physics Potential of existing and future LBL ν beams

The T2K Neutrino Experiment

Indication of ν µ ν e appearance in the T2K EXPERIMENT

New Results for ν µ ν e oscillations in MINOS

Next-Generation Water Cherenkov Detectors (1) Hyper-Kamiokande

PoS(NEUTEL2015)037. The NOvA Experiment. G. Pawloski University of Minnesota Minneapolis, Minnesota 55455, USA

MINOS Oscillation Results from The First Year of NuMI Beam Operation

New Results from the MINOS Experiment

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Experimental Aspect of Neutrino Physics

Resolving Neutrino Mass Hierarchy and CP Degeneracy Using Two Identical Detectors with Different Baselines

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Accelerator Neutrino Experiments News from Neutrino 2010 Athens

Long Baseline Neutrinos: As Far From A Tabletop Experiment As You Can Get. Scott Oser UBC. Colloquium at Toronto. October 20, 2011

Marcos Dracos IPHC-IN2P3/CNRS Strasbourg. 2 December 2008 M. Dracos, BENE 1

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Neutrino Experiments with Reactors

Technological challenges of future Super Beam projects

Today: Part I: Neutrino oscillations: beam experiments. Part II: Next tutorials: making distributions with histograms and ntuples

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Recent results on neutrino oscillations and CP violation measurement in Neutrinos

Neutrino Oscillations and the Matter Effect

The future of neutrino physics (at accelerators)

Long Baseline Neutrino Experiments

Oscillating Neutrinos and T2K

Figure 1 Overview of the T2K experiment

Application of GLoBES: GLACIER on conventional neutrino beams

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

Neutrino interaction at K2K

The Hyper-Kamiokande project

Very Long Baseline Oscillations

Existing and future long-baseline neutrino oscillation experiments

Single π production in MiniBooNE and K2K

Review of νe Appearance Oscillation Experiments

Final results from K2K and status of T2K

The First Results of K2K long-baseline Neutrino Oscillation Experiment

Study of possible opportunities for leptonic CP violation and mass hierarchy at LNGS

Neutrino Cross Section Measurements for Long-Baseline Acceleratorbased Neutrino Oscillation Experiments

NEUTRINOS II The Sequel

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande

Current Results from Reactor Neutrino Experiments

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

PoS(FPCP2017)023. Latest results from T2K. Jennifer Teresa Haigh, for the T2K Collaboration

PoS(Nufact08)003. Status and Prospects of Long Baseline ν Oscillation Experiments

Neutrino and Other Beam-lines at

Analysis of muon and electron neutrino charged current interactions in the T2K near detectors

ν?? Solar & Atmospheric Oscillation Experiments Greg Sullivan University of Maryland Aspen Winter Conference January 21, 1999 )Past )Present )Future

The Hyper-Kamiodande Project A New Adventure in n Physics

Review of Neutrino Oscillation Experiments

- Future Prospects in Oscillation Physics -

Hadron Production Experiments and Neutrino Beams

Introduction to the Neutrino Factory

T2K presents hint of CP violation by neutrinos August 4, 2017 (strict press embargo until Aug 4, :00 JST) last updated 02/08/ :33 BST

What If U e3 2 < 10 4? Neutrino Factories and Other Matters

Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

The NOνA Neutrino Experiment

Long Baseline Neutrino Oscillation Experiments

Sinergie fra ricerche con neutrini da acceleratore e atmosferici

Longbase Neutrino Physics. Neil McCauley University of Liverpool Birmingham February 2013

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

The NOνA Experiment and the Future of Neutrino Oscillations

Neutrino Cross Sections and Scattering Physics

First MINOS Results from the NuMI Beam

Neutrino oscillation experiments: Recent results and implications

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

The Hyper-Kamiokande Experiment

The NuMI Off-axis ν e Appearance Experiment (NOνA)

arxiv: v1 [hep-ex] 25 Aug 2015

Results from the OPERA experiment in the CNGS beam

Transcription:

Feb. 23, 2005 Neutrino Telescopes 2005 at Venice The Neutrino Physics at Accelerators: the High Intensity Frontier T. Nakaya (Kyoto Univ.) 1

1. Introduction ±Δm 23(13) 2 θ 13 Proton Decay CP 2

High Intensity Proton Accelerators Power (MW) Energy (GeV) Intensity (10 12 ppp) Rep. rate (Hz) KEK-PS 0.005 12 6 0.45 AGS 0.14 24 60 0.6 FNAL-MI 0.25-0.4 120 25-40 0.53 SPS 0.3 400 35 0.16 J-PARC 0.6-0.75 40-50 330 0.29 Super-AGS 1 28 96 2.5 FNAL-PD SCRF linac 2 8 150 10 SPL 4 2.2 230 50 J-PARC Upgrade 4 50 Not the construction stage yet, but R&D stage. 3

High Intensity Neutrino Beams <Eν> (GeV) L (km) #CC ν/kt/yr L/L osci.* f(ν e ) @peak K2K 1.3 250 2 0.47 ~1% NuMi-MINOS 3.5 735 469 0.51 1.2% CNGS 17.7 732 2448 0.10 0.8% T2K-I 0.7 295 ~100 1.02 0.4% NuMi-NOνA 2.0 810 ~80 0.89 0.5% Super AGS-VLBL 1.5 2540 11 4.1 0.5% T2K-II 0.7 295 ~500 1.02 0.4% SPL 0.26 130 16 1.21 0.4% β beam** 0.58 130 84 0.54 ------- π 2 E υ (*) L osci. 2 = w/ Δm 232 =3 10-3 ev 2 1.27Δm 23 (**) γ=150, 6 He ( ν e ) Higher γ option is under consideration. 4

Detectors for neutrino experiments Water Cherenkov Detector T2K Super-K( Hyper-K ) BNL-VLBL (Very Long BaseLine) UNO SPL-Frejus UNO β-beam (low γ option) Lq. Ar TPC or other magnetized detector ν-factory β-beam (high γ option) Full Active Scintillator Detector NOνA 5

2. T2K Experiment -II Kamioka Construction started in 2004 The experiment will start in 2009 295km <Eν>~0.7GeV Tokai Super-Kamiokande ~1Mton Hyper-Kamiokande (201x?) J-PARC Upgrade to 4MW 6

T2K Measurements ν μ ν e ν τ ν 3 Oscillation Probabilities when θ 23 : ν μ disappearance P νμ ν x θ 13 : ν e appearance 2 P sin θ sin νμ ν e 1 cos 4 ~1 ~0.5 θ 23 13 sin 2 2 2θ 2θ 13 23 Δm sin sin 2 2 2 12 << Δm23 Δm13 2 2 ( 2 1.27 Δ m L / E ) 23 ( 2 1.27 Δ m L / E ) 23 ν 2 ν 1 ν common ν Δm 2 atm Δm 2 sun δ : CP violation (T2K-II) A CP = P( ν P( ν μ μ ν ) e ν ) + e P( ν P( ν μ μ ν e) ν e) 2 2 1.27 ~0.18 Δm [ ev (sin] L 2 [ 2θ km 13 ] =0.1) sin 2θ ~0.58 E[ GeV (sin ] 2 2θ 13 =0.01) sinθ13 12 12 sinδ 7

T2K Strategy Intense ν beam J-PARC High Quality ν beam T2K Off-axis ν beam Gigantic ν detector Super-K (Hyper-K) 8

J-PARC Neutrino Facility J-PARC Construction 2001 ~ 2007 ν beam construction 2004 ~ 2008 40 GeV Transport line (Super-cond. Mag.) Target station 8 bunches/~5μs 3.3x10 14 proton/pulse 3.64 sec cycle 1yr 10 21 POT (130 days) Decay volume Near detectors (280m) 9

J-PARC Construction Under Construction ν beam-line decay volume 10

Off-axis ν beam Super-K. Tuned at oscillation maximum TargetHorns Decay Pipe θ OA2 OA0 Decay Kinematics OA2.5 OA3 Quasi Monochromatic Beam Statistics at SK (OAB 2.5 deg, 1 yr, 22.5 kt, 40 GeV protons) ~ 2200 ν μ tot ~ 1600 ν μ CC ν e ~0.4% at ν μ peak 11

Measurement of θ 23, Δm 23 2 Use 1 ring μ-like events (= Quasi-Elastic enhanced sample) to reconstruct neutrino energy. ν ν μ +n μ + p θ μ p μ - (E μ, p μ ) 5 years No oscillation ~ OA 2.5 deg. ~ Δm 2 = 2.5 x10-3 ev 2 Δm 2 = 2.0 x10-3 ev 2 non-qe rec. Eν (GeV) rec. Eν (GeV) rec. Eν (GeV) (assuming sin 2 2θ 23 =1.0) 12

(/50MeV/22.5kt/5yr) Oscillation parameter fit 100 75 50 25 0 Input: sin 2 2θ 23 =1.00 Δm 2 = 2.7 x10-3 ev 2 ALLCHAN 1223. Non-QE 0 0.5 1 1.5 2 Eν rec (GeV) ratio Δm 2 (x10-3 ev 2 ) 1 10-1 3 2.9 2.8 2.7 2.6 2.5 Ratio of E ν to non-oscillation 0 0.5 1 1.5 2 Eν rec (GeV) sensitivity 0.98 0.99 1 1.01 1.02 (1.0, 0.0027) sin2 2θ 1σ 90% CL 99% CL 13

T2K-I sensitivity with systematic errors normalization non-qe/qe ratio E scale Spectrum shape Spectrum width ( 5%) ( 5%) ( 2%) (20%) ( 5%) δ(δm 2 23 ) <1 10-4 ev 2 δ(sin 2 2θ 23 )~0.01 Current knowledge: δ(δm 2 23)~1x10-3 ev 2 Current knowledge: δ(sin 2 2θ 23 )~0.1 True Δm 232 (10-3 ev 2 ) True Δm 232 (10-3 ev 2 ) 14

θ 13 measurement (ν e appearance search) sin 2 2θ 23 =1and δ=0 are assumed. Signal: 1ring e-like event (CC QE sample) Background: beam ν e contamination (0.4% of ν μ ) mis-reconstructed π 0 event e x0.4% ν μ ν e π 0 15

#events (/22.5kt/5year) 10 4 10 3 10 2 10 1 Background Suppression (Δm 2 =2.5x10-3 ev 2,sin 2 2θ 13 =0.1) ν μ BG ν e BG ν e signal 1. FCFV, E vis. >100MeV 2. single ring 3. e-like PID 4. no decay-electron 5. 0.35<E ν rec <0.85GeV 6. cosθ νe <0.90 7. M π0 <100MeV/c 2 (π 0 fitter) 8. ΔL<80(π 0 fitter) ν e signal ν e +ν μ backgrond (ν μ backgrond) 1 2 3 4 5 6 7 8 Event Selection E ν rec (GeV) 16

θ 13 Sensitivity (w/ δbg sys =10%) Δm 2 (ev 2 ) 10-2 90%C.L. sensitivity 0.008 x20 CHOOZ excluded sin 2 2θ 13 10-1 10-2 Sensitivity versus time δbg=20% δbg=10% δbg= 5% 10-3 10-3 T2K-I T2K-II 10-3 10-2 10-1 sin 2 2θ 13 1 10 100 Year 17

CP violation search (T2K-II) (Note: Old study with 2 off-axis) Flux ν μ -15%@peak CC interaction cross section difference ν μ ν μ Sign flip by change of horn polarity 10 21 POT/yr (1st phase) Wrong sign BG ν μ 18

Expected signal and Background ν μ :2yr, ν μ :6.8yr 4MW (J-PARC upgrade) 0.54Mt (Hyper-K) signal Δm 212 =6.9x10-5 ev 2 Δm 322 =2.8x10-3 ev 2 θ 12 =0.594 θ 23 =π/4 θ 13 =0.05 (sin 2 2θ 13 =0.01) background δ=0 δ=π/2 total ν μ ν μ ν e ν e ν μ ν e 536 229 913 370 66 450 26 ν μ ν e 536 790 1782 399 657 297 430 19

CP sensitivity (3σ) JHF-HK CPV Sensitivity sin 2 2θ 13 0.14 0.12 CHOOZ excluded sin 2 2θ 13 <0.12@Δm 312 ~3x10-3 ev 2 0.1 0.08 0.06 no BG 0.04 signal stat only 0.02 stat+2%syst. stat+5%syst. (signal+bg) stat only JHF 3σ discovery stat+10%syst. 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 sinδ 3σ CP sensitivity : δ >20 o for sin 2 2θ 13 >0.01 with 2% syst. 20

T2K Strategy Update Study ν beam property Study ν interactions Intense ν beam J-PARC High Quality ν beam T2K Off-axis ν beam Gigantic ν detector Super-K (Hyper-K) 21

New near neutrino detector for T2K UA1 Magnet is proposed by Euopean collaborators. (Italian group takes a responsibility.) Muon range detector EM calorimeter π0 detector FGD FGD TPC The detector is under DESIGN. FGD: Fine-Grained Detector 22

T2K collaboration Canada: TRIUMF, U. Alberta, York U., U. Toronto,U. Victoria, U. Regina China: IHEP(Inst. Of High Energy Phys.) France: CEA Saclay Italy: U. Roma, U. Bari, U. Napoli, U. Padova Japan: ICRR, U. Tokyo, KEK, Tohoku U., Hiroshima U., Kyoto U., Kobe U., Osaka City U., U. Tokyo, Miyagi U. of Education Korea: Seoul National U., Chonnam National U., Dongshin U., Kangwon U., Kyungpook National U., KyungSang National U., SungKyunKwan U., Yonsei U. Poland: Warsaw U. Russia: INR Spain: U. Barcelona, U. Valencia Switzerland: U. Geneva UK: RAL, Imperial College London, Queen Mary Westfield College London, U. Liverpool USA: UCI, SUNY-SB, U. Rochester, U. Pennsylvania, Boston U., CSU, Duke, Dominguez Hills, BNL, UCB/LBL, U. Hawaii, ANL, MIT, LSU, LANL, U. Washington 12 countries, 53 institutions ~150 collaborators (not incl. students) 23

Flux (a.u.) 0.1 Near Detector measurements SK ND280m Flux (a.u.) 0.1 SK ND280m Flux (a.u.) 0.1 SK ND280m 0.05 center-50cm 0.05 center 0.05 center+50cm 0 0 0.5 1 1.5 2 Eν (GeV) OA ND =1.9 CC-QE: ν + n μ+ p CC-1π: ν + n(p) μ+ n(p) + π + NC-1π 0 : ν + n(p) ν+ n(p) + π 0 0 0 0.5 1 1.5 2 Eν (GeV) OA ND =2 0 0 0.5 1 1.5 2 Eν (GeV) OA ND =2.1 ν e + many other channels. With ~5% precision 24

Far/Near ratio uncertainty is not large! p π ν OA 2 deg. ND SK 280m 295km 2.5 MARS FLUKA Flux @SK = Flux @ND [Far/near ratio] From MC simulation The Difference of Far/near ratio is ~1.9±0.4% (Energy range:0.4~1.2[gev]) 0 0 1 2 E ν [GeV] Double ratio (FLUKA/MARS) 1.2 1.0 Thanks to off-axis Narrow Band axis Narrow Band ν Beam. 0.8 0 1 2 Eν[GeV] 25

Improve our knowledge of ν interaction. A Near Neutrino detector provides essential information for long-baseline experiments. K2K-SciBar Extruded scintillator Some results are expected from K2K before T2K. ν 3m 3m CHORUS EM calorimeter provided by Italy/Rome group ν γ γ π 0 p NCπ 0 e CCQE nonqe 1.7m e e ν e 26

2km Intermediate Detector p π ν off-axis on-axis 0m 140m 280m 2 km 295 km Though it is not approved yet, it will be essential to search for CP violation with the systematic precision of 2%. 27

The experiments sensitive to the sign of Δm 2. Largest asymmetry for normal vs inverted Mass hierarchy at larger angles NOνA Duty cycle is tiny (10μsec/1.8sec) So detector can be at surface of Earth Site that maximizes matter effects is Not optimal for θ 13 but Mass Hierarchy Determination is unique to NOνA D. Harris (FNAL) at NuFact04 28

BNL very long baseline Homestake 2767 km Henderson Soudan 2540 km 1712 km BNL S. Kahn (BNL) at NuFact04 29

5. Summary Accelerator neutrino experiments including K2K and MINOS provide essential information for neutrino mixing and mass. The next generation experiments with a high intensity accelerator are sensitive to δsin 2 2θ 23 ~1%; δδm 2 <1 10-4 ev 2 sin 2 2θ 13 < 0.01 With a gigantic (100k~1Mtons) detector, the experiment has the sensitivity to the CP violation. δ<20 for sin 2 2θ 13 >0.01 The experiments sensitive to the sign of Δm 2 is also studied (not T2K). We are also looking forward an expected phenomena in the experiments. 30