INTRODUCTION TO NMR and NMR QIP

Similar documents
INTRODUCTION TO NMR and NMR QIP

The Deutsch-Josza Algorithm in NMR

Measuring Spin-Lattice Relaxation Time

NMR, the vector model and the relaxation

Introduction to NMR Quantum Information Processing

The NMR Inverse Imaging Problem

Spectral Broadening Mechanisms

Chemistry 431. Lecture 23

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich

Biochemistry 530 NMR Theory and Practice

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

Magnetic Resonance in Quantum Information

Experimental Realization of Shor s Quantum Factoring Algorithm

Spin Relaxation and NOEs BCMB/CHEM 8190

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Quantum Information Processing with Liquid-State NMR

Classical Description of NMR Parameters: The Bloch Equations

PHYSICAL REVIEW A, 66,

Quantum Computing with NMR: Deutsch-Josza and Grover Algorithms

Lecture #6 NMR in Hilbert Space

Nuclear Magnetic Resonance Spectroscopy

Classical Description of NMR Parameters: The Bloch Equations

Nuclear Magnetic Resonance Imaging

Electron spins in nonmagnetic semiconductors

NMR Quantum Computation

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

The Nuclear Emphasis

13C. Los Alamos Science Number

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

Biophysical Chemistry: NMR Spectroscopy

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

MRI Physics I: Spins, Excitation, Relaxation

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Experimental Quantum Computing: A technology overview

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

10.4 Continuous Wave NMR Instrumentation

Observations of Quantum Dynamics by Solution-State NMR Spectroscopy

Magnetic Resonance in Quantum

Biomedical Imaging Magnetic Resonance Imaging

V27: RF Spectroscopy

Nuclear Magnetic Resonance Imaging

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

Introduction of Key Concepts of Nuclear Magnetic Resonance

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Control of Spin Systems

NMR: Formalism & Techniques

Biophysical Chemistry: NMR Spectroscopy

NMR Spectroscopy: A Quantum Phenomena

arxiv:quant-ph/ v1 13 Oct 2004

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University

T 1, T 2, NOE (reminder)

The Basics of Magnetic Resonance Imaging

arxiv:quant-ph/ v2 28 Aug 2006

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

3 Chemical exchange and the McConnell Equations

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

An introduction to Solid State NMR and its Interactions

NMR of CeCoIn5. AJ LaPanta 8/15/2016

Basic principles COPYRIGHTED MATERIAL. Introduction. Introduction 1 Precession and precessional

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Quantum Mechanics FKA081/FIM400 Final Exam 28 October 2015

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

The quantum state tomography on an NMR system

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

Relaxation. Ravinder Reddy

Introduction to NMR! Ravinder Reddy!

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005

PARAMAGNETIC MATERIALS AND PRACTICAL ALGORITHMIC COOLING FOR NMR QUANTUM COMPUTING

e 2m p c I, (22.1) = g N β p I(I +1), (22.2) = erg/gauss. (22.3)

Principles of Magnetic Resonance Imaging

VIII. NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY

Quantum Computing with Para-hydrogen

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

10.3 NMR Fundamentals

Control of quantum two-level systems

NANOSCALE SCIENCE & TECHNOLOGY

NMR Dynamics and Relaxation

Physical fundamentals of magnetic resonance imaging

Quantum Optics and Quantum Informatics FKA173

INTRIQ. Coherent Manipulation of single nuclear spin

Lecture 5: Bloch equation and detection of magnetic resonance

Experimental Methods for Quantum Control in Nuclear Spin Systems

Short Course in Quantum Information Lecture 8 Physical Implementations

Biophysical Chemistry: NMR Spectroscopy

The Physical Basis of Nuclear Magnetic Resonance Part I ESMRMB. Jürgen R. Reichenbach

arxiv:quant-ph/ v1 1 Oct 1999

Fundamental MRI Principles Module Two

Computational speed-up with a single qudit

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11.

NUCLEAR MAGNETIC RESONANCE QUANTUM COMPUTATION

Quantum computation and quantum information

10.5 Circuit quantum electrodynamics

Spin. Nuclear Spin Rules

Experimental Realization of Brüschweiler s exponentially fast search algorithm in a 3-qubit homo-nuclear system

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

Transcription:

Books (NMR): Spin dynamics: basics of nuclear magneac resonance, M. H. LeviF, Wiley, 200. The principles of nuclear magneasm, A. Abragam, Oxford, 96. Principles of magneac resonance, C. P. Slichter, Springer, 990. Reviews (): NMR techniques for quantum control and computa>on, LMK Vandersypen and I. Chuang, Reviews of Modern Physics (2004) vol. 76 (4) pp. 037-069. Quantum informa>on processing using nuclear and electron magne>c resonance: review and prospects, et al., 2007. arxiv: 070.447. NMR Based Quantum Informa>on Processing: Achievements and Prospects, D. G. Cory et al., 2000. arxiv:quant- ph/000404.

Spin- /2 nucleus NMR freq (at 0 T) abundance H 426 MHz 99.9% 3 C 07.% 5 N 43 0.4% 9 F 40 00% 28 Si 85 4.7% 3 P 75 00% Nuclei with an odd (even) number of nucleons possess half- integer (integer) spin Nuclei with an even number of protons and neutrons are spinless

H NMR Hamiltonian: 2 coupled spins in liquid- state NMR (e.g. 3 C- labelled Chloroform) ( =) H 0 = ( 2 ω σ z + ω 2 σ 2z + πj 2 σ z σ ) 2z 3 C Chloroform molecule, CHCl 3 Larmor frequency (rad/s): External magneac field (T): Coupling strength (Hz): J kl ω k = γ k B B Chemical shielding: For the same isotope, γ j = γ ( 0 δ ) j for nucleus at the j th chemical site. Ability to address different nuclei as qubits

Larmor precession H 0 = ω σ z 2 U(t) = e iω tσ z 2 = Take ψ = + 2 U(t) ψ = e iω t 2 + e +iω t 2 2 + e +iωt =e iω t 2 2 + i = +

H Eigenstates of the Hamiltonian H 0 = ( 2 ω σ z + ω 2 σ 2z + πj 2 σ z σ ) 2z : H state 2: 3 C eigenvalue ( 2 ω + ω + πj 2 2) 2 ω + ω 2 πj 2 ( 2 ω ω πj 2 2) ( ) ( 2 ω ω + πj 2 2) ω = 2π 426MHz ω 2 = 2π 07MHz J 2 200Hz B =0T ( 2 ω + ω 2) ( 2 ω + ω 2 ) ( 2 ω ω 2) ( 2 ω ω 2 ) + π 2 J 2 π 2 J 2 π 2 J 2 + π 2 J 2 3 C Chloroform molecule, CHCl 3

NMR transifons (spectrum) ( 2 ω + ω 2) + π 2 J 2 2 2 ( 2 ω + ω 2) ( 2 ω ω 2) π 2 J 2 π 2 J 2 2πJ 2πJ ( 2 ω ω 2) + π 2 J 2 ω ω 2 frequency These are magneac dipole transiaons, and are thus driven by an oscillaang (RF) magneac field Need transverse spin operators σ x,σ y ( )

RF Hamiltonian: H rf (t) = Ω(t) 2 θ(t) = ω rf t + φ [ σ x cos(θ(t)) + σ y sin(θ(t)) ] RF amplitude RF frequency B x cos(ω rf t) Re B + e iω rf t ( )

RotaFng reference frame transformafon * R(t) = e iω rf tσ z 2 e iω 2rf tσ 2z 2 ψ R = R(t) ψ lab id ψ lab dt = H lab ψ lab id ψ R dt = H R ψ R H lab = H 0 + H rf (t) * H R = 2 ω ω rf *This is for the case of two isotopes doubly- rotaang frame [( )σ z + ( ω 2 ω 2rf )σ 2z + πj 2 σ z σ 2z ] + [ 2 Ω (t) ( σ x cos(φ ) + σ y sin(φ ))] + [ 2 Ω (t) σ cos(φ 2 ( ) + σ sin(φ ) 2x 2 2y 2 )]

RotaFng frame = We had Larmor precession in Lab frame: U(t) ψ = e iω t 2 + e +iωt 2 But in the rotaang frame (on resonance): + i R(t) U(t) + U(t) ψ R = U(t)R(t) ψ = + 2 =

Resonant pulses as Bloch sphere rotafons Consider a one- spin system on resonance: ω = ω rf H R = [( 2 ω ω rf )σ z + Ω (t)( σ x cos(φ ) + σ y sin(φ ))] In NMR, we can control both RF phase ( φ) and amplitude ( Ω) in Ame, so we can perform arbitrary single spin rotaaons U(t) = e iω t ( σ x cos(φ )+σ y sin(φ ) ) / 2 R y (π /2) φ = π /2 Ωt = π /2 R x (π /2) φ = π Ωt = π /2 - Y X ( 0 + ) 2 Y - Y X Y ( 0 + i ) 2

Example of two- qubit control: the CNOT gate H(t) = ( 2 ω σ z + ω 2 σ 2z + πjσ z σ 2z ) + H rf (t) Zeeman coupling RF pulses (control)

q q 2 2 3 4 5 R z (90) R y (90) R y ( 90) R x (90) U = e iπ 2 I 2 σ y 2 t = π /2J Ame U 2 = e i π 2 σ z σ 2z / 2 U 3 = e iπ 2 σ z 2 I 2 U 4 = e +iπ 2 I σ 2y 2 U CNOT = U 5 U 4 U 3 U 2 U = 0 0 I 2 + σ 2x U 5 = e iπ 2 I σ 2x 2

The thermal state A general mixed state: ρ = k a k ψ k ψ k Thermal equilibrium (Boltzmann distribuaon): ρ th = e H 0 kt Tr e H 0 ( kt ) In the high temperature limit ( ) H 0 << kt ρ th 2 I H 0 I kt 2 4kT ω σ z + ω 2 σ 2z ( ) (two- spin case) ω kt ~ 0 5 at room temperature in NMR

The thermal state ρ th 2 I H 0 I kt 2 4kT ω σ z + ω 2 σ 2z ( ) The idenaty term cannot be changed by pulses or observed So we define a deviaaon density matrix: ρ dev = H 0 kt ω σ z + ω 2 σ 2z (the J coupling term is ~0-6 Ames smaller than Zeeman energy) σ z indicates a populaaon difference between spin- up and spin- down states

Pseudopure states To iniaalize an NMR quantum info. processor, we want a pure state or at least one that behaves like a pure state: ρ pp = I 2 α ψ ψ Example: making a H 3 C pseudopure state 5 0 0 0 0 3 0 0 ρ dev 4σ z + σ 2z = 0 0 3 0 0 0 0 5

Example: making a H 3 C pseudopure state Apply three permutaaon circuits and sum results: ρ dev ρ dev 5 0 0 0 0 3 0 0 0 0 3 0 0 0 0 5 5 0 0 0 0 5 0 0 0 0 3 0 0 0 0 3 5 0 0 0 0 5 0 0 = 20 00 00 5 I 0 0 5 0 0 0 0 5 ρ dev 5 0 0 0 0 3 0 0 0 0 5 0 0 0 0 3 ʹ ρ dev 00 00

Measurement in NMR Bulk magneazaaon of j th isotope: B // ˆ z M z j = µ j ( n j n ) j 90 degree ( readout ) pulse rotates magneazaaon to x- y plane: Z M z Ensemble of idenacal, non- interacang processor molecules - Y X M x Y

Measurement in NMR In the lab frame, magneazaaon precesses in the x- y plane, at the Larmor frequency Z - Y X M x Y the oscillaang magneac flux induces an emf in the solenoid coil via Faraday s law.

Measurement in NMR This corresponds to an expectaaon value measurement, with observables: M x = Tr ρ σ kx M y = Tr ρ σ ky k k We call these observables transverse magneazaaon

Measurement in NMR Example: - qubit tomography of an arbitrary state ρ dev Expt. ρ dev M x, M y P x,p y Expt. 2 ρ dev R y (π /2) M x P z Unfortunately, the # of expts grows exponenaally with # qubits for any implementaaon!

Measurement in NMR : FT spectrum V 0 M x (0) NMR transi>ons Voltage T 2 V 0 /e Fourier transform Δω ~ T 2 Time amp M x (0) Frequency free- inducaon signal ( ) M x (t) = Tr e ih 0 t ρ(0)e +ih 0 t σ x

RelaxaFon and decoherence General Kraus operator sum: ρ A k ρa k + k k A k + A k = I Z RelaxaAon Dephasing Spin operators σ x,σ y σ z X Y Example: pure dephasing A = e iφσ z ρ dφ e iφσ z ρe+iφσ z f (φ,t,t 2 ) Lorentzian with Ame- dependent FWHM ( ) a be t /T 2 b * e t /T 2 Dephasing on the Bloch sphere a

Pure dephasing Or in another form: Z Λ(ρ) = ( p) ψ ψ + pσ z ψ ψ σ z With Kraus operators: A 0 = pi Y A = pσ z p = e t /T 2 2 Dephasing on the Bloch sphere

RelaxaFon A 0 = p 0 0 η A = p 0 η 0 0 A 2 = η 0 p 0 A 3 = p 0 0 η 0 see e.g. Nielsen & Chuang ( Λ(ρ) = a a 0)e t /T + a 0 be t / 2T b * e t / 2T ( a 0 a)e t /T + ( a ) 0 For pure relaxaaon, T 2 = 2T In liq. state NMR, typically T 2 ~ 0.5-5 s T ~ 5-20 s

NMR Spectrometer

The Deutsch- Jozsa algorithm on two qubits H 0 R y 90 R z 90 3 C 0 R 80 90 x R y R y 90 τ = π 2J ( U 0,U 0 ) R x ±90

constant: f 00 balanced: f 0 balanced: f 0 constant: f Jones and Mosca, 998

State- of- the- art 2- qubit molecule: histadine Pseudopure state demonstrated (Negrevergne et al, PRL 96, 7050 (2006))

Benchmarking control ~0.005 average gate error for 3- qubit control; ~0-4 for single qubit C. A. Ryan, M. Laforest and R. Laflamme, Randomized benchmarking of single and mulaqubit control in liquid- state NMR quantum informaaon processing, New J. Phys.. 03034 (2009)

Control in solid- state NMR 4 itera>ons of heat- bath algorithmic cooling C. A. Ryan,, O. Moussa, and R. Laflamme, PRL 00, 4050 (2008)

Books (NMR): Spin dynamics: basics of nuclear magneac resonance, M. H. LeviF, Wiley, 200. The principles of nuclear magneasm, A. Abragam, Oxford, 96. Principles of magneac resonance, C. P. Slichter, Springer, 990. Reviews (): NMR techniques for quantum control and computa>on, LMK Vandersypen and I. Chuang, Reviews of Modern Physics (2004) vol. 76 (4) pp. 037-069. Quantum informa>on processing using nuclear and electron magne>c resonance: review and prospects, et al., 2007. arxiv: 070.447. NMR Based Quantum Informa>on Processing: Achievements and Prospects, D. G. Cory et al., 2000. arxiv:quant- ph/000404.