Photoemission Studies of Strongly Correlated Systems

Similar documents
Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Can superconductivity emerge out of a non Fermi liquid.

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

arxiv:cond-mat/ v1 [cond-mat.str-el] 25 Jan 1999

Fine Details of the Nodal Electronic Excitations in Bi 2 Sr 2 CaCu 2 O 8+δ

High-T c superconductors

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris

Neutron scattering from quantum materials

arxiv:cond-mat/ v1 8 Mar 1995

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

The High T c Superconductors: BCS or Not BCS?

Role of the Octahedra Rotation on the Electronic Structures of 4d Transition Metal Oxides

Surfing q-space of a high temperature superconductor

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Mean field theories of quantum spin glasses

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

Metal-insulator transitions

Temperature-Dependent Angle-Resolved Photoemission Study of High-T c Superconductors

Talk online at

High temperature superconductivity - insights from Angle Resolved Photoemission Spectroscopy

Heavy Fermion systems

The pseudogap state in high-t c superconductors: an infrared study

Quantum phase transitions in Mott insulators and d-wave superconductors

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Conference on Superconductor-Insulator Transitions May 2009

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

arxiv:cond-mat/ v1 [cond-mat.str-el] 30 Dec 1997

O. Parcollet CEA-Saclay FRANCE

Key words: High Temperature Superconductors, ARPES, coherent quasiparticle, incoherent quasiparticle, isotope substitution.

Quantum dynamics in many body systems

Solid State Spectroscopy. Wilfried Wurth. Introduction. Synchrotron Radiation. Photoelectron Spectroscopy. Magneto optical spectroscopy.

IV. Surface analysis for chemical state, chemical composition

Superconductivity Induced Transparency

Search for conducting stripes in lightly hole doped YBCO

SUPPLEMENTARY INFORMATION

Electron and vibrational spectroscopy

Strongly Correlated Systems:

Supporting Information

Foundations of Condensed Matter Physics

Damping of collective modes and quasiparticles in d-wave superconductors. Subir Sachdev M. Vojta. Yale University. C. Buragohain

Theory of the Nernst effect near the superfluid-insulator transition

SUPPLEMENTARY INFORMATION

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

Intermediate valence in Yb Intermetallic compounds

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik

The photoelectric effect

Photoemission study of Bi-cuprate high-t c superconductors in the lightly-doped to underdoped regions

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 May 1999

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Energy Spectroscopy. Excitation by means of a probe

Debye temperature Θ D K x = 3 83I

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

Measuring Fermi velocities with ARPES in narrow band systems. The case of layered cobaltates.

Magnetism in correlated-electron materials

Spettroscopia risonante di stati elettronici: un approccio impossibile senza i sincrotroni

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

Quantum Field Theory and Condensed Matter Physics: making the vacuum concrete. Fabian Essler (Oxford)

Quantum Condensed Matter Physics Lecture 12

Resonant Inelastic X-ray Scattering on elementary excitations

One Dimensional Metals

Exploring new aspects of

Local criticality and marginal Fermi liquid in a solvable model Erez Berg

High-Temperature Superconductors: Playgrounds for Broken Symmetries

Recent Advances in High-Temperature Superconductivity

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

Electronic quasiparticles and competing orders in the cuprate superconductors

High temperature superconductivity

Quantum Criticality and Black Holes

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Landau-Fermi liquid theory

Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4

arxiv:cond-mat/ v2 [cond-mat.supr-con] 26 Jul 2006 Doping dependent optical properties of Bi 2 Sr 2 CaCu 2 O 8+δ

Relativistic magnetotransport in graphene

Ultrahigh-resolution photoemission study of superconductors and strongly correlated materials using quasi-cw VUV laser

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

Universal scaling relation in high-temperature superconductors

Effect of the magnetic resonance on the electronic spectra of high-t c superconductors

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

The pseudogap in high-temperature superconductors: an experimental survey

Origin of the shadow Fermi surface in Bi-based cuprates

arxiv:cond-mat/ v2 [cond-mat.str-el] 25 Jun 2003

μsr Studies on Magnetism and Superconductivity

Quantum disordering magnetic order in insulators, metals, and superconductors

arxiv:cond-mat/ v1 8 May 1997

The Superfluid-Insulator transition

Ultrafast Dynamics in Complex Materials

Inelastic light scattering and the correlated metal-insulator transition

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Quantum Melting of Stripes

Transcription:

Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005

MgB2

High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations Landau-Quasiparticles [ ] 2 2 ( πk T ) Γ( ω, T ) = 2β + ω B E = η τ ω

dc Transport in Synthetic Metals 1000 1000 800 800 Resistivity, [µωcm] 600 400 200 La 1.85 Sr 0.15 CuO 4 Ioffe-Regel limit saturation Nb 3 Sn 0 0 200 400 600 800 1000 Temperature, [K] 600 400 200 0 TTF-TCNQ VO 2 SrRuO 3 0 200 400 600 800 1000 Temperature, [K]

Drude Model of Conductivity Conductivity ne m 2 σ = * τ In a two-dimensional system σ k F l Thus the resistivity ρ is given by ρ 1 k l F = k k F or ImΣ E F

Spin-charge separation holon spinon e = -1, s = 0 e = 0, s = 1/2

R. B. Laughlin 1998 "Parallels Between Quantum Antiferromagnetism and the Strong Interactions"

Photoemission is an excellent probe of low energy excitations Incident Photons s p hν φ n Θ e - Photoelectrons single crystal hole sample ω = 2π η ψ f H int ψ i 2 δ ( E E hυ) f i

ω = 2π η ψ f H int ψ i 2 δ ( E E hυ) f i ψ ( r' ) = ψ ( r ) drg( r r ) H ( r) ( r) i ' +, ' ψ int i Spectral Response 1 A, π ( k, E) = ImG( k E) Free Electron Case:- (, E) A ( k, E) = δ ( E ) G k 1 = 0 E E k iδ 0 E k

We introduce the self-energy Σ to take account of interactions Green s Function G ( E) = 1 E ε E 1 ε Σ Spectral Function A 1 π ( E) = ImG( E) = 1 π Σ'' ( E ε Σ' ) 2 + ( Σ' ') 2 Photoemission peak at an energy ε - Σ Lifetime broadened to a width proportional to 2Σ =Γ

Photoelectron Spectrometer - + θ E K hν Resolution:- E: ~5 mev k: 0.015 Å -1

MDCs and EDCs Science 285, 2110 (1999) Momentum Distribution Curve Energy Distribution Curve

MDCs and EDCs MDC width k = 2Σ'' v 0 = 1 λ Inverse Mean Free path EDC width E = ν k = η τ Inverse Lifetime = 2Σ'' Σ' 1 ω

Drude Model of Conductivity Conductivity ne m 2 σ = * τ In a two-dimensional system σ k F l Thus the resistivity ρ is given by ρ 1 k l F = k k F or ImΣ E F

Photoemission Linewidths Linewidth Γ = Γi v i 1 v i + + Γ v v f f 1 f For a 2-Dimensional initial state v i = 0 Γ = Γ i

a) T=70 K Intensity (arb. units) -300-200 -100 0 b) T (K): 70 220 330 c) -200-150 -100-50 0 50 100 T=70 K Hydrogen exposure (L): 0.021 0.042 0.087 Phys. Rev. Lett. 83, 2085 (1999) -200-150 -100-50 0 50 100 E-E F (mev)

Scattering Rates: ρ ρ ρ ( k, ω ) ( k + k, ω + ω ) Electron-Electron Electron-Phonon Electron-Impurity [ ] 2 2 el el ( ω, T ) = 2β ( πkbt ) + ω Γel ph( ω, T ) Γ Γel im const Γ = Γ el el + Γ el ph + Γ el im

Landau 1957 Fermi Liquid electron-electron scattering Scattering rate or inverse lifetime Γ = 2β[(πk B T) 2 + ω 2 ] E = η ω τ

A( k, ω) ImΣ( k, ω) [ ω ε ReΣ( k, ω) ] 2 + [ ImΣ( k, ω ) ] 2 k ω ω 0 α 2 F ω ω 0 ImΣ~Γ ω 0 ReΣ k A(k,ω) ω

Electron-Phonon Coupling Eliashberg Equation:- ( ) ( ) ( ) ( ) [ ] ' ' 2 ') ( 1 ' ' 2, 0 2 ω ω ω ω ω ω ω α π ω τ ω + + + = f n f F d T D η η In the limit T 0 ( ) ( ) ' ' 0 2 ω ω α π ω ω d F I = Σ η

Temperature dependent scattering rates 1.2 Einstein mode 70 mev ImΣ 1.0 0.8 0.6 0.4 Temp:- 300 200 100 50 0.2 0.0-20 0 20 40 60 80 100 120 140 160 180 Binding Energy (mev)

Electron-Phonon Interaction in Molybdenum 2 Im Σ (mev) 140 120 100 80 60 40 E-E F (mev) 0-50 -100 0.23 0.24 κ II ( 1 ) Re Σ 2 Im Σ 15 10 5 0-5 -10-15 Re Σ (mev) -400-300 -200-100 0 E-E F (mev) Phys. Rev. Lett. 83, 2085 (1999)

MDCs and EDCs Science 285, 2110 (1999) Momentum Distribution Curve Energy Distribution Curve

Optimally Doped Bi 2 Sr 2 CaCu 2 O 8+δ Cu O EDC s Science 285, 2110-2113 (1999) MDCs near E F

Abanov et al. J. Elect. Spect. 117, 129 (2001)

The Molybdenum Data a) T=70 K Phys. Rev. Lett. 83, 2085 (1999) Intensity (arb. units) -300-200 -100 0 b) T (K): 70 220 330 c) -200-150 -100-50 0 50 100 T=70 K Hydrogen exposure (L): 0.021 0.042 0.087-200 -150-100 -50 0 50 100 E-E F (mev)

Bi 0.5 Pb 0.5 Ba 3 Co 2 O 9+δ 60 T M 100 ρ ab (mωcm) 40 20 50 ρ c (Ωcm) 0 0 100 200 300 T (K) 0

A number of the layered strongly-correlated materials show such anisotropic transport properties: Insulating behavior T M ρ c ρ < 0 T ρ ρ c /ρ ab Metallic behavior ρ ab T ρ > 0 T

0.0 0.0 T=30 K -0.5 ω (ev) -0.1-1.0-1.5 (a) - - 0.6 0.5 k II (Å -1 ) Γ 0.0 0.6 0.5 T=180 K detector angle (b) -0.1 Nature 417, 627 (2002) - - 0.6 0.5 k II (Å -1 ) (c)

Intensity (arb. units) 30 K 95 K 180 K 230 K 30 K 230 K -1.0-0.5 0.0 ω (ev) ρ ab (mωcm) 60 40 20 T M 100 50 ρ c (Ωcm) -0.2 0.0 ω (ev) 0 0 100 200 300 T (K) 0 The appearance of in-plane coherent excitations strongly correlates with the dimensional crossover observed in transport measurements 2 d k σ ω = c ( T, 0) t ( k) 2 (2π ) 2 G R ( k, ω) G A f ( ω) ( k, ω) ω Green s Function ~ Z /( ω ε iγ ) k

Optical Conductivity Measurements J. Tu et al.

The coherent excitations behave like Fermions G Γ(meV) 40 20 Data: Data1_H Model: parabolic Chi^2 = 0.39878 y0 20.17717 ±0.35358 b 0.00073 ±0.00004 xc 0 ±0 Γ T 2 lnt B 1 0 0 50 100 150 200 T T(K) 0

Crystal structure of chain cuprates SrCuO 2 Sr 2 CuO 3

Intensity 4 undoped 5.5 bar 11 bar -1.5-1.0-0.5 0.0 0.5 ω (ev) b) t = 0.82 J = 0.28 σ 1 (ω) [10 3 Ω -1 cm -1 ] 3 2 1 undoped 11 bar 0 0 1 2 3 ω [ev] -2-1 0 ω (ev) Doping with oxygen allows the clear identification of the spinon branch

1D Hubbard model calculation Extended Hubbard model (half-filled, one band) ( + + cˆ ) l cˆ l+ + cˆ l+ cˆ l + U nˆ nˆ + V ( nˆ )( ) l l l 1 nˆ, σ 1, σ 1, σ, σ,, l 1 H = t + 1 l, σ l t l Dynamical density matrix renormalization group (DDMRG) Optical conductivity Neutron scatterin U V t = 0.435 ev, U t = 7.8, V t = 1.3 Density-density correlation function N(q,ω)

Studies of 1-D Sr 2 CuO 3+δ at BN L Spinon Holon Theoretical predictions Photoemission Expt 0.0 0.0 ω (ev) 0.5 1.0 1.5 2.0 Spinon Holon 2.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.5-1.0-1.5-2.0-2.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 k (π/b)

T. Valla T. Kidd A. Fedorov Physics Dept., BNL G.D. Gu S.L. Hulbert Q. Li Materials Science Dept., BNL A.R. Moodenbaugh N. Koshizuka ISTEC, Japan S.M. Loureiro R. Cava Princeton University

THE END