Wakefields and Impedances I. Wakefields and Impedances I

Similar documents
Impedance & Instabilities

Tapered Transitions Dominating the PETRA III Impedance Model.

Calculation of Wakefields and Higher Order Modes for the New Design of the Vacuum Chamber of the ALICE Experiment for the HL-LHC

Wakefields in the LCLS Undulator Transitions. Abstract

Emittance Growth and Tune Spectra at PETRA III

CERN Accelerator School Wakefields. Prof. Dr. Ursula van Rienen, Franziska Reimann University of Rostock

Single-Bunch Effects from SPX Deflecting Cavities

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Impedance and Collective Effects in Future Light Sources. Karl Bane FLS2010 Workshop 1 March 2010

Electron Cloud in Wigglers

CSR calculation by paraxial approximation

Instabilities Part III: Transverse wake fields impact on beam dynamics

Impedance Minimization by Nonlinear Tapering

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Lattice Design and Performance for PEP-X Light Source

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Wakefield Effects of Collimators in LCLS-II

Physics 598ACC Accelerators: Theory and Applications

3. Synchrotrons. Synchrotron Basics

Evaluation of In-Vacuum Wiggler Wakefield Impedances for SOLEIL and MAX IV

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

EFFECTS OF LONGITUDINAL AND TRANSVERSE RESISTIVE-WALL WAKEFIELDS ON ERLS

CERN Accelerator School. Intermediate Accelerator Physics Course Chios, Greece, September Low Emittance Rings

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Commissioning of PETRA III. Klaus Balewski on behalf of the PETRA III Team IPAC 2010, 25 May, 2010

Longitudinal Dynamics

Low Emittance Machines

The TESLA Dogbone Damping Ring

INSTABILITIES IN LINACS. Massimo Ferrario INFN-LNF

INSTABILITIES IN LINACS

Large Scale Parallel Wake Field Computations with PBCI

Linear Collider Collaboration Tech Notes

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

arxiv: v1 [physics.acc-ph] 8 Nov 2017

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Emittance Dilution In Electron/Positron Damping Rings

6 Bunch Compressor and Transfer to Main Linac

Accelerator Physics. Accelerator Development

Physics 610. Adv Particle Physics. April 7, 2014

CSR Benchmark Test-Case Results

Low Emittance Machines

Longitudinal Top-up Injection for Small Aperture Storage Rings

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Introduction to Accelerators

BEAM INSTABILITIES IN LINEAR MACHINES 2

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

Terahertz Coherent Synchrotron Radiation at DAΦNE

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

Evaluating the Emittance Increase Due to the RF Coupler Fields

ILC Crab Cavity Wakefield Analysis

Wakefield computations for the LCLS Injector (Part I) *

Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring * Abstract

Investigation of Coherent Emission from the NSLS VUV Ring

Synchrotron Motion with Space-Charge

Lattices for Light Sources

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Review of proposals of ERL injector cryomodules. S. Belomestnykh

Beam Breakup, Feynman and Complex Zeros

Suppression of Radiation Excitation in Focusing Environment * Abstract

Beam instabilities (I)

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

Lab Report TEMF - TU Darmstadt

Wake Fields in Particle Accelerators with Finite Thickness and Conductivity

LOLA: Past, present and future operation

CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects. K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan.

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

Electron Cloud Studies for KEKB and ATF KEK, May 17 May 30, 2003

Physics 663. Particle Physics Phenomenology. April 9, Physics 663, lecture 2 1

Electron cloud effects in KEKB and ILC

ILC Beam Dynamics Studies Using PLACET

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

Beam Dynamics in Synchrotrons with Space- Charge

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Ultra-Short Low Charge Operation at FLASH and the European XFEL

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron

ILC Damping Ring Alternative Lattice Design (Modified FODO)

Calculation of wakefields for plasma-wakefield accelerators

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Effect of Insertion Devices. Effect of IDs on beam dynamics

High performance computing simulations. for multi-particle effects in the synchrotons

ELECTRON DYNAMICS WITH SYNCHROTRON RADIATION

Proposal to convert TLS Booster for hadron accelerator

Emittance preservation in TESLA

Using Surface Impedance for Calculating Wakefields in Flat Geometry

arxiv: v1 [physics.acc-ph] 12 Sep 2016

Fundamental Concepts of Particle Accelerators III : High-Energy Beam Dynamics (2) Koji TAKATA KEK. Accelerator Course, Sokendai. Second Term, JFY2012

FEMTO - Preliminary studies of effects of background electron pulses. Paul Scherrer Institut CH-5232 Villigen PSI Switzerland

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1

Transverse-Longitudinal Emittance Transfer in Circular Accelerators Revised

A Bunch Compressor for the CLIC Main Beam

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

Phase Space Study of the Synchrotron Oscillation and Radiation Damping of the Longitudinal and Transverse Oscillations

Lab Report TEMF, TU Darmstadt

Transcription:

Wakefields and Impedances I Wakefields and Impedances I An Introduction R. Wanzenberg M. Dohlus CAS Nov. 2, 2015 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 1

Introduction Wake Field = the track left by a moving body (as a ship) in a fluid (as water); broadly : a track or path left Impedance = Fourier Transform (Wake Field) R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 2

Electric Field of a Bunch Point charge in a beam pipe Gaussian Bunch, Step out transition Opening angle φ = 0.511 MeV E E = 10 MeV, => φ = 50 mrad = 2.89 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 3

Effects on a test charge Change of energy E(s) = q 2 dz Ez (r,z,t = (s + z)/c) Bunch charge q 1 Test charge q 2 Equation of motion q 1 : z = c t q 2 s q 1 q 2 : z = c t s E z (r, z, t) depends on the total bunch charge R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 4

Wakepotential W (s) = 1 q 1 Z dz E z (r, z, t(s, z)) t s t(s, z) = 1 c (s + z) E(s) = q 2 q 1 W(s) Bunch charge q 1 Test charge q 2 Equation of motion: q 1 : z = c t q 2 : z = c t s 1 Longitudinal Wakepotential Wake Bunch 0.5 Wake / V/pC 0-0.5-1 0 2 4 6 8 10 12 14 s / σ z R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 5 z

Wake: point charge versus bunch Longitudinal Wakepotential r Point charge W (s) = 1 q 1 Z Bunch W (s) = 1 q 1 Z dz E z,p.c. (r, z, t(s, z)) dz E z (r, z, t(s, z)) ϕ r 2 s q 2 q 1 r 1 v = c u z W (r 2, s) = Z 0 ds λ(s s ) W (r 2, s ) The fields E and B are generated by the charge distribution ρ and the current density j. They are solutions of the Maxwell equations and have to obey several boundary conditions. B = µ 0 j + 1 c 2 t E B = 0 j = c u z ρ E = t B E = 1 ǫ 0 ρ ρ = q 1 λ λ λ(z) = «1 σ 2 π exp z2 2σ 2 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 6

Approximations Wake Field Rigid beam approximation The wake field does not affect the motion of the beam The wake field does not affect the motion of the test charge (only the energy or momentum change is calculated) The interaction of the beam with the environment is not self consistent. Nevertheless, one can use results from wake field calculations for a turn by turn tracking code - sometimes cutting a beam into slices. R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 7

Catch-up distance b z c d Catch-up distance z c z c + d c = t = zc2 + b 2 c z c = b2 d 2 2 d = b2 2 d d 2 Example: z c 75 mm b = 35 mm, d 2 σ z = 8 mm R = 60 mm, L = 50 mm lim z c = LARGE d small R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 8

Numerical Calculations There exist several numerical codes to calculate wakefields. Examples are: Non commercial codes (2D, r-z geometry) ABCI, Yong Ho Chin, KEK http://abci.kek.jp/abci.htm Echo 2D, Igor Zagorodnov, DESY http://www.desy.de/ zagor/wakefieldcode_echoz/ Commercial codes (3D) GdfidL CST (Particle Studio, Microwave Studio) The Maxwell equations are solved on a grid R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 9

Example: wakepotential of a cavity Numerical calculation of the wakepotential with CST Particle Studio: R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 10

Loss Parameter Wakepotential W(s) = 1 q 1 Z dz E z (r, z, (s + z)/c) 1 Longitudinal Wakepotential Wake Bunch Line charge density λ(s) = 1 σ z 2 π exp 1 2 s 2 σ z 2 «Wake / V/pC 0.5 0 Total loss parameter k tot = ds λ(s) W(s) Energy loss -0.5-1 0 2 4 6 8 10 12 14 s / σ z k tot = 0.46 V pc, σ z = 4 mm, Cavity: L = 5 cm, R = 6 cm, pipe radius 3.5 cm E = P = q bunch 2 k tot E = (16 nc) 2 0.46 V pc = 0.118 mv C Bunch population N = 10 10 10, PETRA C = 2304m, T = 7.68µs P = 1 E = 15.2 W T R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 11

Transverse Wake Fields Lorentz Force F(r 2, t) = q 2 (E(r 2, t) +v B(r 2, t)) Longitudinal Wakepotential W (r 2, s) = 1 q 1 Z dz E z (r 2, z,(s + z)/c) q 2 Wakepotential W(r 2, s) = 1 Z q 1 dz[e(r 2, z, t) + ce z B(r 2, z, t)] t=(s+z)/c q 1 Change of momentum of a test charge q 2 p(r 2, s) = 1 c q 2 q 1 W(r 2, s) kick on an electron (q 2 ) due to the bunch charge q 1 θ(r 2, s) = e E q 1W (r 2, s) R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 12

Transverse Wakepotential W (r 2, s) = 1 q 1 Z Bunch charge q 1 Test charge q 2 Equation of motion: q 1 : z = c t q 2 : z = c t s Transverse Wakepotential dz[e (r 2, z, t) + ce z B (r 2, z, t)] t=(s+z)/c t s Wake Bunch 15 Wake / V/(pC m) 10 5 0 0 2 4 6 8 10 s / σ z z R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 13

Kick Parameter Wakepotential W(r 2,s) = 1 q 1 dz[e(r 2,z,t) + c e z B(r 2,z,t)] t=(s+z)/c r Line charge density λ(s) = 1 σ z 2 π exp 1 2 Kick parameter ( V/(pCm) ) k = s 2 σ z 2 «ds λ(s) 1 r 2 W (r 2,s) ϕ 15 s r 2 q 2 Transverse Wakepotential Wake Bunch r 1 v = c u z q 1 z W radial, vertical or horizontal component of the wake potential Wake / V/(pC m) 10 5 Betatron Tune shift in a storage ring Q β = I bunch T 0 4π E/e β k, (β function, optics) 0 0 2 4 6 8 10 s / σ z k = 3.6 V pc m R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 14

From Wakes to Impedance Wake Field = the track left by a moving ship in water Impedance = Fourier Transform (Wake Field) Warning: Wakefields have a bad reputation and the generation of wakes may be even illegal in some communities: NO WAKE please on Chicago river (PAC 2001) R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 15

Impedance Longitudinal impedance r Z (r 2, ω) = 1 c Z ds W (r 2, s) exp( i ω c s) ϕ s r2 q2 r 1 q 1 v = c u z z Transverse impedance 1 Longitudinal Wakepotential Wake Bunch Z (r 2, ω) = i c Z phase factor i = exp( i π/2) Wakepotential of a Gaussian bunch W (r 2, s) = Z Fourier Transform of the Wake 0 dsw (r 2, s) exp( i ω c s) ds λ(s s ) W (r 2, s ) Wake / V/pC 0.5 0-0.5-1 0 2 4 6 8 10 12 14 s / σ z eλ(ω) Z (r 2, ω) = 1 c Z ds W (r 2, s) exp( i ω c s) R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 16

You get the Impedance if you click here! R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 17

Equivalent Circuit Model L C R Impedance Z (ω) = 1 + i Q R ( ) ωr ω ω ω r 2 k = ω r R Q = 1 C ω r = 1 L C Q = ω r R C Wake Potential s > 0 (point charge) long range wakefield of one mode W (s) 2 k cos(ω r s c ) exp( ω r 2 Q Loss parameter (Gaussian bunch) k tot k exp ( ω 2 r ( σ ) z c )2 s c ) R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 18

Panofsky-Wenzel-Theorem r s W (r 2, s) = 2 W (r 2, s) s W (r 2, s) = 1 q 1 Z» 1 dz c q r 2 2 t E (r 2, z, t) + ce z 1 c s v = c u z q r 1 1 t B(r 2, z, t) t=(s+z)/c z Maxwell Equation: E = t B e z t B = z E E z d dz E (r 2, z, z + s ) = c z + 1 «E (r 2, z, z + s ) c t c s W (r 2, s) = 1 q 1 Z dz ( d dz E )(r 2, z + s c ) E z (r 2, z + s «) c s W (r 2, s) = 2 W (r 2, s) + 1 q 1 Z dz( d dz E )(r 2, z + s ) c R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 19

Panofsky-Wenzel-Theorem (cont.) s W (r 2, s) = 2 W (r 2, s) r Frequency domain version of the Panofsky-Wenzel-Theorem: ω c Z (r 2, ω) = Z (r 2, ω) q r 2 2 s v = c u z q r 1 1 z Integration of the transverse gradient of the longitudinal wake potential provides the transverse wake potential: W (r 2, s) = Z s ds W (r 2, s ). W.K.H. Panofsky, W.A. Wenzel, Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields, Rev. Sci. Instrum. 27 (1956), 947 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 20

Multipole Expansion of the Wake Longitudinal Wakepotential W (r 1, r 2, ϕ 1, ϕ 2, s) = X r m 1 r m 2 W (m) (s) cos (m(ϕ 2 ϕ 1 )) m=0 Panofsky Wenzel theorem s W (x 2, y 2, x 1, y 1, s) = 2 W (x 2, y 2, x 1, y 1, s) Multipole expansion in Cartesian coordinates W (x 1, y 1, x 2, y 2, s) W (0) (s) r ϕ + (x 2 x 1 + y 2 y 1 ) W (1) (s) r 2 s q 2 q 1 r 1 v = c u z + `(x 2 2 y 2 2 )(x 2 1 y 2 1 ) + 2 x 2 y 2 2 x 1 y 1 W(2) (s) W (x 1, y 1, x 2, y 2, s) (x 1 u x + y 1 u y ) W (1) (s) +(x 2 u x y 2 u y ) 2 (x 2 1 y 2 1 ) W (2) (s) +(y 2 u x + x 2 u y )2 (2 x 1 y 1 ) W (2) (s). Z s W (m) (s) = ds W (m) (s ) R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 21

Monopole and Dipole Wake Longitudinal Wakepotential W (x 1, y 1, x 2, y 2, s) W (0) (s) + (x 2 x 1 + y 2 y 1 ) W (1) (s) Transverse Wakepotential W (x 1, y 1, x 2, y 2, s) (x 1 u x + y 1 u y ) W (1) (s) r ϕ s q 2 x 2, y 2 q 1 x 1, y 1 v = c u z Monopole Wakepotential W (0) (s) Longitudinal Dipole Wakepotential W (1) (s) Z s Transverse Dipole Wakepotential W (1) (s) = ds W (1) (s ) There is no transverse monopole wake potential. There is no a priori relation between the wake potentials of different azimuthal order. But for resistive wall impedance (wake) in a pipe with radius b there is a relation: Z (1) (ω) = c 2 ω b 2 Z(0) (ω) R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 22

W (r, s) as a harmonic function W (r, s) is a harmonic function of the transverse coordinates: 2 W (r,s) = 0 Line charge density λ(z) Charge density ρ(r, t) = q 1 λ (x, y) λ(z ct) Current density j(r, t) = cu z ρ(r, t) Maxwell Equation + ( E) = ( E) 2 E 2 E 1 2 c 2 2 t E = 1 ρ + 1 «ε 0 c 2 t j ρ and j z = c ρ are functions of z ct 1 2 E 2 «z = c 2 2 t 2 2 E z z 2 W (x, y, s) = 1 q 1 Z t j z = c 2 z ρ dz 2 E z(x, y, z, (s + z)/c) = 0 2 W 1 γ 2 0, for γ R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 23

Indirect test beams 2 W (x, y, s) = 0 It is possible to find W (x, y, s) for all possible beam positions (x, y) by a numerical solution of Poissons equation if one knows the wake potential on the boundary. Beam and Test Beams on the boundary. Lines of constant longitudinal wake potential. Gradient of the longitudinal wake potential. An integration provides the transverse wake potential according to Testbeam Beam the Panofsky Wenzel theorem. R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 24

PETRA III Application of Wake Field Calculations: The Light Source PETRA III R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 25

PETRA III undulator PETRA III undulators: Length: 10 m / 5 m / 2 m Mag. Field: 0.9 T Period: 30 mm Synchrotron radiation from an undulator R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 26

Undulator Chamber Wakefields Model of the undulator chamber and the absorber Wakepotential 90 mm x 38 mm y Taper Bellow BPM Undulator L = 115 mm 56 mm x 9 mm 66 mm x 11 mm k = 62.8 V/(pC m) 10 mm 57 mm x 7 mm Longt. Wake / V/pC z Trans. Wake V/(pC mm) 0.2 0.1 0-0.1-0.2 L. Wake, on axis L. Wake, off axis Bunch Trans. Wake 0 1 2 3 4 5 6 7 8 9 10 s / σ z E. Gjonaj, et al. Wake Computations for Undulator Vacuum Chambers of PETRA III, PAC 07 R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 27

Prediction versus Measurement 0.2 0 wiggler West Vertical frequency shift Betatron oszillations: y = q ǫ y β(s) cos(φ(s)) f / I / khz / ma -0.2-0.4-0.6-0.8-1 -1.2 wiggler North SW W NW N NE E SE S -1.4 0 288 576 864 1152 1440 1728 2016 2304 (ORM Data: J. Keil, DESY) W NW Damping Wigglers 10 wigglers (10 x 4 m) 54.0 m Arc 14 FODO cells 201.6 m 32.4 m N Damping Wigglers 10 wigglers (10 x 4 m) Insertion Devices 8 DBA cells NE 8 FB Cavities Injection E s / m new octant rf section φ(c) = 2π Q y Measurement: phase φ(s) Orbit Responce Matrix (ORM) with diffenrent single bunch intensities 240 x 0.083 ma = 20 ma 10 x 2 ma = 20 ma f I = 1 2 E/e New Octant: Intensity dependend phase shift 0.265 khz/ma Prediction 0.325 khz/ma Measurement ( 20 % larger) n β n k n SW RF Section 12 cavities S SE R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 28

Acknowledgment Thank you for your attention! R. Wanzenberg Wakefields and Impedances I CAS, Nov. 2015 Page 29