asymptotic safety beyond the Standard Model

Similar documents
from exact asymptotic safety to physics beyond the Standard Model

Kamila Kowalska. TU Dortmund. based on and work in progress with A.Bond, G.Hiller and D.Litim EPS-HEP Venice, 08 July 2017

Directions for BSM physics from Asymptotic Safety

The mass of the Higgs boson

UNPARTICLE PHYSICS. Jonathan Feng UC Irvine. Detecting the Unexpected UC Davis November 2007

Higgs Property Measurement with ATLAS

Little Higgs Models Theory & Phenomenology

Probing Two Higgs Doublet Models with LHC and EDMs

Searches for Supersymmetry at ATLAS

Simplified models in collider searches for dark matter. Stefan Vogl

Light generations partners at the LHC

The Standard Model and Beyond

Particle Physics Today, Tomorrow and Beyond. John Ellis

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Looking through the Higgs portal with exotic Higgs decays

What Shall We Learn from h^3 Measurement. Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC November 12, 2016

Strongly coupled gauge theories: What can lattice calculations teach us?

Phenomenology of low-energy flavour models: rare processes and dark matter

A Minimal Composite Goldstone Higgs model

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Double Higgs production via gluon fusion (gg hh) in composite models

Where are we heading? Nathan Seiberg IAS 2016

On behalf of the ATLAS and CMS Collaborations

Non-Supersymmetric Seiberg duality Beyond the Planar Limit

Higgs Signals and Implications for MSSM

The Flavour Portal to Dark Matter

The Strong Interaction and LHC phenomenology

750GeV diphoton excess and some explanations. Jin Min Yang

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

SUSY searches at LHC and HL-LHC perspectives

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Introduction to the SM (5)

Lattice: Field theories beyond QCD

Composite Higgs/ Extra Dimensions

The search for missing energy events at the LHC and implications for dark matter search (ATLAS and CMS)

Higgs Couplings and Electroweak Phase Transition

Lattice studies of the conformal window

A model of the basic interactions between elementary particles is defined by the following three ingredients:

The Higgs boson. Marina Cobal University of Udine

Dynamical supersymmetry breaking, with Flavor

Strongly Coupled Dark Matter at the LHC

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Electroweak and Higgs Physics

Baryon and Lepton Number Violation at the TeV Scale

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Composite Higgs and Flavor

BSM physics via collisions with ions at the LHC

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015

Search for BSM Higgs bosons in fermion decay modes with ATLAS

Little Higgs at the LHC: Status and Prospects

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Naturalizing SUSY with the relaxion and the inflaton

Where are we heading? Nathan Seiberg IAS 2014

Electroweak Sector of the SM

Where are we heading?

Yukawa and Gauge-Yukawa Unification

(Non-degenerate) light generation compositeness in composite Higgs models

LHC resonance searches in tt Z final state

TeV Scale LNV: 0νββ-Decay & Colliders I

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

Nonthermal Dark Matter & Top polarization at Collider

Higgs searches in CMS

Electroweak Baryogenesis and Higgs Signatures

arxiv: v1 [hep-ph] 18 Jul 2013

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Done Naturalness Desert Discovery Summary. Open Problems. Sourendu Gupta. Special Talk SERC School, Bhubaneshwar November 13, 2017

Composite Higgs, Quarks and Leptons, a contemporary view

Search for new physics in rare D meson decays

Perspectives Flavor Physics beyond the Standard Model

Rethinking Flavor Physics

Theory of the ElectroWeak Interactions

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

Adam Falkowski. 750 GeV discussion. LAL Orsay, 18 January 2016

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

Patrick Kirchgaeßer 07. Januar 2016

Roni Harnik LBL and UC Berkeley

Two-Higgs-doublet models with Higgs symmetry

Searches for Beyond SM Physics with ATLAS and CMS

The SCTM Phase Transition

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas)

Yasunori Nomura. UC Berkeley; LBNL

Andrey Katz C. Brust, AK, S. Lawrence, and R. Sundrum; arxiv:

Effective Field Theory and EDMs

Hunting New Physics in the Higgs Sector

Beyond the SM: SUSY. Marina Cobal University of Udine

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

The cosmological constant puzzle

arxiv:hep-ph/ v1 17 Apr 2000

The Twin Higgs. with Zackaria Chacko and Hock-Seng Goh hep-ph/

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Emerging the 7 TeV LHC & the LC

The Higgs Boson and Electroweak Symmetry Breaking

Searches for Low Mass Strings and Unparticle Physics at the LHC with CMS

Higgs Coupling Measurements!

Transcription:

asymptotic safety beyond the Standard Model Daniel F Litim Frankfurt, 18 May 2017

standard model local QFT for fundamental interactions strong nuclear force weak force electromagnetic force open challenges what comes beyond the SM? how does gravity fit in?

asymptotic freedom triumph of QFT

asymptotic freedom 0.02 0.00-0.02-0.04 free UV fixed point -0.06-0.08 e.g. QCD -0.10-0.12 0.00 0.05 0.10 0.15 0.20 0.25

conditions for asymptotic freedom complete asymptotic freedom couplings achieve non-interacting UV fixed point fields scalars scalars with fermions U(1) w/o scalars or fermions non-abelian gauge fields non-abelian fields with fermions non-abelian fields, fermions, scalars caf no no no yes yes *) yes *) *) provided certain auxiliary conditions hold true

infrared freedom 0.10 0.02 0.00 0.05-0.02-0.04 0.00-0.06-0.08-0.05 e.g. QED -0.10-0.10-0.12 0.00 0.05 0.10 0.15 0.20 0.25

asymptotic safety 0.10 0.02 0.00 0.05-0.02-0.04 0.00-0.06-0.08-0.05 interacting UV fixed point -0.10-0.10-0.12 0.00 0.05 0.10 0.15 0.20 0.25

asymptotic safety idea: some or all couplings achieve interacting UV fixed point Wilson 71 Weinberg 79 if so, new directions for BSM physics &, possibly, quantum gravity proof of existence: 4D gauge-yukawa theory with exact asymptotic safety Litim, Sannino, 1406.2337 Bond, Litim @ERG2016

asymptotic safety today: 1. theorems for asymptotic safety Bond, Litim 1608.00519 2. weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

asymptotic safety today: 1. theorems for asymptotic safety Bond, Litim 1608.00519 2. weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

conditions for asymptotic safety results Bond, Litim 1608.00519 *) *) *) provided certain auxiliary conditions hold true

basics of asymptotic safety gauge theory Yukawa theory @ t g = B g 2 + C g 3 D g 2 y @ 0 t < y = = E B/C y 2 F 1 g y t =lnµ/ 1 loop coefficients D, E, F > 0 in any QFT B>0 asymptotic freedom C<0or C>0 in the latter case: g = B C Banks-Zaks IR FP

basics of asymptotic safety gauge theory @ t g = B g 2 + C g 3 D g 2 y @ 0 t < y = = E B/C y 2 F 1 g y t =lnµ/ 1 loop coefficients D, E, F > 0 in any QFT B<0 infrared freedom for C < 0 we must have C S 2 < 1 11 CG 2

result: 1.0 E 8 = min C 2(R) C 2 (adj) 1 c 0.8 0.6 0.4 E 7 E 6 F 4 G 2 SOHNL SUHNL SpHNL 19 24 13 18 2 3 7 12 1 2 3 8 0.2 0.0 asymptotic safety 5 10 15 20 N 1 11

result: 1.0 E 8 = min C 2(R) C 2 (adj) 1 c 0.8 0.6 0.4 E 7 E 6 F 4 G 2 SOHNL SUHNL SpHNL 19 24 13 18 2 3 7 12 1 2 3 8 implication: B apple 0 ) C>0 no go theorem 0.2 0.0 asymptotic safety 5 10 15 20 N 1 11

basics of asymptotic safety gauge theory @ t g = B g 2 + C g 3 D g 2 y @ 0 t < y = = E B/C y 2 F 1 g y t =lnµ/ 1 loop coefficients D, E, F > 0 in any QFT B<0 infrared freedom B<0 ) C>0 Bond, Litim 1608.00519

basics of asymptotic safety gauge theory @ t g = B g 2 + C g 3 D g 2 y @ 0 t < y = = E B/C y 2 F 1 g y t =lnµ/ 1 loop coefficients D, E, F > 0 in any QFT B<0 infrared freedom B<0 ) C>0 can other couplings help? more gauge: useless scalar quartics: useless Yukawas: unique viable option Bond, Litim 1608.00519

basics of asymptotic safety gauge Yukawa theory @ t g = B 2 g + C 3 g D 2 g y t =lnµ/ @ t y = E 2 y F g y 1 loop coefficients D, E, F > 0 in any QFT

basics of asymptotic safety gauge Yukawa theory @ t g = B 2 g + C 3 g D 2 g y t =lnµ/ @ t y = E 2 y F g y 1 Yukawa nullcline y = F E g

basics of asymptotic safety gauge Yukawa theory @ t g = B 2 g + C 3 g D 2 g y t =lnµ/ @ t y = E 2 y F g y 1 Yukawa nullcline y = F E g g =( B + C 0 g ) 2 g shifted two-loop C! C 0 = C D F E interacting UV fixed point iff DF CE>0

basics of asymptotic safety gauge Yukawa theory @ t g = B 2 g + C 3 g D 2 g y t =lnµ/ @ t y = E 2 y F g y 1 Yukawa nullcline y = F E g g =( B + C 0 g ) 2 g gauge-yukawa fixed point ( g, y)= B C 0, B F C 0 E UV or IR

basics of asymptotic safety gauge Yukawa theory @ t g = B 2 g + C 3 g D 2 g y t =lnµ/ @ t y = E 2 y F g y 1 summary of fixed points ( g, y)=(0, 0) B Gaussian UV or IR ( g, y)= ( g, y)= C, 0 B C 0, B F C 0 E Banks-Zaks gauge-yukawa IR UV or IR

basics of asymptotic safety gauge Yukawa theory @ t g = B 2 g + C 3 g D 2 g y t =lnµ/ @ t y = E 2 y F g y 1 exact proofs of existence (Veneziano limit) SU(N) + scalars + fermions DF Litim, F Sannino, 1406.2337 SU(N) x SU(M) + scalars + fermions AD Bond, DF Litim, @ERG2016 (to appear)

conditions for asymptotic safety results Bond, Litim 1608.00519 *) *) *) provided certain auxiliary conditions hold true

B>0 >C B,C > 0 >C 0 Y4 Y4 G G BZ 0 >B,C 0 B,C,C 0 > 0 GY Y4 Y4 GY G G BZ

B>0 >C B,C > 0 >C 0 not available Y4 Y4 N=1 SUSY G G BZ 0 >B,C 0 B,C,C 0 > 0 not available GY Y4 Y4 GY G G BZ

asymptotic safety 1. theorems for asymptotic safety Bond, Litim 1608.00519 2. weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727 AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

asymptotic safety beyond the SM Bond, Hiller, Kowalska, Litim, 1702.01727 N F flavors of BSM fermions BSM singlet scalars i(r 3,R 2,Y) S ij global flavor symmetry U(N F ) U(N F ) L BSM, Yukawa = y Tr( L S R + R S L) BSM Lagrangean L = L SM + L BSM, kin. + L BSM, pot. + L BSM, Yukawa

UV fixed points

BSM fixed points weak becomes strong FP 2 > 0 2 3 =0 strong becomes weak UV critical surface 2 ( ), 3 ( ) FP 3 3 > 0 strong remains strong 2 =0 weak remains weak UV critical surface 2 ( ), 3 ( ) FP 4 2 3! 3 2 UV critical surface weak becomes the new strong 3 ( )

BSM fixed points FP 2 2 > 0 3 =0 R 2 = 3 R 2 = 4 R 2 = 5 FP 3 3 > 0 2 =0 R 2 = 1 R 2 = 2 R 2 = 3 FP 4 2, 3 > 0 R 2 = 1 R 2 = 2 R 2 = 3 15 21 15' 10 15' 15 8 15 10 R 3 6 R 3 10 R 3 8 3 8 6 1 6 3 0 200 400 600 800 N F 0 100 200 300 N F 0 100 200 N F

summary of fixed points 1 3 6 8 10 5 5 4 4 R 2 3 3 2 2 1 FP 2 FP 3 1 N F FP 4 1 3 6 8 10 R 3

benchmark models

benchmark models model A 1 weak becomes strong, strong becomes weak matching scale cross - over scale FP 2 (R 3,R 2,N F )= (1,4,12) 0.1 a y cross-over a 2 0.01 a 3 0.001 10-4 low scale R 3 = 1, R 2 = 4, N F = 12 1000 10 4 10 5 10 6 m HGeVL

benchmark models 1 strong remains strong, weak remains weak model B FP matching cross - over scale 3 scale (R 3,R 2,N F )= (10,1,30) 0.1 a y cross-over 0.01 a 3 a 2 0.001 low scale R 3 = 10, R 2 = 1, N F = 30 10-4 1000 2000 5000 1 10 4 2 10 4 m HGeVL

benchmark models model B 0.500 weak BZ (R 3,R 2,N F )= (10,1,30) 0.100 0.050 FP 4 Hmodel BL a 2 0.010 0.005 a y NO matching onto SM 0.001 a 3 1 10 100 1000 10 4 mêm 0

benchmark models model C 1 strong matching remains strong scale weak remains weak FP 3 cross - over scale (R 3,R 2,N F )= (10,4,80) 0.1 a 3 a y 0.01 cross-over 0.001 10-4 low scale R 3 = 10, R 2 = 4, N F = 80 10-5 1000 2000 5000 1 10 4 2 10 4 m HGeVL a 2

benchmark models model C 0.200 0.100 weak becomes matching scale the new strong a 2 FP 4 cross - over scale (R 3,R 2,N F )= (10,4,80) 0.050 0.020 a y 0.010 0.005 a 3 0.002 0.001 R 3 = 10, R 2 = 4, N F = 80 high scale 5 10 10 1 10 11 2 10 11 5 10 11 1 10 12 m HGeVL

benchmark models model C 1 weak becomes strong & strong becomes weak FP 2 matching scale (model C) cross-over II cross - over scale a 2 FP 2 (R 3,R 2,N F )= (10,4,80) 0.1 FP 4 a y 0.01 FP4 flyby 0.001 matching scale high scale cross-over II a 3 cross-over I R 3 = 10, R 2 = 4, N F = 80 10-4 2 10 10 5 10 10 1 10 11 2 10 11 5 10 11 1 10 12 m HGeVL

benchmark models model D 0.100 0.050 weak stronger matching than scalestrong FP 4 cross - over scale (R 3,R 2,N F )= (3,4,290) 0.020 a 2 a 3 0.010 cross-over 0.005 a y 0.002 0.001 low scale R 3 = 3, R 2 = 4, N F = 290 1000 1500 2000 3000 5000 7000 10000 m HGeVL

summary of SM matching: when it works FP 2 genuinely, except in special circumstances (competition with other nearby FPs) FP 3 genuinely, except in special circumstances (competition with other nearby FPs)

summary of SM matching: when it works 1 3 6 8 10 5 5 4 N F 4 FP 4 R 2 3 m 3 2 1 low scale high scale no match HweakL no match HstrongL 2 1 1 3 6 8 10 R 3

asymptotic safety 1. theorems for asymptotic safety Bond, Litim 1608.00519 2. weakly interacting UV completions of the Standard Model 3. constraints from data (colliders) AD Bond, G Hiller, K Kowalska, DF Litim, 1702.01727

phenomenology assume low scale matching some BSM masses within TeV energy range assume R 3 6= 1 for LHC ( R 3 = 1 can be tested at future e + e colliders) flavor symmetry: stable BSM fermions broken flavor symmetry: lightest BSM fermion stable constraints from running couplings the weak sector long-lived QCD bound states di-boson searches

SU(3) BSM running 0.010 ATLAS & CMS: 1702.01727 a3 0.009 0.008 M 1.5 TeV Model E Model C Model B 0.007 0.006 500 1000 1500 2000 2500 3000 Q @GeVD

SU(2) BSM running 0.0050 1702.01727 0.0045 a2 0.0040 0.0035 0.0030 Model E D ModelC Model A 0.0025 0.0020 500 1000 2000 5000 Q @GeVD

di-boson spectra and resonances assume resonant production of BSM scalars low Ms M S < p s M S. M M S < 2M high Ms M. M S < 2M loop-mediated decay into GG = gg,,zz,z, or WW g G ψ i S ii ψ i g G interference effects

dijet cross section ATLAS dijet bounds on BR A 1702.01727 (up-date post-moriond) shppæsæggl @fbd 10 5 1000 10 no interference max. interference Model B Model D A = 50 100% 0.1 M S =1.5 TeV 2 5 10 20 50 100 200 M y @TeVD

mass exclusion limits 100 50 scan over masses R hadron searches *) Model B (10,1,30) (10,1,30) BSM 1702.01727 (up-date post-moriond ) M S @TeVD 20 10 5 2 no inter ference max. interference di-jet limits LHC 1 1 2 5 10 20 50 100 200 *) fudged from 13 TeV ATLAS + CMS gluino analysis M y @TeVD

conclusions theorems for fixed points and asymptotic safety new directions beyond asymptotic freedom weakly interacting UV completions of the SM UV FPs can be partially or fully interacting matching to SM explained, works in many cases window of opportunities for BSM new physics can be probed at LHC constraints from colliders