Interaction of Radiation with Matter. Particles: probes. Two process of interaction. Absorption and scattering. k d 2q. I k i

Similar documents
An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

Interaction X-rays - Matter

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

Probing Matter: Diffraction, Spectroscopy and Photoemission

Interaction theory Photons. Eirik Malinen

Particles and Waves Particles Waves

Neutron and x-ray spectroscopy

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

PHYS Introduction to Synchrotron Radiation

MSE 321 Structural Characterization

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Fundamentals of Nanoscale Film Analysis

Electron Spectroscopy

Energy Spectroscopy. Excitation by means of a probe

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln

An Introduction to XAFS

X-ray Energy Spectroscopy (XES).

Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF)

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

PHYS Introduction to Synchrotron Radiation

Electron and electromagnetic radiation

The Use of Synchrotron Radiation in Modern Research

X-Ray Photoelectron Spectroscopy (XPS)

Photon Interaction. Spectroscopy

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

X-Ray Scattering Studies of Thin Polymer Films

4. Other diffraction techniques

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

EEE4101F / EEE4103F Radiation Interactions & Detection

Energy Spectroscopy. Ex.: Fe/MgO

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 1 (2/3/04) Overview -- Interactions, Distributions, Cross Sections, Applications

Interaction of Ionizing Radiation with Matter

INTERACTIONS OF RADIATION WITH MATTER

Lecture 10. Transition probabilities and photoelectric cross sections

Core Level Spectroscopies

Methoden moderner Röntgenphysik II: Streuung und Abbildung

Rb, which had been compressed to a density of 1013

Magnetic Neutron Reflectometry. Moses Marsh Shpyrko Group 9/14/11

X-Ray Photoelectron Spectroscopy (XPS)

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

Chapter V: Interactions of neutrons with matter

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

Skoog Chapter 6 Introduction to Spectrometric Methods

Synchrotron radiation

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

LECTURE 6: INTERACTION OF RADIATION WITH MATTER

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012

Interactions with Matter Photons, Electrons and Neutrons

APPLIED PHYSICS 216 X-RAY AND VUV PHYSICS (Sept. Dec., 2006)

Surface Analysis - The Principal Techniques

MODERN TECHNIQUES OF SURFACE SCIENCE

Optical Imaging Chapter 5 Light Scattering

Lecture 10. Transition probabilities and photoelectric cross sections

DR KAZI SAZZAD MANIR

Particle Interactions in Detectors

General introduction to XAS

PHYS 5012 Radiation Physics and Dosimetry

X-Ray Photoelectron Spectroscopy (XPS)-2

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Methods of surface analysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Lecture 20 Optical Characterization 2

Physics 221B Spring 2018 Notes 34 The Photoelectric Effect

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Introduction to Nuclear Engineering

X-ray Photoelectron Spectroscopy (XPS)

FI 3103 Quantum Physics

Medical biophysics II. X-ray. X-ray. Generation, Spectral features Interaction with matter

Fundamentals in Nuclear Physics

Survey on Laser Spectroscopic Techniques for Condensed Matter

Lecture 5 Wave and particle beams.

Lecture 23 X-Ray & UV Techniques

The interaction of radiation with matter

Secondary Ion Mass Spectrometry (SIMS)


Chap. 3. Elementary Quantum Physics

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

An introduction to X- ray photoelectron spectroscopy

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Today s Outline - April 07, C. Segre (IIT) PHYS Spring 2015 April 07, / 30

X-Ray Photoelectron Spectroscopy (XPS)-2

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Basic physics Questions

APPLIED RADIATION PHYSICS

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices

EEE4106Z Radiation Interactions & Detection

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Possible Interactions. Possible Interactions. X-ray Interaction (Part I) Possible Interactions. Possible Interactions. section

5.111 Principles of Chemical Science

Transcription:

Interaction of Radiation with Matter «Element of modern x-ray physics» J. Als-Nielsen et D. McMorrow «Processus d interaction entre photons et atomes» C. Cohen-Tannoudji, Particles: probes Two process of interaction Absorption and scattering dz dw I0 I k i k d 2q l

Characteristics of particles Three types of particles Are used in condensed matter physics Tender and hard X-ray photons: 3-100 kev Low or high energy electrons: 150 ev-100 kev Hot, thermal or cold neutrons: 120-25-10 mev Interference effects: Wave length of particle must be smaller than interatomic distances 2d sin θ = mλ λ 2d

Characteristics of particles X Photons Neutrons Electrons Description Electromagnetic field E = E 0 e i(k r ωt) Particle y ~ exp(i k.r) Particle y ~ exp(i k.r) Energy E E=hn=hc/l l(å)=12398/e(ev) l=1 Å, E=12.4 kev n=3.10 18 Hz (EHz) E 2 =p 2 c 2 +m n2 c 4 ; E=p 2 /2m n l(å)=0.286/e 0.5 (ev) l=1 Å, E=81.8 mev v n = 4000 m/s E=p 2 /2m e l(å)=12.265/e 0.5 (ev) l=1 Å, E=150 ev v e = 7274 km/s Momentum p p=hk=hn/c p=hk (=mv) p=hk (=mv k B T/E 300K 3.10-6 << 1 ~ 1 ~ 10-5 Interaction Charge s th ~ Z 2 barn Moments magnétiques s d ~ 10-6 barn Noyaux (forte) s d ~ 5 barn Moments magnétiques s d ~ 3 barn Potentiel electrostatique s d ~ 10 8 barn Absorption 4700 barn (Z=28, 1,5 Å) Typique : 0,1-1 barn -

Absorption cross section After going through matter of width dz, beam intensity decreases by di dz di = I z μdz I = I 0 e μl I 0 I m attenuation coefficient (cm -1 ) Beer-Lambert law F 0 : flux incident particles (s -1 /cm 2 ), F = I/S Number of absorbed particles dn q per time unit l dn q = φ z N(dz)σ a s a : absorption cross section, expressed in barn = 10-24 cm 2 The cross section depends on the element, its environnement (RX) and on the particle energy Ex: 2D lattice Unit cell 0.3 nm Surface per atom is s~10-15 cm 2 N dz = ρ a Sdz μ = σ a ρ a

Scattering process number of scattered particles dn d = φdω dσ dω Scattering differential cross section Wave function of the scattered particle Scattering cross section k i q k d 2q dw ψ d r = b(q) eik dr Differential cross section r b(q): scattering length Neutrons: b independent on q dσ ቇ = k d b 2 dσ ቇ = b 2 dω s k i dω s

Characteristics of particles X Photons Neutrons Electrons Description Electromagnetic field E = E 0 e i(k r ωt) Particle y ~ exp(i k.r) Particle y ~ exp(i k.r) Energy E E=hn=hc/l l(å)=12398/e(ev) l=1 Å, E=12.4 kev n=3.10 18 Hz (EHz) E 2 =p 2 c 2 +m n2 c 4 ; E=p 2 /2m n l(å)=0.286/e 0.5 (ev) l=1 Å, E=81.8 mev v n = 4000 m/s E=p 2 /2m e l(å)=12.265/e 0.5 (ev) l=1 Å, E=150 ev v e = 7274 km/s Momentum p p=hk=hn/c p=hk (=mv) p=hk (=mv k B T/E 300K 3.10-6 << 1 ~ 1 ~ 10-5 Interaction Charge s th ~ Z 2 barn Magnetic moments s d ~ 10-6 barn Noyaux (forte) s d ~ 5 barn Magnetic moments s d ~ 3 barn Electrostatic potential s d ~ 10 8 barn Absorption 4700 barn (Z=28, 1,5 Å) Typique : 0,1-1 barn -

Scattering length for particles Solve the Schrödinger equation of the particle in an interaction potential V r Stationary states of energy: E = ħ2 k 2 2M «Mécanique quantique 2, chap.viii» Cohen-Tannoudji, Diu, Laloë ħ 2 2M + V r φ r = ħ2 k 2 2M φ r with V r = ħ2 2M U(r) + k 2 U(r) φ r = 0 Born aprox. + kr 1 φ r ~e ik i r + b(q) eikr r Scattering length = FT of potential b q = 1 4π U(r)e iq r d 3 r

Scattering length X-rays: FT of the electron density b q = r 0 f q = r 0 න ρ r e iq r d 3 r Rayons X Phase shift π r 0 = 2,82 10-15 Å Neutrons: FT of Fermi pseudo-potential. It is a constant because (V r ~ δ r ) b q = b = M 2πħ 2 V r e iq r d 3 r Phase shift 0 ou π Electrons: TF of potential V(r) b q = M 2πħ 2 න V(r)e iq r d 3 r b q depends n l énergie Phase shift δ(q) Electron Fadley, Physica Scripta, T17,39,1987

Optical theorem Mécanique quantique II, p. 940 C. Cohen-Tannoudji, B. Diu, Frank Laloë σ tot = σ a +σ d = 4π k Im(b 0 ) ψ d r = b(θ) eik dr r Shadow: ψ i r = Ae ik ir Interference between incident wave and scattered wave

Absorption

Origin of neutrons absorption Neutrons weaklly absorbed Absorbed through nuclear reactions 3 He+n 3 H - +p s a 6 Li 520 10 B 2100 Gd 74000 Ni 4.6 Pb 0.17 Detectors and shields Energy dependance: σ a k = σ a k 0 k k 0 = 34,947 nm 1

Origin of photons absorption (p,e) E Free electron energy E 2 = m 2 c 4 + p 2 c 2 v c E = p 2 /2m Photon energy E ph = pc E? E O =511 kev E O =511 kev p E O -E L Dp.Dr p Free electron: no absorption Bound electron absorption

UV VUV XUV Soft X-rays Hard X-rays Absorption X-ray absorption Gamma At energies smaller than 1000 kev Photoelectric effect LEAD Z=82

X-ray absorption For E < 1000 kev photoelectric effect is dominant Photoelectric effect Photon is absorbed if hn > E I (E I binding energy of e - ) Excitation: Photoelectron is emitted ( E=hn - E I -F ) F: work function ~1 ev De-excitation: fluorescence photon (hn = E I -E II ) Auger electron ( E= E I -E II -E III ) Photoelectron Fluorescence photon Auger electron Continuum Fermi level M -E F hn (2p 3/2 ) 4 L (2p 1/2 ) 2 (2s) 2 K a K b -E II Core levels K (1s) 2 -E I Excitation Absorption of photons De-excitation Emission of photons and electrons

Order of magnitude X-rays: l = 1.542 Å s a Li 5,7 B 36 Gd 78300 Ni 4760 Pb 79800 Neutrons: 1.8 Å s a 6 Li 520 10 B 2100 Gd 74000 Ni 4.6 Pb 0.17

Electrons mean free paths Distance between two inelastic collisions with Plasmons Valence electrons From A. Zangwill, Physics at Surfaces, Cambridge Univ. Press. After this distance (attenuation length), electrons loose their coherence. Low energy electron diffraction (LEED) is a surface technique Only surface photoelectrons and Auger electrons escape from the sample Importance in X-Ray Absorption (XAS)

Scattering

Scattering: atome-particle system changes of state Initial state, e i Final state, e f Elastic scattering: Does not change the nature or the internal state of the particles and the target

Photon scattering Rayleigh scattering: Low energy elastic scattering hn << E I, E I -E II ; F i = F f ; light scattering, blue sky Raman/Brillouin scattering: Low energy inelastic scattering hn << E I ; F i F f ; scattering on optical/acoustical phonons Thomson scattering: High energy elastic scattering hn >> E I ; F i = F f ; X-ray scattering Compton scattering: High energy inelastic scattering hn >> E I ; F i F f ; X-ray scattering

Photons scattering (p i,e i ) E E e = p2 m (p f,e f ) E E O E O E O -E L E e = p2 M Free electron (e- mass m) Compton scattering p Bound electron (atom, crystal mass M»m) Thomson scattering Compton scattering p

Refraction A consequence of scattering r S D R 0 Δ R R 2 = R 0 2 + r 2 RdR = rdr Wave travelling through a plate of width Δ Phase shift: nkδ-kδ P ψ P = ψ 0 P ei n 1 kδ = ψ 0 P (1 + i n 1 kδ) b eikr ψ P = ψ 0 P +ψ 0 (S)e ikd න 0 R (2πrdrΔ)ρ d = ψ 0 P ψ 0 S 2πbΔρ d e ikd න e ikr dr = ψ 0 P (1 i 2πbΔρ d ) R 0 k n = 1 2πbρ d k 2 Absorption e μrδ ρ d ~1eA 3, b~ Z 3. 10 5 A, k~4 A 1 න R 0 e ikr dr δ ~ 10 5 R 0

a n Refraction Refraction index k i k r n = n r + iβ k t a Phase shift and absorption e inkz = e inrkz e βkz For X-rays and neutrons n = 1 2πbρ d k 2 + iβ = 1 δ + i μ 2k Snell s law n r cos α = cos α a c k i k r Existence of a critical angle above which total reflection α c = 2δ Stationnary wave Measure of the sign of b (holography)

Experimental techniques EMISSION : X-ray EMISSION (par rayons X) : Fluorescence Rayons X (Chemical analysis) Fluorescence (Analyse chimique) Photoelectrons, Electrons Auger electrons (analysis) Photo-électrons, électrons Auger (Spectrométrie, analyse) Photoelectron Diffraction de photo-électrons diffraction (structure (local structure) locale) Photo-émission (Structure de bande, surface Fermi) de Electron Spectroscopy Photoemission (band structure) WAVES/PARTICLES X-Rays Neutrons Electrons Crystal Liquid, liquid crystal Polymer Surface REFRACTION : X-ray, neutrons Reflectrometry (surfaces, interfaces) Stationnary waves (surfaces) ABSORPTION : X-ray XAS, EXAFS, XANES (local order) Dichroism (Magnetism, surfaces) SCATTERING X-rays DIFFUSION : Rayons X Diffraction (Etude des structures) Diffusion diffuse (Etude du désordre dans les cristaux, liquides, cristaux liquides) Diffusion Compton (Structure électronique) Diffusion aux petits angles (Polymères, cristaux liquides, agrégats, grandes mailles) Diffusion magnétique, inélastique, cohérente (synchrotrons) Neutrons Diffraction, Diffusion diffuse (Structures, Hydrogène, contraste différent) Inélastique (Excitations élémentaires, phonons, dynamique) Magnétique (Structures magnétique, magnons) Electrons Diffraction, LEED, RHEED (Etude des surfaces) Diffraction (Structures); Diffuse scattering (Disorder, liquids, soft matter) Compton scattering (electronic structure) Small angle scattering (Polymer, liquid crystal, nano-particles, proteins) Magnetic, inelastic, surface, coherent diffraction (synchrotrons) Neutrons Diffraction, Diffuse scattering (Structures, Hydrogen, contrast) Inelastic scattering (phonons, dynamics, excitations) Magnetic (magnetism, magnons) Electrons Low- or high-energy electron diffraction (surfaces, thin samples)